
Department of Electrical

and Computer Engineering

Slide 1

Robert Betz: 97

Hardware Description Languages (HDLs)

Introduction
• Two main hardware description languages will be treated in this

course: Altera Hardware Description Language (AHDL), and Very
High Speed Integrated Circuit Hardware Description Language
(VHDL).

• VHDL is an IEEE Standard (IEEE Std 1076-1987 or 1076-1993).

Altera Hardware Description Language
(AHDL)

Introduction
Limitations: These notes are not attempting to describe the full details
of AHDL, but just to give the flavour of the language and point out
some of its features. In most cases further detail can be obtained from
the MAX+PLUS II on-line help system.

• Reference: “MAX+PLUS II Text Editor and AHDL Manual”, Altera.

• High level modular language that is completely integrated into the
MAX+PLUS II development system.

• Main features of AHDL:

(i) State machine, truth tables, boolean equations, and group opera-
tions are supported and implemented in a user friendly format.

(ii)Text, graphic and waveform files can be intermixed in a design
hierarchy.

(iii)Frequently used constants and prototypes. including prototypes of
standard TTL, bus, and EPLD optimized Macrofunctions can be
stored in Include Files (.inc) and incorporated into any Text
Design File (.tdf).

Department of Electrical

and Computer Engineering

Slide 2

Robert Betz: 97

(iv)Device resources can be user specified or assigned automati-
cally.

Text Design File Sections
(i) Title Statement (Optional) – provides comments for the Report

Files (.rpt) generated by the system.

(ii) Constant Statement (Optional) – specifies a symbolic name that
can be substituted for a constant.

(iii) Function Prototype Statement – declares the ports of a macro-
function or primitive and the order in which those ports must be
declared in an in-line reference.

(iv) Include Statement (Optional) – specifies an Include File (.inc)
that replaces the Include statement in the TDF.

(v) Options Statement (Optional) – sets the Turbo and Security Bits
of Altera devices and determines how product terms are allo-
cated.

(vi) Design Sections (Required/Optional) – specifies device, clique,
chip, pin, and macrocell assignments, and logic options.

(vii) Subdesign Section (Required) – declares the input, output, and
bidirectional ports of a design.

(viii) Variable Section (Optional) – declares variables that represent
and hold internal information.

(ix) Logic Section (Required) – defines the logical operations of the
design.

• AHDL is a concurrent language – i.e. all behaviour described in the
logic section is evaluated at the same time and not sequentially as in
a conventional programming language.

• To include lower level design files in a higher level TDF a function
prototype statement must be included.

Department of Electrical

and Computer Engineering

Slide 3

Robert Betz: 97

Title Statement

Constant Statement

Function Prototype Statement

Include Statement

Options Statement

Design Section

Subdesign Section

Variable Section

Logic Section

Constant

Function
Prototype

Include Files (.INC) con-
tain Constants of Func-
tion Prototypes.

TDFs contain Title, Con-
stant, Include, Options,
and Variable State-
ments and Function
Statements.

TDFs must contain a
Design Section and/or a
Subdesign Section and
Logic Section

.TDF .GDF .TDF

.TDF .GDF

.ADF,
.SMF

or
.EDF

.WDF

Lower-level TDFs, GDFs,
WDFs, ADFs, SMFs, and EDFs
are connected to higher level
TDFs through references in
Logic Sections

Figure 1 : Text Design File Structure

Department of Electrical

and Computer Engineering

Slide 4

Robert Betz: 97

Some tips
• TDF file is a standard ascii file.

• Lines in a TDF may be up to 255 characters long.

• AHDL is not case sensitive.

• Comments must be enclosed in percent symbols (%). Comments
cannot be nested.

• See Table 1 for a list of reserves keywords. Keywords cannot be
used in a design file, except if enclosed in single quotes – i.e.
‘name’, where name is the keyword used in a name.

• The GND constant is defined as a low level input voltage and is
equivalent to a low (0) or false. VCC constant is defined as a high
level input voltage and is equivalent to high (1) or true.

• The rules for the symbols that can be used in AHDL variable names
are much the same as standard programming languages.

Table 1: Reserved Keywords

Reserved Keywords

AND IF OUTPUT

ANY INCLUDE PTERM_ALLOC

BEGIN INPUT RETURNS

BIDIR IS STATES

BIT0 LSB SECURITY

BITS MACHINE SUBDESIGN

BURIES MACRO THEN

CASE MSB TITLE

CLIQUE NAND TABLE

CONSTANT NODE TURBO

Department of Electrical

and Computer Engineering

Slide 5

Robert Betz: 97

• Unquoted symbolic names: can contain up to 32 characters consist-
ing of A-Z, a-z, slash (/) and underscore (_). Cannot be keywords,
and may not consist entirely of digits. e.g. legal names: a /a; illegal
names: -foo node 55.

• Quoted symbolic names: enclosed in single quotes (‘). Allow the
use of dashes (-), can use keywords, can consist entirely of digits.

• A list of symbols used in AHDL and their meanings appear in
Table 2

DEFAULTS NOR VARIABLE

DESIGN NOT VCC

DEVICE OF WHEN

ELSE OFF WITH

ELSIF ON X

END OPTIONS XNOR

FUNCTIONS OR XOR

GND OTHERS

Table 2: AHDL Symbols

Symbol Function

_ (Underscore)
/ (Slash)
- (dash)

Legal charters in symbolic names (i.e. user
defined identifiers). See note about dash.

% (Percent) Enclose comments

Table 1: Reserved Keywords

Reserved Keywords

Department of Electrical

and Computer Engineering

Slide 6

Robert Betz: 97

() (Left and right
parentheses)

Enclose and define group names.
Enclose pin names in Subdesign Sections and
Function Prototypes.
Enclose inputs and outputs of truth tables.
Enclose states in State Machine Declarations.
Enclose highest priority operations in
boolean expressions.
Enclose options in a Design Section (within a
Resource Assignment Statement).

[] (Left and Right
Brackets)

Enclose the number range of a group.

‘...’ (Single
quotation
marks)

Enclose quoted symbolic names.

“...” (Double
quotation
marks)

Enclose text string in Title Statements.
Enclose pathname in Include Statements.
Enclose digits in non-decimal numbers.
Enclose design name and device name in
Design Sections (optional).

. (Period) Separates symbolic names of macrofunction
or primitive variable from stubs.
Separates extensions from filenames.

.. (Ellipsis) Separates most significant bit (MSB) from
least significant bit (LSB) in ranges.

; (Semicolon) Ends AHDL statements and sections.

, (Comma) Separates members of groups and lists.

: (Colon) Separates symbolic names from types in dec-
larations and resource assignments.

Table 2: AHDL Symbols

Symbol Function

Department of Electrical

and Computer Engineering

Slide 7

Robert Betz: 97

Ports
• Ports are variables connected to inputs and outputs of primitives or

macrofunctions

e.g. if one declares a variable cap of type LATCH you may use the
following ports in your design: cap.d, cap.ena and cap.q.

@ (At) Assigns symbolic nodes to device pins and
macrocells in Resource Assignment State-
ments.

= (Equals) Assigns defaults GND and VCC values to
inputs in Subdesign Section.
Assigns settings to options.
Assigns values to state machine states.
Assigns values in boolean equations.

=> (Arrow) Separates inputs from outputs in truth table
statements.
Separates WHEN clauses from boolean
expressions in Case statements.

Table 3: Commonly used port definitions

Port Definition

.q Output of a flip-flop

.d Data input of a D-type flip-flop or latch

.t Toggle input of a T-type flip-flop

.j J input of a JK flip-flop

.k K input of a JK flip-flop

Table 2: AHDL Symbols

Symbol Function

Department of Electrical

and Computer Engineering

Slide 8

Robert Betz: 97

Groups
• Symbolic names and ports of the same type may be declared and

used as a group in boolean expressions and equations.

• Group may include up to 256 members and is treated as a collection
of bits and acted upon as one unit.

Notation

Groups can be declared with the following two notations:

1. A symbolic name or port followed by a range of decimal numbers
enclosed in brackets, e.g. a[4..1].Only one range is allowed after
a group identifier.

F Once the group has been defined, [] is a shorthand way of
specifying the entire range.

2. A list of symbolic names, ports or numbers separated by commas and
enclosed in parentheses, e.g. (a, b, c). Groups with ranges can
also be listed within the parentheses. For example, (a, b,
c[5..1]) is a legal group.

.s Set input of an SR-type flip-flop

.r Reset input of an SR-type flip-flop

.clk Clock input of a flip-flop

.ena Enable input of a flip-flop or latch

.prn Active low preset input of a flip-flop

.clrn Active low clear input of a flip-flop

Table 3: Commonly used port definitions

Port Definition

Department of Electrical

and Computer Engineering

Slide 9

Robert Betz: 97

F This notation is useful for specifying ports. For example. the
input ports of variable cap of type DFF can be written as
cap.(d, clk, clrn.prn).

e.g. Same group specified with different notations:

b[5..0]
(b5, b4, b3, b2, b1, b0)
b[]

Numbers
• May use numbers in decimal, binary, octal and hexadecimal in any

combination in AHDL

e.g. valid AHDL numbers
B"0110X1X10"
Q"4671223"
H"123AECF"

Following rules apply to AHDL numbers:

n The MAX+PLUS II compiler always interprets numbers as
groups of binary digits.

n Numbers may not be assigned to single nodes in Boolean equa-

Table 4: Radix Systems

Numbering System Syntax

Decimal <series of digits 0 to 9>

Binary B"<series of 0’s, 1’s, X’s>"
(where X = “don’t care”)

Octal O"<series of digits 0 to 7>" or
Q"<series of digits 0 to 7)"

Hexadecimal H"<series from 0 to 9, A to F)"

Department of Electrical

and Computer Engineering

Slide 10

Robert Betz: 97

tions. Use VCC and GND instead.

Boolean Expressions
• Boolean expressions consist of operands (symbolic names, ports,

groups or constants) separated by logical and arithmetic operators
and comparators.

• Can also be used in Case and If statements.

• A boolean expression may be one of the following:

n An operand (e.g., a, b[5..1], 7, VCC)

n An in-line primitive or macrofunction reference.

n A prefix operator (! or -) applied to a boolean expression (e.g.
!c)

n Two boolean expressions separated by a binary (non-prefix)
operator (e.g. d1 $ d3).

n A boolean expression enclosed in parentheses (e.g. (!foo &
bar)).

F The result of every boolean expression must be the same
width as the node or group (on the left side of an equation) to
which it is eventually assigned.

Table 5: Logical Operators

Symbol Example Description

!
NOT

!tob
NOT tob

one’s complement
(prefix inverter)

&
AND

bread & butter
bread AND butter

AND

Department of Electrical

and Computer Engineering

Slide 11

Robert Betz: 97

Some Tips on Boolean Operations

n NOT of a group carries out a NOT on all members of the group,
e.g. !a[4..1] is (!a4, !a3, !a2, !a1).

n (a, b, c) # (d, e, f) is interpreted as (a # d, b #
e, c # f).

n Of one operand is a single node is it is being applied to a group
then the single node is duplicated to make it the same size as the
group and then applied, e.g. a & b[4..1] is interpreted as (a
& b4, a & b3, a & b2, a& b1).

n If both operands are numbers then the shorter number is sign
extended to match the size of the larger number an the operation

!&
NAND

a[3..1] !& b[5..3]
a[3..1] NAND b[5..3]

AND inverter

#
OR

trick # treat
trick OR treat

OR

!#
NOR

c[8..5] !# d[7..4]
c[8..5] NOR d[7..4]

OR inverter

$
XOR

foo $ bar
foo XOR bar

exclusive OR

!$
XNOR

x2 !$ x4
x2 XNOR x4

exclusive NOR

Table 5: Logical Operators

Symbol Example Description

Department of Electrical

and Computer Engineering

Slide 12

Robert Betz: 97

is carried out.

n If one operand is a number and the other is a group, then the
number is sign extended or truncated to match the size of the
group. If significant bits are truncated an error message is gener-
ated.

Arithmetic Operators

Similar rules apply to those in the previous case.

Comparators
• Two types of comparisons – logical and arithmetic.

Table 6: Arithmetic operators

Operator Example Description

+ (unary) +1 positive (has not effect)

- (unary) -a[4..1] negative - carries out the
two’s complement.

+ time[4..2] +
day[3..1}

binary addition

- (dig, wig, fig) -
(cat, hat, bat)

binary two’s comple-
ment subtraction

Table 7: Comparison operators

Comparator Type Example Description

== logical foo == bar equal

!= logical b1 != b3 not equal

< arithmetic fame[] <
power[]

less than

Department of Electrical

and Computer Engineering

Slide 13

Robert Betz: 97

Priorities
• The operators have precedence rules, but I suggest that you use

brackets to make the order of evaluation clear.

• Precedence order is essentially unary operators, arithmetic (+ and
), comparisons, AND and NAND, XOR and XNOR, and OR and

NOR.

<= arithmetic money[] <=
power[]

less than or equal

> arithmetic love[] >
money[]

greater than

>= arithmetic y[5..0] >=
z[5..0]

greater than or
equal

Table 7: Comparison operators

Comparator Type Example Description

–

Department of Electrical

and Computer Engineering

Slide 14

Robert Betz: 97

Basic Logic Primitives

Notes:

Table 8: MAX+PLUS II Flip-flops and Latches

Primitive AHDL Function Prototype

LATCH FUHCTION LATCH (d, ena)
RETURNS (q);

DFF FUNCTION DFF (d, clk, clrn, prn)
RETURNS (q);

DFFE FUNCTION dffe (d, clk, clrn, prn,
ena)
RETURNS (q);

JKFF FUNCTION JKFF (j, k, clk, clrn, prn)
RETURNS (q);

JKFFE FUNCTION JKFFE (j,k,clk, clrn, prn,
ena)
RETURNS (q);

SRFF FUNCTION SRFF (s, r, clk, clrn, prn)
RETURNS (q);

SRFFE FUNCTION SRFFE (s, r, clk, clrn,
prn, ena)
RETURNS (q);

TFF FUNCTION TFF (t, clk, clrn, prn)
RETURNS (q);

TFFE FUNCTION TFFE (t, clk, clrn, prn,
ena)
RETURNS (q);

clk = Register Clock Input

Department of Electrical

and Computer Engineering

Slide 15

Robert Betz: 97

clrn = Clear Input (active low)

d, j, k, r, s, t Input from the logic array

ena Latch enable (latch active if ena
high)

prn Preset Input (active low)

q Output

Table 9: MAX+PLUS II Logic Primitives

Sample Symbols Description

AND2 BAND2

OR2 BOR2

NAND2 BNAND2

NOR2 BNOR2

XOR XNOR

Name:
AND2, AND3, AND4, AND6,
AND8, AND12
Same for the other logic functions.

Description:
Output: OUT = logical <name> of
inputs

Input: IN1, IN2,...IN12 = 2, 3,
4, 6, 8, 12 inputs

Department of Electrical

and Computer Engineering

Slide 16

Robert Betz: 97

NOT

Name:
NOT
Description:
Output: OUT = inverse of input
Input: IN1 = 1 input

GND

Name:
GND
Description:
Assigns a node to GND

VCC

Name:
VCC
Description:
Assign a node to VCC

Table 10: MAX+PLUS II Input and Output Primitives

Pin Port Description Pin Port Declaration

INPUT Input pin in:INPUT

OUTPUT Output pin out: OUTPUT

BIDIR Bidirectional pin input:BIDIR

Table 9: MAX+PLUS II Logic Primitives

Sample Symbols Description

VCC

Department of Electrical

and Computer Engineering

Slide 17

Robert Betz: 97

AHDL Design Structure
• An AHDL logic design must at a minimum contain a Subdesign

Section and a Logic Section

• All other sections and statements are optional.

Subdesign Section
• Declares the input, output, and bidirectional ports of the design: e.g.

SUBDESIGN top
(

foo, bar, clk1, clk2 : INPUT = VCC;
a0, a1, a2, a3, a4 : OUTPUT;
B[7..0] : BIDIR;

)
n Subdesign name must conform to the file name.

n List of ports and symbolic names are enclosed in parentheses.

n If a Design Section exists some of the ports may be assigned to
resources.

n Input and bidirectional ports may be assigned default values.

n Other port types: MACHINE INPUT, MACHINE OUTPUT.

Logic Section
• Specifies the logical operations of the design.

• Is the body of the Subdesign Section.

• Constructs that may be used:

n Boolean equations

n Truth Table Statement

n Case Statement

Department of Electrical

and Computer Engineering

Slide 18

Robert Betz: 97

n If Statement

n Defaults Statement

n In-line macrofunction or primitive reference.

• The BEGIN and END keywords enclose the Logic Section. A sem-
icolon follows the END statement to end the Logic Section.

F AHDL is a concurrent language. The compiler evaluates all
the behaviour specified in the Logic Section of a TDF at the
same time rather than sequentially. Equations that assign mul-
tiple values to the same AHDL node or variable are logically
ORed.

Boolean Equations

• Represent the connection of wires, the flow of inputs into logical
elements, and the flow of the outputs.

e.g.

a[] = ((c[] & -B"001101") + e[6..1])
(p,q,r,s,t,v)

Left side of equation may be symbolic name, port or group.

What happens in the above:

(i) Binary number B"001101" is two’s complemented to become
B"110011".

(ii) B"110011" is ANDed with group c[].

(iii)Result of (ii) is added to group e[6..1].

(iv)Result of (iii) is ORed with the group (p,q,r,s,t,v).

Final result is assigned to group a[].

F For the above to be legal groups a[] and c[] must each have

Department of Electrical

and Computer Engineering

Slide 19

Robert Betz: 97

size members.

Truth Table Statement

• Allows logical boolean statements to be specified using a truth
table.

e.g.

TABLE
a0, f[4..1].q => f[4..1].d, control;

0, H"0" => H"1", 1;
0, H"4" => H"2", 0;
1, B"0XXX" => H"4", 0;
X, H"F" => H"5", 1;

END TABLE;

• Input signals are a0 and f[4..1].q.

• Output signals are f[4..1].d and control.

• Each signal has a one-to-one correspondence to the values in each
entry.

• Nodes in heading can be either single nodes or groups.

• It is not necessary to list every possible combination of input val-
ues.

• The Defaults Statement assigns output values in cases when the
actual inputs do not match the input values of the table.

F State names can be used as input and output values (see State
Machines later).

Department of Electrical

and Computer Engineering

Slide 20

Robert Betz: 97

Case Statement

• Similar to the CASE statement in a conventional programming lan-
guage.

e.g.

CASE f[].q IS
WHEN H"00" =>

addr[] = 0;
s = a & b;

WHEN H"01" =>
count[].d = count[].q + 1;

WHEN H"CF" =>
f[3..0].d = addr[4..1];

WHEN OTHERS =>
f[].d = f[].q;

END CASE;

• Keywords CASE and IS enclose a Boolean expression.

• CASE Statement is terminated by the keywords END CASE and
‘;’.

• Keyword WHEN begins alternative. Comma separated list follows.
If any expression following the CASE keyword evaluates to any
member of the list the behavioural statements following the arrow
are activated.

• If no alternative is true, then the keywords WHEN OTHER define
the default alternative.

If Statement

• List a series of behavioural statements to be activated after the pos-
itive evaluation of one or more Boolean expressions.

e.g.

Department of Electrical

and Computer Engineering

Slide 21

Robert Betz: 97

IF (a[] == b[]) THEN
c[8..1] = H"77";
addr[3..1] = f[3..1].q;
f[].d = addr[] + 1;

ELSIF (g3 $ g4) THEN
f[].d = addr[];

ELSE
d = VCC;

END IF;

• Expressions (a[] == b[]) following IF and (g3 $ g4) fol-
lowing ELSIF are evaluated concurrently. If these statements eval-
uate to true then the expressions following the THEN statement are
evaluated.

F Note that the second statement (g3 $ g4) effectively
becomes: (!(a[] == b[]) & (g3 $ g4)) to make the
ELSIF control work correctly.

• ELSIF statements may be repeated for a large number of alterna-
tives.

• ELSE is similar to the WHEN OTHERS statement in the CASE
statement in that it provides a default alternative.

If Statement vs Case Statement

• Can often use either statement to achieve the same results.

e.g. See Table 11

Differences are:

n Statements in If Statement may be any type of boolean expres-
sion.

n Each expression following an IF or ELSIF statement may be
unrelated to the others.

Department of Electrical

and Computer Engineering

Slide 22

Robert Betz: 97

n In a CASE statement one boolean expression is compared to a
constant only.

n Interpretation of the If Statement can generate logic that is too
complex for the compiler.

e.g.

Interpretation of an If Statement. Note that if a and b are complex
expressions then the inversion is likely to be more complex.

Table 11: Comparison of IF and CASE Statements

If Statement Case Statement

IF (a[] == 0) THEN
x = c & d;

ELSIF (a[] == 1) THEN
x = foo & bar;

ELSIF (a[] == 2) THEN
x = cats & dogs;

ELSIF (a[] == 3) THEN
x = kumquat;

ELSE
x = 0;

END IF;

CASE (a[1..3]) IS
WHEN o =>

x = c & d;
WHEN 1 =>

x = foo & bar;
WHEN 2 =>

x = cats & dogs;
WHEN 3 =>

x = kumquat;
WHEN OTHERS =>

x = 0;
END CASE;

If Statement Case Statement

IF a THEN IF a THEN

b = c; b = c;

END IF;

ELSIF d THEN IF (!a & d) THEN

b = e; b = e;

END IF;

Department of Electrical

and Computer Engineering

Slide 23

Robert Betz: 97

Defaults Statement

• Allows specification of default constant values for variables used in
Truth Table, If and Case Statements.

• Active-high signals automatically default to GND, Default State-
ments are only required for active-low signals.

e.g.

BEGIN
DEFAULTS

a = VCC;
END DEFAULTS

IF x & y THEN
a = GND; % a is active low.

END IF;
END;

If the If Statement is undefined (i.e. x & y is not true) then the
Defaults Statement is activated.

• Only one Defaults Statement is allowed in the Logic Section, and it
must appear immediately before the BEGIN keyword.

• Multiple assignments to a variable are logically ORed, except when
the default for the variable is VCC.

e.g.

BEGIN

ELSE IF (!a & !d) THEN

b = f; b = f;

END IF END IF;

If Statement Case Statement

Department of Electrical

and Computer Engineering

Slide 24

Robert Betz: 97

DEFAULTS
a = GND;
bn = VCC;

END DEFAULTS;

IF c1 THEN
a = a1;
bn = b1n;

END IF;

IF c2 THEN
a = a2;
bn = b2n;

END IF;

END;

This example is equivalent to:

a = (c1 & a1) # (c2 & a2);
bn = (!c # b1n) & (!c2 # b2n);

• Active-low variables that are assigned more than once should be
given a default value of VCC.

Variable Section
• Used to declare any variables used in the Logic Section. Used for

defining buried (internal) logic.

e.g.

VARIABLE
pen, pencil, eraser : NODE;
temp : HALFADD;

Department of Electrical

and Computer Engineering

Slide 25

Robert Betz: 97

The internal variables are pen, pencil, eraser of type NODE,
and temp, an instance of the macrofunction HALFADD.

• NODE is an all purpose variable type used for holding input or out-
put information. NODE can be used on either the left or the right
side of an equation.

• Type NODE is similar to the INPUT, OUTPUT, and BIDIR resource
and port types of the Design and Subdesign Sections and represents
a single wire that propagates signals.

Register Definition

• Variable section is used to define names for registers, including D,
T, JK, and SR flip-flops.

e.g.

VARIABLE
nod : TFF;

• After making the above declaration one may use the following
input/output ports on the device:

nod.t
nod.clk
nod.clrn
nod.prn
nod.q

F One can use the name of a primitive without a stub (e.g. with
.q), on the right side of an equation if one wishes to use the
output. Similarly primitives that have a single primary input
may use the name of a primitive without a stub on the left side
of an equation.

Department of Electrical

and Computer Engineering

Slide 26

Robert Betz: 97

e.g.

VARIABLE
a, b : dff;

a = b; % equivalent to a.d = a.q; %

Instances

• Instances of a particular primitive or macrofunction are declared in
the Variables Section.

e.g.

VARIABLE
star : moonbeam;

Variable star is an instance of he macrofunction moonbeam.
which has the following ports:

green, yellow : INPUT;
blue, red : OUTPUT;
cycle : BIDIR;

One may therefore use the following ports of star:

start.green, start.yellow etc, etc.

Department of Electrical

and Computer Engineering

Slide 27

Robert Betz: 97

Design Section
• Provides more global specification of the design – for example one

can specify the pin and buried macrocell assignments, as well as
where the logic should be placed.

• Can also specify specific logic to specific EPLDs

Device Subsection

• Specify the EPLDs and the pins and macrocells on the EPLD to be
used when the design is fitted.

n EPLD Specification: can partition a project by specifying blocks
of logic to be programmed into certain EPLDs.

n Resource Assignment Statement: requests that nodes in the
project be assigned to particular pins or macrocells.

n Clique Assignment Statement: allows one to keep certain logic
together in a single EPLD by making clique assignments.

F Refer to the on-line help for more details on this topic.

Function Prototype Statement
• Provide a shorthand description of a function, listing its name and

its input, output, and bidirectional pins.

e.g.

FUNCTION moonbeam (green, yellow)
RETURNS (blue, red, cycle);

F A function prototype mist be placed outside of both the
Design Section and the Subdesign Section and must be called
before the macrofunction is called.

Department of Electrical

and Computer Engineering

Slide 28

Robert Betz: 97

F State machines can be imported and exported through func-
tion prototypes. See later for details.

Title Statement
• Provided only for documentation purposes.

e.g.

TITLE "Octopus Design";

Constant Statement
• Allows a meaningful symbolic reference to be made to a constant

number.

e.g.

CONSTANT UPPER_LIMIT = B"110";

Include Statement
• Allows one to import text from another file into the current file.

e.g.

INCLUDE "const.inc"

• Searches in the following places: the project directory, any user
libraries specified with the User Libraries command and listed in
the USER_LIB variable of the MAXPLUS2.INI or <project
name>.INI file, or the MAX2LIB or MAX2INC directories created
during installation.

Options Statement
• Allows the setting of the Turbo and Security bits of the Device Sub-

section that follows them.

• Specify whether the lowest numbered bit of a group will be the

Department of Electrical

and Computer Engineering

Slide 29

Robert Betz: 97

most significant bit or least significant bit.

• Specify product terms should be allocated.

F See the on-line help for more details on this.

Department of Electrical

and Computer Engineering

Slide 30

Robert Betz: 97

State Machines
• State machines are very elegantly and simply implemented with

AHDL.

• Language is structured so that one can assign bits or states values
oneself, or allow MAX+PLUS II do the work.

• Compiler uses proprietary advanced heuristic algorithms to make
automatic state assignments.

• Formal state machine design normally requires the following steps:

(i) Draw a state diagram and construct a next state table.

(ii)Assign bits to the machine.

(iii)Assign values to the states.

(iv)Using manual logic minimization techniques derive the flip-flop
excitation equations.

• With AHDL and MAX+PLUS II only the first step is above
required. The compiler automatically does:

n assigns bits, selecting either T or D type flip-flop for each bit;

n assigns state values;

n applies sophisticated logic synthesis techniques to derive the
excitation equations.

State Machine Structure
• Can be imported or exported in AHDL using MACHINE INPUT or

MACHINE OUTPUT

• The specify a state machine one must have three items in the
design:

n A State Machine Declaration in the Variable Section.

n One or more Boolean control equations in the Logic Section.

Department of Electrical

and Computer Engineering

Slide 31

Robert Betz: 97

n A single behavioural statement or construct in the Logic Section
that specifies state transitions.

State Machine Declaration

e.g.

VARIABLE
SS : MACHINE OF BITS (q1, q2, q3)

WITH STATES) S1 = B"000",
S2 = B"010",
S3 = B"7"

);

• Name of the state machine (the machine variable) is SS.

• The bits q1, q2 and q3 are the output of the registers of this
machine.

• The states of this machine are S1, S2 and S3, each of which is
assigned a numerical value for the state bits q1, q2, and q3. Note
that only the list of states is required, the assignment of the bits to
the states is optional. If unassigned then the compiler makes the
assignment.

F Each state of a state machine is represented by a unique pat-
tern of high and low signals inside a flip-flop. The state bits
are the flip-flops required by the machine to store the states.
The number of states has the following relationship to the
number of bits in a state machine:

Control Equations

• Boolean equations used in the Logic Section to set up the state
machine clock and reset signals.

states 2
bits()≤

Department of Electrical

and Computer Engineering

Slide 32

Robert Betz: 97

e.g

ss.clk = clk1;
ss.reset = a & b;
ss.ena = clk1ena;

n Port ss.clk must always be assigned. The ss.reset is
optional unless the start state of the machine has been assigned
to a value other than zero.

State Transitions

• To specify state transitions of a state machine, you must condition-
ally assign state variables within a single behavioural construct.
Case or Truth Tables are recommended for this.

• State machine transition rules:

n First state in the declaration is the power-up state. Normally
assigned a numerical value of zero. If another value is assigned
then one must also assign a signal to the reset port that will
initialize the machine by taking on a value of VCC for a short
time. The default power-up state is zero.

F The reset for a state machine is an active high, unlike the
DFF for which it is an active low.

n State transitions occur on the rising edge of the clock.

n If no state transition is specified at a given clock edge, the
machine will stay in the last state assigned.

e.g.
VARIABLE

ss : MACHINE OF BITS (q2, q2, q3)
WITH STATES (S1 = B"000",

S2 = B"010",
S3 = H"7");

Department of Electrical

and Computer Engineering

Slide 33

Robert Betz: 97

BEGIN
ss.clk = clk1;
ss.reset = a & b;

CASE ss IS
WHEN s1 =>

IF (addr[] > H"12") THEN
ss = s2;

ELSE
ss = s3;
control = VCC;

END IF;
WHEN s2 =>

IF (addr[] > B"101") THEN
ss = s1;

ELSE
control = VCC;

END IF
WHEN s3 =>

ss = s1;
control = VCC;

END CASE;
END;

• If the above example ss starts out in state S1.

• If the group addr[] represents a number greater than H"12", the
variable control assumes the value GND, and the machine proceeds
to S2.

• If not, control assumes the value VCC and control proceeds to state
S3.

• If state S2, if the group addr[] represents a number greater than
B"101" then control assumes the value GND and the machine pro-

Department of Electrical

and Computer Engineering

Slide 34

Robert Betz: 97

ceeds to S1. Otherwise control assumes the value VCC and the
machine stays in S2.

• If state S3, the machine automatically proceeds to state S1 and
control assumes the value VCC.

Machine Input and Machine Output

• Allows the import and export of state machines between Text
Design Files, Graphic Design Files and Waveform Design Files by
specifying an input and output signal as MACHINE INPUT or
MACHINE OUTPUT in the Subdesign Section.

F When you import or export a state machine, the Function Pro-
totype representing the file must indicate which inputs and
outputs are state machines.

e.g.

State Machine Export

SUBDESIGN ss_def (
clock, reset, count : INPUT;
ss_out : MACHINE OUTPUT;% export of the SM %

)

VARIABLE
ss : MACHINE WITH STATES (S1, S2, S3, S4, S5);

BEGIN
ss_out = ss; % assign state machine to the

variable %
CASE (ss) IS

WHEN S1 =>
IF (count) THEN

ss = S2;

Department of Electrical

and Computer Engineering

Slide 35

Robert Betz: 97

ELSE
ss = S1;

END IF;

WHEN S2 =>
IF (count) THEN

ss = S3;
ELSE

ss = S2;
END IF;

WHEN S3 =>
IF (count) THEN

ss = S4;
ELSE

ss = S3;
END IF;

WHEN S4 =>
IF (count) THEN

ss = S5;
ELSE

ss = S4;
END IF;

WHEN S5 =>
IF (count) THEN

ss = S1;
ELSE

ss = S5;
END IF;

END CASE;
ss.(clk, reset) = (clock, reset);

END;

Department of Electrical

and Computer Engineering

Slide 36

Robert Betz: 97

State Machine Import

SUBDESIGN ss_use (
ss_in : MACHINE INPUT;% import state machine %
out : output;

)

BEGIN
out = (ss_in == s2) OR (ss_in == s4);

END;

Department of Electrical

and Computer Engineering

Slide 37

Robert Betz: 97

Some Design Tips

Defining Clock, Reset, or Enable for an AHDL
State Machine

• State machine resets and enables are defined in the following way:

<machine name>.clk = <signal name>;
<machine name>.reset = <signal name>;
<machine name>.ena = <signal name>;

• reset signal is active high.

• enable signal is a clock enable that is applied to all flip-flops of
the state machine.

Handling Illegal States in an AHDL State Machine
• Logic in an AHDL file will never cause a state machine to enter an

illegal state.

• However to avoid illegal state transitions that are caused by
glitches, one can force an illegal state to a known legal state.

• One must name all the illegal states and use the WHEN OTHERS
clause in the Case Statement to force the required transitions.

F The WHEN OTHERS clause only applies to states that have
been declared but not mentioned in the WHEN clause.

F For an n-bit machine, possible states exist. One should add
illegal state names until the number of possible states is a
power of two.

e.g.

2
n

Department of Electrical

and Computer Engineering

Slide 38

Robert Betz: 97

SUBDESIGN recover
(
 clk : INPUT;
 go : INPUT;
 ok : OUTPUT;
)
VARIABLE
 sequence : MACHINE
 OF BITS (q[2..0])
 WITH STATES (
 idle,
 one,
 two,
 three,
 four,
 illegal1,
 illegal2,
 illegal3);
BEGIN
 sequence.clk = clk;
 CASE sequence IS
 WHEN idle =>
 IF go THEN
 sequence = one;
 END IF;
 WHEN one =>
 sequence = two;

WHEN two =>
 sequence = three;
 WHEN three =>
 sequence = four;
 WHEN OTHERS =>
 sequence = idle;
 END CASE;

Department of Electrical

and Computer Engineering

Slide 39

Robert Betz: 97

 ok = (sequence == four);
END;

n In the above example there are 8 possible states (since there are
three bits in the state machine) and consequently three extra
states are added and named as illegal states.

F The above method only works if all illegal states are defined
in the state machine.

State Machines with Synchronous Outputs
• Synchronous outputs occur from a state machine if the outputs only

depend on the machine state.

• One can encode the outputs as state values in the WITH STATES
clause of the State Machine Declaration.

e.g.

y==0

y==1

y==0

y==0

y==1

y==0

S0
z=0

S1
z=1

S3
z=0

S2
z=1

y==1y==1

Figure 2 : State diagram of a machine with synchronous outputs.

Department of Electrical

and Computer Engineering

Slide 40

Robert Betz: 97

SUBDESIGN moore1
(
 clk : INPUT;
 reset : INPUT;
 y : INPUT;
 z : OUTPUT;
)
VARIABLE
 % current current %
 % state output %
 ss: MACHINE OF BITS (z)
 WITH STATES (s0 = 0,
 s1 = 1,
 s2 = 1,
 s3 = 0);
BEGIN
 ss.clk = clk;
 ss.reset = reset;
 TABLE
 % current current next %
 % state input state %
 ss, y => ss;
 s0, 0 => s0;
 s0, 1 => s2;
 s1, 0 => s0;
 s1, 1 => s2;
 s2, 0 => s2;
 s2, 1 => s3;
 s3, 0 => s3;
 s3, 1 => s1;
 END TABLE;
END;

• When state values are used as outputs, the design may use few mac-

Department of Electrical

and Computer Engineering

Slide 41

Robert Betz: 97

rocells, but the macrocells may require more logic to drive their
flip-flop inputs.

• Logic synthesizer module may not be able to fully minimise the
state machine in these cases.

• Alternate way to define synchronous state machines is to omit state
assignments and explicitly declare output flip-flops.

e.g.

SUBDESIGN moore2
(
 clk : INPUT;
 reset : INPUT;
 y : INPUT;
 z : OUTPUT;
)
VARIABLE
 ss: MACHINE WITH STATES (s0, s1, s2, s3);
 zd: NODE;
BEGIN
 ss.clk = clk;
 ss.reset = reset;
 z = DFF(zd, clk, VCC, VCC);
 TABLE
 % current current next next %
 % state input state output %
 ss, y => ss, zd;
 s0, 0 => s0, 0;
 s0, 1 => s2, 1;
 s1, 0 => s0, 0;
 s1, 1 => s2, 1;
 s2, 0 => s2, 1;
 s2, 1 => s3, 0;
 s3, 0 => s3, 0;

Department of Electrical

and Computer Engineering

Slide 42

Robert Betz: 97

 s3, 1 => s1, 1;
 END TABLE;
END;

F Don’t need a function prototype in the above listing as the
DFF is an inbuilt primitive.

• Instead of specifying the output with state value assignments in the
State Machine Declaration, this example includes a “next output”
column after the “next state” column in the Truth Table Statement.
This method uses a D flip-flop (DFF)–called with an in-line refer-
ence–to synchronize the outputs with the Clock.

State Machines with Asynchronous Outputs
• Can also implement state machines with asynchronous outputs in

AHDL

• The output of an asynchronous state machine can change at any
time, regardless of the clock input, as the output is a function of the
state flip-flops and the current input. Therefore if the current input
changes then the output can change.

F Asynchronous state machines are not a good idea from a
design point of view, and should generally be avoided,

e.g.

SUBDESIGN mealy
(
 clk : INPUT;
 reset : INPUT;
 y : INPUT;
 z : OUTPUT;
)

Department of Electrical

and Computer Engineering

Slide 43

Robert Betz: 97

VARIABLE
 ss: MACHINE WITH STATES (s0, s1, s2, s3);
BEGIN
 ss.clk = clk;
 ss.reset = reset;
 TABLE
 % current current current next %
 % state input output state %
 ss, y => z, ss;
 s0, 0 => 0, s0;
 s0, 1 => 1, s1;
 s1, 0 => 1, s1;
 s1, 1 => 0, s2;
 s2, 0 => 0, s2;
 s2, 1 => 1, s3;
 s3, 0 => 0, s3;
 s3, 1 => 1, s0;
 END TABLE;
END;

y==0
z=0

y==1
z=1

y==1
z=1

y==0
z=0

y==0
z=0

y==1
z=0

y==1
z=1

S3

S1 S0S2

Figure 3 : State diagram of a machine with asynchronous outputs

Department of Electrical

and Computer Engineering

Slide 44

Robert Betz: 97

VHDL

(Very High Speed Integrated Circuit Hardware
Description Language)

Notes based on: VHDL Primer (Revised Edition), J. Bhasker, Prentice
Hall, 1995, ISBN 0-13-181447-8.

Introduction
• VHDL is a much more complex language than AHDL.

• Designed to be an amalgamation of the following language con-
structs:

n sequential language

n concurrent language

n netlist language

n timing specifications

n waveform generation language

F language has constructs that enable one to express the concur-
rent or sequential behaviour of a digital system with or with-
out timing.

F Language not only defines syntax but also defines very clear
simulation semantics for each language construct. Therefore
models written in this language can be verified using a VHDL
simulator.

History
• Requirements first generated in 1981 under the VHSIC program (a

program under the auspices of the US DoD).

Department of Electrical

and Computer Engineering

Slide 45

Robert Betz: 97

• Born because of the requirement that several different companies
be able to interchange chip designs.

• Version 7.2 of the language was developed by IBM, Texas Instru-
ments, and Intermetrics in 1985.

• Standardized by the IEEE in 1987 (IEEE Std 1076-1987).

• New version of the language standardized in 1993 (IEEE std 1076-
1993).

• In 1993 the logic values used were also standardized. The standard
is a 9-logic value package called STD_LOGIC_1164, and the
standard is IEEE Std 1164-1993.

Capabilities
n Can be used as an exchange medium between chip vendors and

CAD tool users

n Can be used as a communication medium between different
CAD and CAE tools – e.g. schematic capture may be used to
create a design and a VHDL description may be generated. This
can then be used as a input into a simulator.

n Language supports hierarchy – digital system can be modelled
as a collection of interconnected components, and each compo-
nent can be modelled as interconnected subcomponents.

n Supports top-down, bottom-up and mixed design philosophies.

n Language is not technology specific, but can support technology
specific features.

n Supports synchronous and asynchronous timing models.

n Various digital modelling techniques, such as finite state
machine descriptions, algorithmic descriptions, and boolean
equations can be modelled using the language.

n Language is publicly available, and is human and machine read-

Department of Electrical

and Computer Engineering

Slide 46

Robert Betz: 97

able.

n It is an IEEE and ANSI standard.

n Language supports three basic different description styles: struc-
tural, dataflow and behavioural. Any combination of these may
be used in a single design.

n Supports a wide range of abstraction levels ranging from
abstract behavioural description to very precise gate level
descriptions. Does not support modelling at or below the transis-
tor level.

n Arbitrarily large designs can be modelled.

n Language is structured so that handling large modelling jobs is
easier.

n Nominal propagation delays, min-max delays, setup and hold
times, timing constraints, and spike detection can all be
described very naturally in the language.

n Use of generics and attributes in the models facilitate back-
annotation of static information such as timing or placement
information.

n Generics and attributes are also useful in describing parameter-
ized designs.

n A model can contain information about the design, as well as
the design itself. For example, a model can contain information
on the total area and speed.

n Models written in this language can be verified by simulation
since precise simulation semantics are defined for each language
construct.

n Behavioural models that conform to a certain synthesis descrip-
tion style are capable of being synthesized to a gate level
description.

Department of Electrical

and Computer Engineering

Slide 47

Robert Betz: 97

VHDL View of a Device
• VHDL model of digital hardware specifies the external view and

one or more internal views.

• The external specifies the interface to the device and the internal
view specifies the functionality or structure.

• The device to device model mapping is one to many – there are
many models for one particular hardware device; e.g. the data trans-
fer into a device may be represented as integers instead of logic val-
ues in a high level model See Figure 4.

• Each device model is treated as a distinct representation of a unique
device. These are called an entity (see Figure 5 below). This figure

emphasizes that there is a one to one binding between the VHDL
entity structure and a model representation. All the entities however
represent the same physical device. Each entity is described using
one model, which contains one external view and one or more inter-
nal views. The hardware device may be represented by one or more
entities.

Digital
system

External
view

Internal views

Model

Device ModelDevice

Figure 4 : Device and device model relationship

Department of Electrical

and Computer Engineering

Slide 48

Robert Betz: 97

Device

Entity 1

Entity 2

Entity N

Device model 1

Device model 2

Device model 3
Actual hardware

VHDL view

Figure 5 : The VHDL view of a device

Department of Electrical

and Computer Engineering

Slide 49

Robert Betz: 97

A Tutorial

F This section introduces the basic features of VHDL. At the
end of this section one should be able to write simple VHDL
models.

Basic Terminology
n A VHDL abstraction of a digital system is called an entity.

n When entity X is used in entity Y, then entity X is said to be a
component of entity Y.

n VHDL provides five different types of primary constructs called
design units. They are:

(i) Entity declaration

(ii)Architecture body

(iii)Configuration declaration

(iv)Package declaration

(v) Package body

Entity

• Modelled using an entity declaration and at least one architecture
body.

• Entity declaration describes the external view of the entity; e.g. the
input and output names of the entity.

• Architecture body contains the internal description of the entity;
e.g. the set of interconnected components that describe the structure
of the entity, or a set of sequential statements that describe the
behaviour of the entity. See Figure 6 shows the relationship
between an entity and one possible model.

Department of Electrical

and Computer Engineering

Slide 50

Robert Betz: 97

Configuration

• Configuration declaration is used to create a configuration for an
entity.

• Specifies the binding of one architecture body from the many archi-
tecture bodies that may be associated with the entity.

• May also specify the bindings of components used in a selected
architecture to other entities.

• An entity may have a number of different configurations.

Package

• Package declaration encapsulates a set of related declarations, such
as type declarations, subtype declarations, and subprogram declara-
tions, which can be shared across two or more design units.

• A package body contains the definitions of the subprograms
declared in a package declaration.

• In programming terms a package is analogous to a module.

Entity

Hardware
abstraction
of a digital
system.

Entity
declaration

Architecture bodies

Model

Figure 6 : An entity and its model

Department of Electrical

and Computer Engineering

Slide 51

Robert Betz: 97

Example of these relationships

• Figure 7 shows three entities called E1, E2 and E3.

• E1 has three architecture bodies, E1-A1, E1-A2, E1-A3.

• E1-A1 is a purely a behavioural model without any hierarchy.

• E1-A2 uses a component called BX, while E1-A3 uses a compo-
nent called CX.

• Entity E2 has two architecture bodies, E2-A1, E2-A2, with E2-A1
using a component called M1.

• Entity E3 has three architecture bodies – E3-A1, E3-A2, E3-A3.

• Notice that each entity has a single entity declaration but multiple
architecture bodies.

Entity E1

E1-A1 E1-A2 E1-A3

Binding Entity E2

M1:..

E2-A1 E2-A2

Entity E3

E3-A1 E3-A2 E3-A3

CX:...BX:...

Figure 7 : A configuration for entity E1

Department of Electrical

and Computer Engineering

Slide 52

Robert Betz: 97

• The dashed lines represent bindings that may be specified in the
configuration.

• Two types of bindings are shown: binding of an architecture body
to its entity, and binding of a component used in an architecture
body to another entity.

Design Validation
• Generate the VHDL model using an entities etc.

• The VHDL is then compiled into some intermediate format ready
for simulation. This format is not specified by the VHDL standard.
This step also validates the syntax of the language and performs
some semantic checks.

• The compiled VHDL is then submitted to a simulator for functional
testing.

A few syntax notes:

F VHDL is a case insensitive language.

F The language is free format much the same as Pascal and ‘C’.

F ‘--’ is the comment operator. It works the same as the ‘//’
comment operator in C++ in that it comments out the line that
it starts on. The comment only goes for one line.

Department of Electrical

and Computer Engineering

Slide 53

Robert Betz: 97

Entity Declaration
• Specifies the name of the entity being modelled and lists the set of

interface ports.

• Ports are signals through which the entity communicates with the
other models in its external environment.

e.g.

entity half_adder is
port(a, b: in bit; sum, carry: out bit);

end half_adder;
-- this is a comment line

• Entity half adder has two input ports, a and b (specified by the key-
word in), and two output ports, sum and carry (specified by the
keyword out).

• bit is a predefined enumeration type containing the literals ‘0’ and
‘1’. In the context above it is used to indicate that the input and out-
put ports can take the values of ‘0’ and ‘1’.

X1

A1

Sum

Carry

a

b

Figure 8 : A half adder

Department of Electrical

and Computer Engineering

Slide 54

Robert Betz: 97

e.g.

entity decoder2x4 is
port(a, b, enable: in bit;

z: out bit_vector(0 to 3));
end decoder2x4;

• Entity called decoder2x4: has three input ports and four output
ports.

• bit_vector is a predefined unconstrained array of type bit.
Unconstrained means that the size of the array is undefined. In this
particular case the size of the array has been set to 4 bits, numbered
from 0 to 3.

• In the code examples presented so far only the interface has been
specified, and the internals of the entities have not been defined.

a

b

abar

bbar

enable

z(0)

z(1)

z(2)

z(3)

I0

I1

N0

N1

N2

N3

Figure 9 : A 2-to-4 decoder circuit

Department of Electrical

and Computer Engineering

Slide 55

Robert Betz: 97

Architecture Body
• Internal details of an entity are determined by the contents of an

architecture body using the following modelling styles:

(i) As a set of interconnected components (to represent structure).

(ii)As a set of concurrent assignment statements (to represent data
flow).

(iii)As a set of sequential assignment statements (to represent
behaviour).

(iv)As any combination of the above.

Structural Modelling
• In this type of modelling an entity is modelled as a set of intercon-

nected components.

• For example consider the half adder whose entity code was shown
earlier:

architecture ha_structure of half_adder is
component xor2

port(x, y: bit; z: out bit);
end component;

component and2
port(l, m: in bit; n: out bit);

end component;

begin
x1: xor2 port map(a, b, sum);
a1: and2 port map(a, b, carry);

end ha_structure;

• Name of the architecture body is ha_structure.

Department of Electrical

and Computer Engineering

Slide 56

Robert Betz: 97

• The entity declaration for half_adder specifies the interface
ports for this architecture body.

• Architecture body is composed of two parts:

(a) The declarative part (before the keyword begin).

(b) The statement part (after the begin keyword).

• The declarative part two components are declared: xor2 and
and2. These components could come from a library.

• These two components are instantiated in the statement part of the
architecture body – x1 and a1 are the labels for these instantia-
tions.

• x1 shows that the signals a and b are connected to the x and y
input ports of the xor2 component, while the output is connected
to the output port sum of the half-adder entity.

• Note that the structural representation of the half_adder does
not say anything about its functionality. Separate entity models
would be needed for the components xor2 and and2, each having
its own entity declaration and architecture body.

e.g. decoder2x4:

architecture dec_str of decoder2x4 is
component inv

port(pin: in bit; pout: out bit);
end component;

component nand3
port(d0, d1, d2: in bit; dz: out bit);

end component;

signal abar, bbar: bit;

Department of Electrical

and Computer Engineering

Slide 57

Robert Betz: 97

begin
v0: inv port map(a, abar);
v1: inv port map(b, bbar);
n0: nand3 port map(enable, abar, bbar, z(0));
n1: nand3 port map(abar, b, enable, z(1));
n2: nand3 port map(a, bbar, enable, z(2));
n3: nand3 port map(a, b, enable, z(3));

end dec_str;

• In this case the architecture named dec_str is associated with
entity decoder2x4. It therefore inherits the list of ports in the
entity declaration.

• In addition to the two components inv and nand3 the architecture
body contains two signal declarations abar and bbar of type
bit.

• The signal declarations represent wires that are used to connect var-
ious components together. Note that the signal declarations are
local and cannot be seen outside the architecture body.

• The instantiation of the components is a concurrent statement,
therefore the order of these statements is not important.

• The structural style of modelling describes only the interconnec-
tions of the components, without implying any functionality for the
components. The components are treated as though they are black
boxes.

• The behaviour of the components is not apparent, nor is the func-
tionality of the decoder as a whole.

Dataflow Modelling
• The flow of data through the entity is expressed primarily using

concurrent assignment statements.

Department of Electrical

and Computer Engineering

Slide 58

Robert Betz: 97

• The structure of the entity is not explicitly specified in this model-
ling style, but it can be implicitly deduced.

e.g.

architecture ha_concurrent of half_adder is
begin

sum <= a xor b after 8 ns;
carry <= a and b after 4 ns;

end ha_concurrent;

• The listing above uses two concurrent signal assignment state-
ments. Ordering of the statements is unimportant.

• The “<=” implies an assignment of the value computed on the right
hand side to the target signal on the left hand side.

• The concurrent signal statements are event driven – the assignment
only occurs if there is an event on one of the signals on the right
hand side. Events are such things as a change in a signal logic level.

• Delay information is included in the signal assignment statements
using after clauses. If in event occurs on the right hand side of
the assignment at time T, then the right hand side is evaluated. The
left hand side of the assignment gets the result of this evaluation
after the delay period;

e.g. in the above the sum signal gets the results of an event at time
T on a or b at T+8 ns, and carry at T+4 ns.

• Note that the architecture body called ha_concurrent is associ-
ated with the entity called half_adder.

e.g.

architecture dec_dataflow of decoder2x4 is
signal abar, bbar: bit;

begin
z(3) <= not (a and b and enable); -- #1
z(0) <= not (abar and bbar and enable);-- #2

Department of Electrical

and Computer Engineering

Slide 59

Robert Betz: 97

bbar <= not b; -- #3
z(2) <= not (a and bbar and enable); -- #4
abar <= not a; -- #5
z(1) <= not (abar and b and enable); -- #6

end dec_dataflow;

• Architectural body consists of one signal declaration and six con-
current signal assignment statements.

• Note that after the signal assignment statements no after clause
has been specified, therefore no delay is explicitly specified. The
default is 0 ns (known as the delta delay, representing an infinitesi-
mally small delay).

• Let us consider the sequence of events that occur if there is an event
on one of the input signals – say input port b at time T:

(i) Concurrent signal assignment statements #1, #3 and #6 are trig-
gered. The RHS of the expressions are evaluated, and the corre-
sponding values would be scheduled to be assigned to the target
signals at time ().

(ii)At () the new values are assigned to signals z(3),
bbar, and z(1).

(iii)Since bbar changes, this will in turn trigger signal assignment
statements #2 and #4. Eventually at () signals z(0)
and z(2) will be assigned their new values.

e.g. Use of the after clause to generate a clock signal:

clk <= not clk after 10 ns;

This generates a clock with a period of 20 ns.

T ∆+

T ∆+

T 2∆+

Department of Electrical

and Computer Engineering

Slide 60

Robert Betz: 97

Behaviour Modelling
• Models the behaviour of an entity by executing a set of statements

sequentially in the specified order.

• The statements do not specify the structure of the entity but merely
its functionality.

e.g. the decoder2x4:

architecture dec_sequential of decoder2x4 is
begin

process (a, b, enable)
variable abar, bbar: bit;

begin
abar := not a; -- #1
bbar := not b; -- #2

if enable = ‘1’ then -- #3
z(3) <= not (a and b); -- #4
z(0) <= not (abar and bbar);-- $5
z(2) <= not (a and bbar); -- #6
z(1) <= not (abar and b); -- #7

else
z <= “1111”; -- #8

end if;
end process;

end dec_sequential;

• process statement is a concurrent statement.

• process statement has a declarative part (before the begin key-
word) and a statement part (between begin and end process).

• A process never terminates, it only ever becomes suspended
waiting on an event in the sensitivity list.

• Statements appearing within the statement part are sequential – i.e.

Department of Electrical

and Computer Engineering

Slide 61

Robert Betz: 97

they are executed sequentially (and not concurrently as with the
data flow statements).

• List of signals in parentheses after the keyword process consti-
tute a sensitivity list – i.e. a list of signals which are monitored for
an event. In the above example if an event occurs on a, b, or ena-
ble then the content of the process statement is executed sequen-
tially.

• Variable declaration – starts with the keyword variable. In the
above example two variables are declared: abar and bbar.

• Variables differ from signals in that the assignment operation
always occurs instantaneously. Signals are always assigned their
value after a certain delay (user assigned or the default delta delay).
Uses the notation “:=” to differentiate the operation from signal
assignment.

• Variables declared within a process have their scope limited to that
process. Variables declared outside of a process or a subprogram
are called shared variables (can be shared by a number of proc-
esses).

• The signal assignment statements in a process are called sequential
assignment statements. They are executed sequentially independent
of whether any signal changes on the right side of the statement.

e.g.

If there is an event on a, b or enable then statements #1 and #2
are executed. If enable = 1 then the statements #4–#7 are exe-
cuted regardless of whether there were changes on a or b. If ena-
ble = 0 then statement #8 is executed. At the end of the process
execution is suspended waiting for another event on the sensitivity
list.

• Possible to use case or loop statements within a process. Seman-
tics and structure are very similar to those in most high level lan-
guages.

Department of Electrical

and Computer Engineering

Slide 62

Robert Betz: 97

• wait statement can also be used within a process. This causes a wait
for a user specified time or until an event occurs.

e.g.

Clock generated using a process statement and a wait.

process
begin

clk <= ‘0’;
wait for 20 ns;
clk <= ‘1’;
wait for 12 ns;

end;

• Above process does not have a sensitivity list because there are
explicit wait statements inside the process.

• Note that all processes are executed at least once during the initiali-
sation phase, and will continue until they get suspended.

e.g.

Model of a level sensitive flip-flop.

entity ls_dff is
port(q: out bit; clk: in bit);

end ls_dff;

architecture ls_dff_beh of ls_dff is
begin

process(d, clk)
begin

if clk = ‘1’ then
q <= d;

end if;
end process;

end ls_dff_beh;

Department of Electrical

and Computer Engineering

Slide 63

Robert Betz: 97

Edge sensitive dff

entity es_dff is
port(q: bit; d, clk: bit);

end es_dff;

architecture es_dff_impl of es_dff is
begin

process (clk)
variable old_clk : bit = ‘0’;

begin
if old_clk = ‘0’ then

q <= d;
old_clk := clk;

end if;
end process;

end es_dff_impl;

F Note that at the start of a simulation the whole process is exe-
cuted once. Therefore old_clk will be assigned the value of
‘0’ initially, and then reassigned the value of clk (which
would also normally be zero). Subsequent executions of the
process (when there is an event on the clk signal) will only
cause the statements between the begin and end of the
process to be executed.

A note on the difference between dataflow and behavioural
modelling.

• Concurrent assignment statements are executed whenever there is
an event on a signal on the right hand side of an expression.

• Sequential statements are not event triggered, and are executed in

Department of Electrical

and Computer Engineering

Slide 64

Robert Betz: 97

the sequence they are written in a process.

e.g. consider the following two architecture bodies:

architecture seq_sig_assign of fragment1 is
-- a, b, and z are signals.

begin
process (b)
begin

-- following are sequential assignment
-- statements

a <= b;
z <= a;

end process;
end;

architecture con_sig_assign of fragment2 is
begin

-- following are concurrent assignment
-- statements

a <= b;
z <= a;

end;

• In seq_sig_assign the signal assignments are sequential.

• Consider an event on b at time T – first assignment statement exe-
cuted, and then the second in zero time.

• However, signal a is scheduled to get its new value at and z
is scheduled to be assigned the value of a (not b) as the value is
stored at T and assigned at .

T ∆+

T ∆+

Department of Electrical

and Computer Engineering

Slide 65

Robert Betz: 97

• In con_sig_assign the two statements are executed concur-
rently.

• When an event occurs on b (at time T), signal a gets the value of b
after the delta delay (at time). An event then occurs on sig-
nal a which then causes the new value of a to be saved and sched-
uled to be assigned to z and time . Therefore the value of
b is effectively being saved into the z signal in this case.

Delta delay revisited

• Delta time delay is the time assigned if no delay is specified.

• Delta time delay is infinitesimally small.

• It is not a real time delay but an artifice to allow the correct order-
ing of events in a simulation.

e.g.

Consider the following example of a chain of three inverters.

entity fast_inverter is
port(aL in bit; z: out bit);

end;

architecture delta_delay of fast_inverter is
signal b.c :bit;

begin
-- the following statements are order

T ∆+

T 2∆+

a b c z

Figure 10 : Three inverting buffers in series

Department of Electrical

and Computer Engineering

Slide 66

Robert Betz: 97

-- independent.
z <= not c; -- #1
c <= not b; -- #2
b <= not a; -- #3

end;

• When an event occurs on signal a, say at 20ns, then this causes sig-
nal b to get the inverted value of a at 20ns + 1 . When time
advances to 20ns + 1 , signal b changes. This in turn triggers a sec-
ond signal assignment, which causes c to get the inverted value of
b after another delta delay, i.e. at 20ns + 2 . This signal assign-
ment actually occurs when the time actually advances to 20ns +
2 . A similar pattern occurs for the z signal.

∆
∆

∆

∆

20ns 20ns+∆ 20ns+ ∆2 20ns+ ∆3

a

b

c

d

Figure 11 : Delta Delays in an inverter chain with concurrent
signal assignment.

Department of Electrical

and Computer Engineering

Slide 67

Robert Betz: 97

Mixed Mode Modelling
• Possible to mix the three modelling styles is single architecture

body.

e.g.

The VHDL for Figure 12 is:

entity full_adder is
port(a,b,cin: in bit; sum,cout: out bit);

end full_adder;

architecture fa_mixed of full_adder is
component xor2

port(p1, p2: in bit; pz: out bit);
end component;

a
b

cin sum

cout

Structure Dataflow

Behaviour

Figure 12 : A 1-bit full adder

s1

Department of Electrical

and Computer Engineering

Slide 68

Robert Betz: 97

signal s1: bit;

begin
x1: xor2 port map(a, b, s1); -- structure
process(a, b, cin) -- behaviour

variable t1, t2, t3: bit;
begin

t1 := a and b;
t2 := b and cin;
t3 := a and cin;
cout <= t1 or t2 or t3;

end process;

sum <= s1 xor cin; -- dataflow
end fa_mixed;

Department of Electrical

and Computer Engineering

Slide 69

Robert Betz: 97

Configuration Declaration
• Used to select the many possible architecture bodies that an entity

can have.

• Used to bind components, used to represent structure in an architec-
ture body to entities represented by an entity architecture pair or by
a configuration, which reside in a library.

e.g.

library cmos_lib, my_lib;
configuration ha_binding of half_adder is

for ha_structure

for x1: xor2
use entity cmos_lib:xor_gate(dataflow);

end for;

for a1: and2
use configuration my_lib.and_config;

end for;

end for;

end ha_binding;

• First statement is a library clause that makes the library names
cmos_lib and my_lib visible within the configuration declara-
tion.

• Configuration is called ha_binding, and specifies a configura-
tion for the half_adder entity.

• Next statement specifies that the architecture body
ha_structure (described earlier in the structural modelling sec-

Department of Electrical

and Computer Engineering

Slide 70

Robert Betz: 97

tion) is selected for this configuration.

• The ha_structure architecture contains two component instan-
tiations, therefore it contains two component bindings:

n the first for x1:...end for, binds the component instantiation
with label x1 to an entity represented by the entity-architecture
pair – the xor_gate entity declaration, and the dataflow archi-
tecture body, which resides in the cmos_lib design library.

n similarly a1 is bound to a configuration of an entity defined by
the configuration declaration, with name and_config resid-
ing in the my_lib design library.

• No behavioural or simulation semantics are associated with a con-
figuration declaration – merely specifies a binding that is used to
build a configuration for an entity.

• An architecture body that does not contain any component instanti-
ation (e.g. when dataflow style is used) can also be selected to cre-
ate a configuration.

e.g.

The dec_dataflow architecture body can be selected for the
decoder2x4 entity using the following configuration declaration:

configuration dec_config of decoder2x4 is
for dec_dataflow
end for;

end dec_config;

• dec_config defines a configuration that selects the
dec_dataflow architecture body for the decoder2x4 entity.
This represents one possible configuration for the decoder2x4
entity can now be simulated.

Department of Electrical

and Computer Engineering

Slide 71

Robert Betz: 97

Packages

Package Declaration

• Used to store a common set of declarations such as components,
types, procedures and functions.

• Packages can be imported into other design units using a use
clause.

e.g.

package example_pack is
type summer is (may, jun, jul, aug,sep);

component d_flip_flop
port (d, clk: bit; q, qbar: out bit);

end component;

constant pin2pin_delay: time := 125ns;

function int2bit_vec (int_value: integer)
return bit_vector;

end example_pack;

• Name of the package declared is example_pack.

• It contains type, component and function declarations.

• N.B. behaviour of int2bit_vec does not appear in the package
declaration, only the function interface appears. Definition of the
function is in the package body.

Department of Electrical

and Computer Engineering

Slide 72

Robert Betz: 97

e.g.

Assume that the above package is compiled into a design library
called design_lib:

library design_lib;
use design_lib.example_pack.all;
entity rx isetc, etc

• library clause makes the name of the design library
design_lib visible within this description.

• use clause imports all declarations in the package
example_pack into the entity declaration of rx.

• Possible to selectively import declarations from a package declara-
tion into other design units:

e.g.

library design_lib;
use design_lib.example_pack.d_flip_flop;
use design_lib.example_pack.pin2pin_delay;
architecture rx_structure of rx isetc, etc.

• Other techniques can also be employed to selectively chose declara-
tions within a package.

Package Body

• Used to store the definitions of functions and procedures that were
declared in the corresponding package declaration, and the com-
plete constant declarations for any deferred constants that appear in
the package declaration.

• Package body is always associated with one package declaration

e.g.

Package body for the package example_pack:

Department of Electrical

and Computer Engineering

Slide 73

Robert Betz: 97

package body example_pack is
function int2bit_vec (int_value: integer)

return bit_vector is
begin

-- behaviour of function described here

end int2bit_vec;
end example_pack;

• Name of the package body must be the same as that of the package
declaration.

F A package body is not necessary if the corresponding package
declaration has no function or procedure declarations and no
deferred constant declarations.

e.g.

Another example of a package body:

package body another_package is

-- a complete constant declaration
constant total_alu: integer := 10;

function pocket_money
(month: design_lib.example_pack.summer)

return integer is
begin

case month is
when may => return 5;
when jul|sep => return 6;
when others => return 2;

end case;

Department of Electrical

and Computer Engineering

Slide 74

Robert Betz: 97

end pocket_money;
end another_package;

Model Analysis using VHDL
• Once an entity is described in VHDL it can be validated using an

analyser.

• The analyser takes a file that contains one or more design units (a
design unit consisting of an entity declaration, an architecture body,
a configuration declaration, a package declaration or a package
body), and compiles them into an intermediate form (which is not
defined in the standard). During this process the syntax and static
semantics are checked. The generated file is stored in a specific
design library that has been designated as the working library.

• Design libraries have logically names. the mapping of these names
to the physical location where they are stored is carried out by the
underlying host operating system.

• An arbitrary number of design libraries may exist simultaneously,
one of which is designated as the working library and is given the
logical name WORK. The analyser compiles the descriptions in this
library, and this is the only library that is updated.

• Items compiled in a different design library can be imported into
design units of the current design library by using library and
use clauses, or by accessing them with a selected name.

• Design library with the logical name STD is predefined by the
VHDL language environment. Contains two packages: STAND-
ARD and TEXTIO.

• The STANDARD package contains declarations for standard pre-
defined types such as bit, time, integer, etc.

• The TEXTIO package provides support for formatted text read and
write operations.

Department of Electrical

and Computer Engineering

Slide 75

Robert Betz: 97

• There is also an IEEE design library with a package in it called
STD_LOGIC_1164. Defines a nine value logic type called
STD_ULOGIC and associated subtypes, overloaded operator func-
tions and other useful utilities.

Simulation

• After complication into one or more design libraries, next step is
validation.

• For hierachical entities to be simulated, all of its lowest components
must be described at the behavioural level.

• Simulation can be performed on the following:

(a) An entity declaration and architecture body pair.

(b) A configuration.

• There are two major steps before the actual simulation:

(i) Elaboration phase: The hierachy of an entity is expanded and
flattened, components are bound to entities in libraries, top level
entity is built as a network of behavioural models ready to be
simulated. Storage is allocated for signals, variables, and con-
stants declared in design units.

(ii) Initialization phase: Driving and effective values for all explic-
itly declared signals are computed, implicit signals (not dis-
cussed thus far) are assigned values, processes are executed
once until they suspend, and simulation time is set to 0ns.

• Simulation commences by advancing time to that of the next event.

• Values that are scheduled to be assigned to signals at this time are
assigned.

• If the value of a signal changes, and if that signal is present in the
sensitivity list of a process, the process is executed until it suspends.

• Simulation stops when an assertion violation occurs or when the
maximum time as defined by the language is reached.

Department of Electrical

and Computer Engineering

Slide 76

Robert Betz: 97

Assorted Aspects of VHDL

F This section presents a variety of aspects of VHDL not pre-
sented so far. The list is far from complete but is intended to
give the reader a feel for the language beyond that attained in
the initial tutorial.

Basic Language Elements

F As one can see from the previous tutorial many aspects of
VHDL are similar to those available in languages such as ‘C’
or Pascal. Therefore, some features will only be mentioned
assuming that the reader can make these connections. It will
be assumed that the reader can guess that obvious features are
in the language.

Port Pin Types

• in: The value of an input port can only be read with the entity
model.

• out: The value of an output port can only be updated within the
entity model; it cannot be read.

• inout: The value of a bidirectional port can be read and updated
within the entity model.

• buffer: The value of the buffer port can be read and updated
within the entity model. However, it differs from the inout mode in
that it cannot have more than one source, and the only kind of sig-
nal that can be connected to it can be another buffer port or a signal
with at most one source. i.e. a signal is driving another element is
the design as well as an output port.

Department of Electrical

and Computer Engineering

Slide 77

Robert Betz: 97

Data Objects

• holds a value of a specific type, e.g.

variable count: integer;

which results in a data object of type integer called count,
which is an object of the variable class .

F There are four classes to which data objects can belong:

(i) Constant: data object of this class is assigned a single value at
the start of a simulation and this value cannot be changed.

(ii) Variable: similar to the constant except that the value of the
object can be changed during the course of the simulation using
a variable assignment.

(iii) Signal: this data object holds a list of values, which includes the
current value of the signal, and a set of possible future values
that are to appear on the signal. Future values are assigned to the
object using the signal assignment statement.

(iv)File: an object that contains a sequence of values that can be
read and written.

F Signals can be regarded as wires in a circuit, whilst variables
and constants are the same as their analogues in conventional
high level programming languages. Signals typically used to
model wires and flip-flops and variables and constants are
typically used to model the behaviour of a circuit.

F The file object is used to model files in the host environment.

e.g.

Constant declarations

Department of Electrical

and Computer Engineering

Slide 78

Robert Betz: 97

constant rise_time: time := 10ns;
constant bus_width: integer := 8;

Variable declarations

variable ctrl_status: bit_vector (10 downto 0);
variable sum: integer range 0 to 100 := 10;
variable found, done: boolean;

Signals declarations

signal clock: bit;
signal data_bus: bit_vector (0 to 7);
signal gate_delay: time := 10ns;

File declarations

-- first two lines declare a file type
type std_logic_file is file of std_logic_vector;
type bit_file is file of bit_vector;

-- file declarations are:
file stimulus: text open read_mode is

“/usr/home/reb/design.dat”;
file vectors: bit_file is

“/usr/home/reb/vecdata.dat”;
file pat1, pat2: std_logic_file;

Note:

n text is a predefined file type.

n the default mode for an open is read_mode.

n if no file is specified then the file is not opened during elabora-
tion, but is opened during execution by an explicit open com-
mand.

Department of Electrical

and Computer Engineering

Slide 79

Robert Betz: 97

F Not all objects are explicitly declared as shown above. Some
are implicitly declared.

u ports of an entity – these are all signal objects.

u generics of entities (not discussed thus-far) – these are
constants.

u formal parameters of functions and procedures – function
parameters are constants or signals, procedure parameters
can be any type.

u for loop increment variables are implicitly declared con-
stants of type integer that only exist whilst the loop is
being executed.

Data Types
• The set of values that a data object is allowed to have is specified

by its type declaration.

• Similarly the operations allowed on a data object are defined by its
type.

e.g.

integer is a predefined type with a minimum range defined by

the VHDL standard of to , and allowed
operations of +, -, / and *.

• Language provides the ability to define new user defined data types
(similar to ‘C’ and Pascal).

2
31

1–()– 2
31

1–()

Department of Electrical

and Computer Engineering

Slide 80

Robert Betz: 97

Four major types exist in the language:

(i) Scalar types: Values belonging to these types appear in a
sequential order – e.g. integer, boolean.

(ii) Composite types: These are composed of elements of a single
type (i.e. an array type) or elements of different types (i.e. a
record type).

(iii) Access types: These provide access to objects of a given type
(via pointers).

(iv)File types: These provide access to objects that contain a
sequence of values of a given type.

Subtypes

• A type with a range constraint.

• Subtype declarations are used to declare subtypes.

e.g.

subtype my_integer is integer range 48 to 156;
-- digit is not a subtype - it is a user defined
-- enumeration type.
type digit is (‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’,

‘7’, ‘8’, ‘9’);
-- a subtype using the base type digit is shown
-- below.
subtype middle is digit range ‘3’ to ‘7’;

Scalar Types
• Four different scalar types:

(i) Enumeration

Department of Electrical

and Computer Engineering

Slide 81

Robert Betz: 97

(ii) Integer

(iii)Physical

(iv)Floating point

Enumeration Types

e.g.

type mvl is (‘U’, ‘0’, ‘1’, ‘Z’);
type micro_op is (Load, Store, Add, Sub, Mul,

Div);

signal control_a: mvl;
-- implicit subtype declaration
signal clock: mvl range ‘0’ to ‘1’;
variable ic: micro_op := store;
variable alu: arith_op;

Integer Types

• Defines a type whose set of values fall within a specified integer
range.

e.g.

type index is range 0 to 15;
type word_length is range 31 downto 0;
subtype data_word is word_length range 15

downto 0;

-- declaration using these types:
constant mux_address: index := 5;
signal data_bus: data_word;

• integer is the only predefined integer type in the language.

Department of Electrical

and Computer Engineering

Slide 82

Robert Betz: 97

Floating Point Types

• Has a set of values in a given range of real numbers.

• Only predefined floating point type is real – implementation
dependent range, but at least must cover the range -1.0e38 to
+1.0e38.

e.g.

type ttl_voltage is range -5.5 to -1.4;
type real_data is range 0.0 to 31.9;

variable length: real_data range 0.0 to 15.9;
variable l1,l2,l3: real_data range 0.0 to 15.9;

-- alternative
subtype rd16 is real_data range 0.0 to 15.9;

variable length: rd16;
variable l1,l2,l3: rd16;

Physical Types

• Contains values that represent measurement of some physical quan-
tity, like time, length, voltage, and current.

• Values of this type are integer multiples of the base unit.

e.g.

type current is range 0 to 1e9
units

nA; -- base unit is nano-ampere
uA = 1000 nA; -- micro-amp
mA = 1000 mA; -- milli-ampere
Amp = 1000 mA; -- ampere

end units;

Department of Electrical

and Computer Engineering

Slide 83

Robert Betz: 97

subtype filter_current is current range 10 uA to
5 mA;

• In the above example 2 uA occupies position 2000 while 100 nA
occupies position 100.

• Physical values can be written as integer or floating point numbers.

e.g.

100 ns
10 V
50 sec
Kohm -- implies 1 Kohm
5.2 mA -- equivalent to 5200 uA
5.6 nA -- is 5 nA. Fractional part is truncated since nA

-- is the base unit for type current.
5.2643 uA -- is 5264 nA.

• Only predefined physical type is time – range is to

.

Composite Types
• Represents a collection of values.

• Two main types of composite types:

(a) Array types – a collection of values belonging to a single type.

(b) Record types – a collection of values that may belong to different
types.

Array types

e.g.

type address_word is array (0 to 63) of bit;

2
31

1–()–

2
31

1–()

Department of Electrical

and Computer Engineering

Slide 84

Robert Betz: 97

type data_word is array (7 downto 0) of mvl;
type rom is array (0 to 125) of data_word;
type decode_matrix is array (positive range

10 downto 1, natural range 3 downto 0)
of mvl;

subtype natural is integer range 0 to
integer’high;

subtype positive is integer range 1 to
integer’high;

-- t’high gives the highest value belonging
-- to type t.

-- object declarations using the above types
variable rom_addr: rom;
variable address_bus: address_word;
variable decoder: decoder_matrix; -- deferred

-- constant.
variable decode_value: decode_matrix;

• Can have arbitrary number of dimensions for an array.

• Can assign an array of the same type to another using an assignment
statement.

Record types

e.g.

type pin_type is range 0 to 10;
type module is

record
size: integer range 20 to 200;
critical_dly: time;
no_inputs: pin_type;
no_outputs: pin_type;

end record;

Department of Electrical

and Computer Engineering

Slide 85

Robert Betz: 97

variable nand_comp: module;
-- nand_comp is an object of record type module

nand_comp := (50, 20 ns, 3, 2);
-- implies 50 is assigned to size, 20 ns is
-- assigned to critical_dly, etc.

• Can assigned one record to another using a simple assignment state-
ment.

Access Types
• These are pointers to dynamically allocated objects of some other

type.

• Similar to pointers in the Pascal and ‘C’ languages.

e.g.

-- module is a record type
type ptr is access module;
type fifo is array (0 to 63, 0 to 7) of bit;
type fifo_ptr is access fifo;

• ptr is an access type whose values are addresses that point to
objects of type module.

• Similar to high level language here is a null pointer which does
not point to any object.

• An allocator is used to generate a pointer to an object, and to gener-
ate the object it self.

e.g.

mod1ptr := new module;

• References to access types:

Department of Electrical

and Computer Engineering

Slide 86

Robert Betz: 97

(i) obj-ptr.all: Accesses the entire object pointed to by obj-ptr,
where obj-ptr is a pointer to an object of any type.

(ii)array-obj-ptr(element-index): Access the specified array ele-
ment, where array-obj-ptr is a pointer to an array object.

(iii)record-obj-ptr.element-name: Accesses the specified record ele-
ment, where record-obj-ptr is a pointer to a record object.

• For every access type there is a deallocate implicitly declared which
returns the storage occupied by the object to the host environment.

e.g.

procedure deallocate(p: inout ptr);
procedure deallocate(p: inout fifo_ptr);

Incomplete Types
• Possible to have an object that points to an object which has ele-

ments that are also access types.

• Allows recursive data types to be defined (similar to linked list data
structures in other high level languages).

e.g. An incomplete type declaration

type type-name;

• Once an incomplete type has been declared, the type-name can be
used in any mutually dependent or recursive access type.

• A corresponding full type declaration must follow later.

e.g.

-- Declare the names of the objects to be pointed
-- to before they are actually declared. This
-- introduces the names so that there will not be
-- compilation errors.
type comp; -- record contains name

Department of Electrical

and Computer Engineering

Slide 87

Robert Betz: 97

-- and list of nets its
-- connected to.

type net; -- record contains net
-- name and list of
-- components its
-- connected to.

type comp_ptr is access comp;
type net_ptr is access net;
constant modmax: integer := 100;
constant netmax: integer := 2500;

type comp_list is array (1 to modmax) of
comp_ptr;

type net_list is array (1 to netmax) of net_ptr;

type comp_list_ptr is access comp_list;
type netlist_ptr is access net_list;

-- Now the full declaration of comp and net
type comp is

record
comp_name: string(1 to 10);
nets: netlist_ptr;

end record;

type net is
record

net_name: string(1 to 10);
components: complist_ptr;

end record;

Example of self-referential access type:

Department of Electrical

and Computer Engineering

Slide 88

Robert Betz: 97

type dfg;
type op_type is (add, sub, mul, div, shift,

rotate);
type ptr is access dfg;
type dfg is

record
op_code: op_type;
succ: ptr; -- successor in linked list
pred: ptr; -- predecessor in linked list

end record;

File Types
• Represent files in the host environment.

• Provide mechanism by which VHDL design communicates with
the host environment.

e.g.

type file-type-name is file of type-name;

-- type-name is the type of values contained in
-- the file.

e.g.

type vectors is file of bit_vector;
type names is file of string;

• To access files one uses a set of access procedures:

e.g.

procedure file_open (
status: out file_open_status;

file f: file-type-name;

Department of Electrical

and Computer Engineering

Slide 89

Robert Betz: 97

external_name: in string;
open_kind: in file_open_kind
:= read_mode

);

procedure file_close (file f: file-type-name);

procedure read (file f: file-type-name;
value: out type-name);

procedure write (file f: file-type-name;
value: in type-name

);

Department of Electrical

and Computer Engineering

Slide 90

Robert Betz: 97

Complete example using file types

entity fa_test is end;

architecture io_example of fa_test is
component full_add

port(cin, a, b: in bit; cout, sm: out bit);
end component;

subtype string3 is bit_vector(0 to 2);
subtype string2 is bit_vector(0 to 1);
type in_type is file of string3;
type out_type is file of string2;

file vec_file: in_type
open read_mode is

“/usr/home/reb/vhdl/fadd.vec”;

file result_file: out_type
open write_mode is

“/usr/home/reb/vhdl/fadd.out”;

signal s: string3;
signal q: string2;

begin
fa: full_add port map(s(0), s(1), s(2), q(0),

q(1));

process
constant propagation_delay: time := 25ns;
variable in_str: string3;
variable out_str: string2;

begin

Department of Electrical

and Computer Engineering

Slide 91

Robert Betz: 97

while not endfile(vec_file) loop
read(vec_file, in_str);
s <= in_str;
wait for propagation_delay;
out_str := q;
write(result_file, out_str);

end loop;
report “Completed processing of all

vectors”;
wait; -- stop the simulation

end process;
end io_example;

Department of Electrical

and Computer Engineering

Slide 92

Robert Betz: 97

Operators
• The operators in the language fall into the following categories:

(a) Logical operators

(b) Relational operators

(c) Shift operators

(d) Adding operators

(e) Multiplying operators

(f) Miscellaneous operators

Logical Operators

• Operate on bit and boolean types and one dimensional arrays of
these.

• Operators: and, or, nand, nor, xor, xnor, not.

Relational Operators

• These are: =, /=, <, <=, >, >=

• Result of the application of all relational operators is a boolean.

• When applied to array types the comparison is carried out from the
left to the right.

Shift Operators

• sll, srl, sla, sra, rol, ror

• Work much the same as shift operators in assembly language.

• Operator on arrays of bit or boolean.

e.g.

-- Filled with bit’left, which is zero
“1001010” sll 2 is “0101000”

Department of Electrical

and Computer Engineering

Slide 93

Robert Betz: 97

Adding Operators

• These are: +, -, & (the & is a concatenation operator).

Multiplying Operators

• These are: *, /, mod, rem

Miscellaneous Operators

• These are: abs, ** (exponentiation).

Department of Electrical

and Computer Engineering

Slide 94

Robert Betz: 97

Some Behavioural Modelling Constructs

Wait Statement
• Processes may be suspended by a sensitivity list. They may also be

suspended by a wait statement.

• Three forms of the wait statement:

(a)wait on sensitivity list

(b)wait until boolean-expression

(c)wait until time-expression

• These three forms may also be combined:

wait on sensitivity_list until boolean-expression
for time-expression

e.g.

wait on a, b, c; -- statement 1
wait until a = b; -- statement 2
wait for 10 ns; -- statement 3
wait on clock for 20 ns -- statement 4
wait until sum > 100 for 50 ms; -- statement 5

n Statement 1 causes the process to suspend until an event occurs
on a or b or c.

n Statement 2 causes the process to suspend until the condition
a = b is true. When an event occurs on a or b then the condi-
tion is evaluated.

n Statement 3 causes the process to suspend for 10 ns when the
wait statement is executed.

n Statement 4 causes the enclosing process to suspend and then
wait for an event to occur. If no event occurs within 20 ns the

Department of Electrical

and Computer Engineering

Slide 95

Robert Betz: 97

process resumes execution with the statement after the wait.

n Statement 5 is similar to statement 4 except that the logic condi-
tion is tested if there is an event on sum. If it does not become
true within 50 ms of the wait being executed then the process
is resumed, else it is resumed when the condition becomes true.

If Statement
• Selects a sequence of statements based on the value of a condition

that evaluates to a boolean value.

• Works virtually identically to the if statements in common high
level languages.

General structure:

if boolean-expression then
sequential-statements

{elsif boolean-expression then -- can have zero
sequential-statements} -- or more elsif

-- clauses

[else -- optional else
sequential-statements] -- clause

end if;

• The conditions statements in the above if statement are executed
sequentially.

Case Statement
• Much the same as the case or switch statements in Pascal or ‘C’.

• General form of the case statement:

Department of Electrical

and Computer Engineering

Slide 96

Robert Betz: 97

case expression is
when choices => sequential-statements
when choices => sequential-statements
-- can have any number of cases here
--
--
-- optional default statement
[when others => sequential-statements]

end case;

• The expression must be a discrete type or a one dimensional
array.

• The choices may be expressed as single values or a range of values
by using the to word (for a consecutive range) or the |(represent-
ing the ‘or’).

Loop Statement
• Used to iterate through a set of sequential statements.

• Three types of iteration schemes:

(i) for identifier in range

(ii) while boolean-expression

(iii)label: loop

e.g.

factorial := 1;
for number in 2 to n loop

factorial := factorial + number;
end loop;

j:= 0; sum := 10;
wh_loop: while j < 20 loop

Department of Electrical

and Computer Engineering

Slide 97

Robert Betz: 97

sum := sum * 2;
j := j + 3;

end loop;

sum := 1; j := 0;
l2: loop

j := j + 21;
sum := sum * 10;
exit when sum > 100;

end loop l2;

• Can also use the next statement in a loop. This statement results in
the skipping of the remainder of the statements in the loop, and
resuming with the next iteration at the top of the loop.

Syntax:

next [loop-label] [when condition];

More on Signal Assignments

Inertial Delay Model

• Used for modelling delays in digital switching circuits.

• Means that an input value must be stable for a specified pulse rejec-
tion time before the value is allowed to propagate to the output. In
addition the value appears at the output after the specified inertial
delay.

e.g.

signal-object <= [reject pulse-rejection-limit]
expression after

inertial-delay-time;

Department of Electrical

and Computer Engineering

Slide 98

Robert Betz: 97

• If no pulse rejection limit is specified, the default rejection limit is
the inertial delay itself.

e.g.

• In the example of Figure 13 the pulses at 5 and 8 ns are not stable
long enough to exceed the pulse reject limit, and therefore do not
appear at the output of the inverter.

• The edge at 10 ns stays stable for a time exceeding the pulse reject
limit and therefore is propagated to the output after the inertial
delay time.

• Inertial delay model is the default delay model (see next for another
delay model), and therefore does not normally need to be specified
with the keyword inertial.

a z

delay = 10 ns
reject lim = 4 ns

Time

5 8 10 25 28 30 45 48

20 40

Figure 13 : Inertial/reject signal example

Department of Electrical

and Computer Engineering

Slide 99

Robert Betz: 97

Transport Delay Model

• Models pure propagation delay – that is any change on the input is
propagated to the output after the delay.

• Usually used to model routing delays, as these don’t have a pulse
rejection concept as does logic.

e.g.

z <= transport a after 10 ns;

Creating Waveforms

• Possible to generate arbitrary waveforms with multiple assignment
statements.

e.g.

phase1 <= ‘0’, ‘1’ after 8 ns, ‘0’ after 13 ns,
‘1’ after 50 ns;

General syntax:

signal-object <= [transport |
[reject pulse-rejection-limit] inertial]
expression [after time-expression],
expression [after time-expression],
.
.
expression [after time-expression];

Signal Drivers
• Every signal that is assigned a value in a process has associated

with it a driver. In fact the driver gives a signal (as opposed to a
variable) its properties. There is only one driver for a signal in a
process.

Department of Electrical

and Computer Engineering

Slide 100

Robert Betz: 97

• A driver holds the current value of a signal as well as all its future
values as a sequence.

e.g.

process
begin

.

.
reset <= 3 after 5 ns, 21 after 10 ns,

14 after 17ns;
end process;

• All transactions are order in increasing order of time in the signal
driver.

• When time advances to T+5ns then the first entry in the driver is
deleted from the list and reset goes to the value of 3.

• At time 10ns then the entry 3@T+5ns is deleted from the list and
reset goes to 21, etc.

F What happens if there are multiple assignments to a signal
within a process? Depends on the delay model used.

Effect of transport delay on signal drivers

• Example of a process with three signal assignments to the same sig-
nal.

curr@now 3@T+5ns 21@T+10ns 14@T+17nsreset

Figure 14 : Signal driver for the signal called reset

Department of Electrical

and Computer Engineering

Slide 101

Robert Betz: 97

e.g.

signal rx_data: natural;
.
.
process
begin

.

.
rx_data <= transport 11 after 10 ns;
rx_data <= transport 20 after 22 ns;
rx_data <= transport 35 after 18 ns;

end process;

• When first assignment is executed then 11@T+10ns is added to the
driver.

• After second assignment then 20@T+22ns is appended to the
driver.

• Third assignment causes 20@T+22ns to be deleted, and
35@T+10ns to be appended.

F With transport delay a new signal assignment causes all val-
ues in the driver whose delay is the same or longer than that
being assigned to be deleted.

Effect of inertial delay on signal drivers

• Situation a little more complex with inertial delays – both the signal
value being assigned and the delay value affect the deletion and
addition of transactions to the driver.

e.g.

process
begin

-- pulse rejection limit is 10 ns

Department of Electrical

and Computer Engineering

Slide 102

Robert Betz: 97

tx_dataj<= 11 after 10 ns;

tx-data <= reject 15ns 22 after 20 ns;

-- pulse reject limit is 15 ns
tx_data <= 33 after 15 ns;

wait; -- wait indefinitely
end process;

• Transaction 11@10ns first gets added to the driver.

• Second transaction, 22@20ns causes 11@10ns transaction to be
deleted. This is because the 11@10ns transaction falls in the pulse
rejection period of 20ns back to 5ns (i.e. it is at 10ns), and it is a dif-
ferent value than that at 20ns. In other words the 10ns transaction is
now regarded as a glitch and is rejected.

• The third statement causes the 22@20ns transaction to be deleted
from the driver, since the delay of the new transaction (15ns) is less
than the delay of the transaction of the 20ns transaction already in
the driver.

Department of Electrical

and Computer Engineering

Slide 103

Robert Betz: 97

Other Aspects of Dataflow Modelling

Multiple Drivers
• Each concurrent signal assignment has its own driver.

• Question: What happens if there is more than one concurrent
assignment to the same signal?

F This situation has to be resolved using a resolution function.

e.g.

architecture no_enity of dummy is
begin

z <= ‘1’ after 2 ns, ‘0’ after 5 ns,
‘1’ after 10 ns;

z <= ‘0’ after 4 ns, ‘1’ after 5 ns,
‘0’ after 20 ns;

z <= ‘1’ after 10 ns, ‘0’ after 20 ns;
end no-entity;

• The three drivers in the above example are put into a user written
resolution function. The value returned by this function becomes

Resolution
function

Driver 1

Driver 2

Driver 3

‘1’@2ns‘0’@5ns‘1’@10ns

‘0’@20ns ‘1’@5ns ‘0’@4ns

‘0’@20ns ‘1’@10ns

z
signal
value

Figure 15 : Resolving signal drivers for dataflow
descriptions

Department of Electrical

and Computer Engineering

Slide 104

Robert Betz: 97

the resolved value of z.

• Have to associate a resolution function with a particular signal.

e.g.

signal z: wired_or bit;

F this associates the resolution function wired_or with the
signal z. The inputs to the function are implicitly the current
values of all the drivers for that signal.

e.g. A signal resolution function for the wired_or:

function wired_or (inputs: bit vector)
return bit is

begin
for j in inputs’range loop

if inputs(j) = ‘1’ then
return ‘1’;

end if;
end loop;
return ‘0’;

end wired_or;

Department of Electrical

and Computer Engineering

Slide 105

Robert Betz: 97

Aspects of Structural Programming
• As mentioned in the tutorial the entity is modelled as a set of com-

ponents connected by signals.

• Behaviour of the entity is not explicitly apparent from its model.

e.g.

VHDL model for the circuit of Figure 16 is:

entity gating is
port (a, ck, mr, din: in bit; ctrla: out bit);

end gating;

architecture structure_view of gating is
component and2

port(x, y: in bit; z: out bit);
end component;

component dff
port(d, clock: in bit; q, qbar: out bit);

end component;

mr

a

ck
din

rdy

ctrla

s1

s2

d

clk

Figure 16 : A circuit generating control signals

q

qbar

Department of Electrical

and Computer Engineering

Slide 106

Robert Betz: 97

component nor2
port(da, db: in bit; dz: out bit);

end component;

signal s1, s2: bit;

begin
d1: dff port map(a, ck, s1, s2);
a1: and2 port map(s2, din, ctrla);
n1: nor2 port map(s1, mr, rdy);

end structure_view;

• Instead of declaring the components in the architecture body, one
can also use a package:

package comp_list is
component and2

port(x, y: in bit; z: out bit);
end component;

component dff
port(d, clock: in bit; q, qbar: out bit);

end component;

component nor2
port(da, db: in bit; dz: out bit);

end component;
end comp_list;

• The previous structural description now becomes:

library des_lib;
use des_lib.comp_list.all;
architecture structure_view of gating is

signal s1, s2: bit;

Department of Electrical

and Computer Engineering

Slide 107

Robert Betz: 97

begin
-- component instantiations here

end structure_view;

e.g. Another example

entity parity_9_bit is
port(d: in bit_vector(8 downto 0);

even: out bit;
odd: buffer bit);

end parity_9_bit;

architecture parity_str of parity_9_bit is
component xor2

port(a, b: in bit; z: out bit);
end component;

d0
d1

d2
d3

d4
d5

d6
d7

d8

e0

e1

e2

e3

f0

f1

h0

odd

even

Figure 17 : A 9 bit parity generator circuit

Department of Electrical

and Computer Engineering

Slide 108

Robert Betz: 97

component inv2
port(a: in bit; z: out bit);

end component;

signal e0, e1, e2, e3, f0, f1, h0: bit;

begin
xe0: xor2 port map(d(0), d(1), e0);
xe1: xor2 port map(d(2), d(3), e1);
xe2: xor2 port map(d(4), d(5), e2);
xe3: xor2 port map(d(6), d(7), e3);
xf0: xor2 port map(e0, e1, f0);
xf1: xor2 port map(e2, e3, f1);
xh0: xor2 port map(f0, f1, h0);
xodd: xor2 port map(h0, d(8), odd);
xeven: inv2 port map(odd, even);

end parity_str;

F Port odd is of mode buffer since the value of this port is
being read as well as written to inside the architecture.

Department of Electrical

and Computer Engineering

Slide 109

Robert Betz: 97

Generics and Configurations

Generics
• Often useful to pass information into an entity from its environ-

ment.

e.g. rise and fall times, size of interface ports.

• The use of generics allows general purpose user configurable com-
ponents to be easily constructed. These parts can then be put into a
library.

e.g. and n input generic and gate.

entity and_gate is
generic (n: natural);
port(a: in bit_vector(1 to n); z: out bit);

end and_gate;

architecture generic_ex of and_gate is
begin

process(a)
variable and_out: bit;

begin
and_out := ‘1’;
for k in 1 to n loop

and_out := and_out and a(k);
exit when and_out = ‘0’;

end loop;

z <= and_out;
end process;

end generic_ex;

• Rules of generics:

Department of Electrical

and Computer Engineering

Slide 110

Robert Betz: 97

n Declares a constant object of mode in (that is it can only be read)
and can only be used in the entity declaration and the corre-
sponding architecture bodies.

n The value of the constant can be specified as a globally static
expression in one of the following:

(a) Entity declaration

(b) Component declaration

(c) Component instantiation

(d) Configuration specification

(e) Configuration declaration

n Value of generic must be determinable at elaboration time.

• One can also specify a default value for a generic:

e.g.

entity nand_gate is
generic(m: integer := 2);
port(a: in bit_vector(m downto 1);

z: out bit);
end nand_gate;

F There are many other ways of constructing generics. For the
sake of brevity these will not be presented here. However the
material presented above gives one some idea of the flexibil-
ity that they give.

F One can surmise that VHDL generics can be used to build
repetitive structures from some fundamental building blocks.

Department of Electrical

and Computer Engineering

Slide 111

Robert Betz: 97

Configurations
• Why have configurations? Two main reasons:

(i) Sometimes convenient to specify multiple views for a single
entity and use any one of these for simulation. Achieved by
using one architecture body for each view and then using a con-
figuration to bind the entity to the desired architecture body.

(ii)Sometimes desirable to associate a component with any one of a
set of entities. The component may have its name and the
names, types and number of ports and generics different from
those of its entities.

e.g.

component or2
port(a, b: in bit; z: out bit);

end component;

and the entities that the above component may possibly be bound to are:

entity or_generic is
port(n: out bit; l, m: in bit);

end or_generic;

entity or_hs is
port(x, y: in bit; z: out bit);

end or_hs;

The component names and the entity names, as well as the port
names, and their are different. We may be interested in using the
or_hs entity for the or2 component, and in another case, the
or_generic entity. This can be achieved by appropriately speci-
fying a configuration for the component. The advantage is that
when components are used in a design, arbitrary names for compo-
nents and their interface ports can be used, and these can later be

Department of Electrical

and Computer Engineering

Slide 112

Robert Betz: 97

bound to specific entities prior to simulation.

F We are not going to present any more on this issue. Clearly
there is considerably more involved.

Wrap-up
• These notes have attempted to provide an introduction to both

AHDL and VHDL.

• Because of the nature of the languages the introduction is incom-
plete – this is especially true for VHDL, which is a very large lan-
guage.

• The introductory material gives the student some feel for the lan-
guages and allows simple programs to be written.

