

DSP Design Techniques for Best Performance, Power and Cost

Niall Battson DSP Divisional Marketing

DSP Design Techniques 2

Agenda

- Virtex-4 Family
- The Xtreme DSP Slice
- Filter Techniques
- Case Studies
 - Digital Up Converter
 - 2**-**D

The Virtex-4 Family

DSP Design Techniques 4

Virtex-4 Family

Virtex-4 is the first Xilinx family to introduce three separate platforms optimized for different application domains. This fundamental shift provided the greatest silicon efficiency and optimal cost.

Virtex-4 LX Platform

Optimized for high-performance Logic

Virtex-4 FX Platform

Optimized for Embedded Processing and high-speed Serial Connectivity

Virtex-4 SX Platform

Optimized for high-performance Signal Processing

Virtex-4 SX

The SX family emphasizes Xilinx commitment to **DSP** applications by providing a strong skew toward to dedicated arithmetic units versus logic.

DSP Design Techniques 6

The XtremeDSP[™] Slice (also known as "DSP48")

DSP Design Techniques 7

DSP Design Techniques 8

500 MHz maximum frequency in the fastest speed grade

DSP Design Techniques 9

500 MHz maximum frequency in the fastest speed grade

EXILINX

DSP Design Techniques 10

DSP Design Techniques 11

www.xilinx.com/dsp

XILINX

500 MHz maximum frequency in the fastest speed grade

www.xilinx.com/dsp

XILINX

Dynamically Reconfigurable DSP OPMODEs

OnMada		Z		Y)	(Output	
Opwode	6	5	4	3	2	1	0	Output	
Zero	0	0	0	0	0	0	0	+/- Cin	
Hold P	0	0	0	0	0	1	0	+/- (P + Cin)	
A:B Select	0	0	0	0	0	1	1	+/- (A:B + Cin)	
Multiply	0	0	0	0	1	0	1	+/- (A * B + Cin)	
C Select	0	0	0	1	1	0	0	+/- (C + Cin)	
Feedback Add	0	0	0	1	1	1	0	+/- (C + P + Cin)	
36-Bit Adder	0	0	0	1	1	1	1	+/- (A:B + C + Cin)	
P Cascade Select	0	0	1	0	0	0	0	PCIN +/- Cin	
P Cascade Feedback Add	0	0	1	0	0	1	0	PCIN +/- (P + Cin)	
P Cascade Add	0	0	1	0	0	1	1	PCIN +/- (A:B + Cin)	
P Cascade Multiply Add	0	0	1	0	1	0	1	PCIN +/- (A * B + Cin)	
P Cascade Add	0	0	1	1	1	0	0	PCIN +/- (C + Cin)	
P Cascade Feedback Add Add	0	0	1	1	1	1	0	PCIN +/- (C + P + Cin)	
P Cascade Add Add	0	0	1	1	1	1	1	PCIN +/- (A:B + C + Cin)	
Hold P	0	1	0	0	0	0	0	P +/- Cin	
Double Feedback Add	0	1	0	0	0	1	0	P +/- (P + Cin)	
Feedback Add	0	1	0	0	0	1	1	P +/- (A:B + Cin)	
Multiply-Accumulate	0	1	0	0	1	0	1	P +/- (A * B + Cin)	
Feedback Add	0	1	0	1	1	0	0	P +/- (C + Cin)	
Double Feedback Add	0	1	0	1	1	1	0	P +/- (C + P + Cin)	
Feedback Add Add	0	1	0	1	1	1	1	P +/- (A:B + C + Cin)	
C Select	0	1	1	0	0	0	0	C +/- Cin	
Feedback Add	0	1	1	0	0	1	0	C +/- (P + Cin)	
36-Bit Adder	0	1	1	0	0	1	1	C +/- (A:B + Cin)	
Multiply-Add	0	1	1	0	1	0	1	C +/- (A * B + Cin)	
17-Bit Shift P Cascade Select	1	0	1	0	0	0	0	Shift(PCIN) +/- Cin	
17-Bit Shift P Cascade Feedback Add	1	0	1	0	0	1	0	Shift(PCIN) +/- (P + Cin)	
17-Bit Shift P Cascade Add	1	0	1	0	0	1	1	Shift(PCIN) +/- (A:B + Cin)	
17-Bit Shift P Cascade Multiply Add	1	0	1	0	1	0	1	Shift(PCIN) +/- (A * B + Cin)	
17-Bit Shift P Cascade Add	1	0	1	1	1	0	0	Shift(PCIN) +/- (C + Cin)	
17-Bit Shift P Cascade Add Add	1	0	1	1	1	1	1	Shift(PCIN) +/- (A:B + C + Cin)	
17-Bit Shift Feedback	1	1	0	0	0	0	0	Shift(P) +/- Cin	
17-Bit Shift Feedback Feedback Add	1	1	0	0	0	1	0	Shift(P) +/- (P + Cin)	
17-Bit Shift Feedback Add	1	1	0	0	0	1	1	Shift(P) +/- (A:B + Cin)	
17-Bit Shift Feedback Multiply Add	1	1	0	0	1	0	1	Shift(P) +/- (A * B + Cin)	
17-Bit Shift Feedback Add	1	1	0	1	1	0	0	Shift(P) +/- (C + Cin)	

- Over 40 Different Modes
- Each XtremeDSP Slice individually controllable
- Change operation in a single clock cycle
- Enables resource sharing for maximum utilization

Complex Multiplier

(a+jb).(c+jd) = [a.c - b.d] + j[b.c + a.d]

CLK Cycle	Function	OPMODE	Sub	Sel1	Sel2	CE_R	CE_I

NOTE: Control signals can be stored in a Disributed Memory

Performance 400 Mhz Size: 1 XDSP Slice 59 Slices (5 for control)

DSP Design Techniques 14

CLK Cycle	Function	OPMODE	Sub	Sel1	Sel2	CE_R	CE_I
1	Multiply Subtract	0001010	1	0	0	0	1

NOTE: Control signals can be stored in a Disributed Memory

Performance 400 Mhz Size: 1 XDSP Slice 59 Slices (5 for control)

CLK Cycle	Function	OPMODE	Sub	Sel1	Sel2	CE_R	CE_I
1	Multiply Subtract	0001010	1	0	0	0	1
2	Multiply Accumulate	0101010	0	1	0	0	0

NOTE: Control signals can be stored in a Disributed Memory

Performance
400 Mhz
Size:
1 XDSP Slice
59 Slices
(5 for control)

Complex Multiplier

CLK Cycle	Function	OPMODE	Sub	Sel1	Sel2	CE_R	CE_I
1	Multiply Subtract	0001010	1	0	0	0	1
2	Multiply Accumulate	0101010	0	1	0	0	0
3	Multiply	0001010	0	0	1	1	0

Performance 400 Mhz Size: 1 XDSP Slice 59 Slices (5 for control)

NOTE: Control signals can be stored in a Disributed Memory

by : Niall Battson (Xilinx) 2004

XILINX

CLK Cycle	Function	OPMODE	Sub	Sel1	Sel2	CE_R	CE_I
1	Multiply Subtract	0001010	1	0	0	0	1
2	Multiply Accumulate	0101010	0	1	0	0	0
3	Multiply	0001010	0	0	1	1	0
4	Multiply Accumulate	0101010	0	1	1	0	0

NOTE: Control signals can be stored in a Disributed Memory

Performance
400 Mhz
Size:
1 XDSP Slice
59 Slices
(5 for control)

pared by : Niall Battson (Xilinx) 20

XtremeDSP Slice Cascade

epared by : Niall Battson (Xilinx) 20

DSP Design Techniques 19

DSP48 Slice Power Consumption

Conditions: TT, 25C, nominal voltage, Fully pipelined multiply-add mode, random vectors

DSP Design Techniques 20

DSP48 Power Test for 63 Tap FIR Filter

(Stratix II EP2S60 and Xilinx Virtex-4 XC4VLX60)

		-	Stratix II EP2S60 vs Virtex-4 XC4VLX60 Total Power from V _{CCINT}
Description	Test using 63 section asymmetrical taps with 18 bit data stream and fixed 18 bit coefficients. Virtex-4 uses 63 DSP48 blocks all in a single column. Stratix II uses 4 tap sections in a DSP block. Reconciling summation of 4 tap chunks is handle by Stratix II 3 input adders in layers of 6, 2, and 1. Same Stimulus VHDL code.	Power (Watts)	Power vs. Frequency at 85 C (63 Tap FIR Filter)
Virtex-4 Logic Functions	64 DSP48 and 0 Slices (1 DSP Block used as stimulus of the filter)		
Stratix II Logic Functions	128 9 Bit DSP Elements and 187 ALMs (1/4 of 1 DSP Block is used as a stimulus for the filter)	Power (Watts	0.5 Virtex-4 LX60 0.3 0.0 Virtex-4 LX60 0.4 0 Virtex-4 LX60 0.5 0 Virtex-4 LX60 0.7 0 Virtex-4 Virtex-4 LX60 0 Virtex-4 Virtex-
			0 50 100 150 200 250 300

> 1 Watt of power difference between Virtex-4 and Stratix-II in DSP Applications

ared by : Niall Battson (Xilinx) 2004

Frequency (MHz)

DSP Design Techniques 21

Measured 1024 Point FFT Power

(Stratix II EP2S60 and Xilinx Virtex-4 XC4VLX60)

Filter Techniques

For this analysis the software used was:

ISE 7.1.1i Quartus 4.1 sp1 FIR Compiler 3.2.1

DSP Design Techniques 23

The FIR Filter

The most common DSP function implemented in a Xilinx devices is the Finite Impulse Response filter:

How do we implement these filter in Virtex-4?

Sequential FIR Filters

- Firstly consider one multiplier based FIR Filters.
- Processing of the filter coefficients is done in a sequential fashion
- Line is where this architecture can no longer meet performance requirements
- Line has been raised in Virtex-4 due to higher clock performance of Xtreme DSP Slice

DSP Design Techniques 25

Virtex-4 MAC FIR Filter

Filter Specification: Sampling Frequency = 1.2288 Mhz, Coefficients = 366

DSP Design Techniques 26

Stratix-II MAC FIR Filter

Filter Specification: Sampling Frequency = 1.2288 Mhz, Coefficients = 366

DSP Design Techniques 27

Parallel FIR Filters

- Now consider one multiplier per coefficient
- Processing of the filter coefficients is done in a parallel fashion
- Line is where this architecture is required as less than 2 clock cycles are available
- Line has been raised in Virtex-4 due to higher clock performance of Xtreme DSP Slice

Virtex-4 Systolic FIR Filter

Filter Specification: Sampling Frequency = 400 Mhz, Coefficients = 23

DSP Design Techniques 29

Stratix-II Parallel FIR Filter

DSP Design Techniques 30

Semi-Parallel FIR Filters

- Now consider in between scenario. Multiple coefficients per multiplier (M).
- Processing of the filter coefficients is done in a semiparallel fashion
- Boundary lines determined by the other techniques
- Line has been raised in Virtex-4 due to higher clock performance of Xtreme DSP Slice

Virtex-4 4 Multiplier Systolic SP FIR

Filter Specification: Sampling Frequency = 74.176 MHz, Coefficients = 16

ared by : Niall Battson (Xilinx) 2004

XILINX

DSP Design Techniques 32

4 Multiplier Systolic SP FIR

System Generator Implementation

Stratix-II

4 Multiplier Semi-Parallel FIR

Filter Specification: Sampling Frequency = 74.176 MHz, Coefficients = 16

DSP Design Techniques 34

Multi-Channel Multi-Rate FIR Filters

DSP Design Techniques 35

Virtex-4 Multi-Channel Multi-Rate FIR

Filter Specification:

Input Frequency = 3.84 Mhz, Coefficients = 192, Interpolation Rate Change = 2, Channels = 8, Data Width = 12-bit, Coefficient Width = 15-bits

Slicing up the Pie:

Total number of coefficients = 1536

96 x 16 is the coefficient Matrix:

Option 1:

16 Sequential MACC Engines

96 clk cycles, Clock Speed: 368 Mhz

Option 2:

1 Semi-parallel 12 Multiplier FIR

8 cycle per phase, 16 phases = 128 clk cycles

Clock Speed: 491.52 Mhz

Option 3: Increase coefficients to 196

1 Semi-parallel 14 Multiplier FIR

7 cycle per phase, 16 phases = 112 clk cycles

Clock Speed: 430.08 Mhz

Virtex-4 Multi-Channel Multi-Rate FIR

DSP Design Techniques 37

Stratix-II Multi-Channel Multi-Rate FIR

Filter Specification:

Input Frequency = 3.84 Mhz, Coefficients = 192, Interpolation Rate Change = 2, Channels = 8, Data Width = 12-bit, Coefficient Width = 15-bit

epared by : Niall Battson (Xilinx) 200

DSP Design Techniques 38

Stratix-II Multi-Channel Multi-Rate FIR

Filter Specification:

Input Frequency = 3.84 Mhz, Coefficients = 192, Interpolation Rate Change = 2, Channels = 8, Data Width = 12-bit, Coefficient Width = 15-bit

ared by : Niall Battson (Xilinx) 2004

DSP Design Techniques 39

Case Study 1: DUC

DUC Specification: Output Frequency = 450 MSPS DDS: SFDR = 84dB, CIC: 5 Stage, Interpolation Rate = 1:16, CFIR: 32 Coefficients, Interpolation Rate = 1:2, PFIR: 64 Coefficients, Interpolation Rate 1:2

DUC: Sysgen Model

DSP Design Techniques 41

Case Study: DUC

DUC SIZE: (V-II Pro) 6 Embedded Mults 2,328 Flip-Flops 2,076 LUTs 10 Block RAM Performance: 202 MHz

DUC SIZE: (V-4) 27 XDSP Slice 692 Flip-Flops 977 LUTs 10 Block RAM Performance: >400 MHz

Case Study 2: 2-D FIR

2-D FIR Specification: Frame Rate = 60 Hz, Active Frame Size = 1440 x 1080, Single Channel Separable FIRs : Sample Rate = 111.38 MSPS, 24 Tap Re-loadable, 10-bit Data, Folding Factor = 4

$$y(n,m) = \sum_{k=-N}^{k=+N} h_0(k) \left\{ \sum_{l=-N}^{l=+N} h_1(l) \cdot x(n-k,n-l) \right\}$$
$$= \sum_{l=-N}^{l=+N} h_1(k) \left\{ \sum_{k=-N}^{k=+N} h_0(l) \cdot x(n-k,n-l) \right\}$$

DSP Design Techniques 43

Case Study 2: Vertical FIR & Line Buffer

DSP Design Techniques 44

Case Study: 2-D FIR

2-D FIR SIZE: (V-II Pro) 12 Embedded Mults 1,325 Flip-Flops 890 LUTs **30 Block RAM** Performance: 229.8 MHz Performance: 446 MHz

2-D FIR SIZE: (V-4) 15 XDSP Slice 560 Flip-Flops 414 LUTs 30 Block RAM

Conclusion - The Check List

Is the design running as fast as possible? (500 Mhz for fastest speed grade. 50% faster that Stratix-II. Resources can be saved by making sure the design runs at full speed.)

Is the XtremeDSP Slice being utilized fully? (Fabric slices can be saved by better exploiting the Xtreme DSP Slice which leads to less power. Greater than 1 Watt less power that Stratix-II)

Are Adder Chains being used instead of trees? (The XtremeDSP Slice is designed to support adder cascades)

Knowledge is Power

"The next best thing to knowing something is knowing where to find it" - Samuel Johnson

5 Application Notes available in the **Virtex-4 User Guide** in regard to implementation specifics

Many Reference Designs in: VHDL Verilog System Generator for DSP

For Further Details visit.....

www.xilinx.com/dsp

Knowledge is Power

"The desire of knowledge, like the thirst of riches, increases ever with

