
0018-9162/02/$17.00 © 2002 IEEE70 Computer

Networks on Chips:
A New SoC
Paradigm

S
ystem-on-chip (SoC) designs provide inte-
grated solutions to challenging design
problems in the telecommunications, mul-
timedia, and consumer electronics do-
mains. Much of the progress in these fields

hinges on the designers’ ability to conceive complex
electronic engines under strong time-to-market
pressure. Success will rely on using appropriate
design and process technologies, as well as on the
ability to interconnect existing components—
including processors, controllers, and memory
arrays—reliably, in a plug-and-play fashion.

By the end of the decade, SoCs, using 50-nm tran-
sistors operating below one volt, will grow to 4 bil-
lion transistors running at 10 GHz, according to the
International Technology Roadmap for Semicon-
ductors. The major challenge designers of these sys-
tems must overcome will be to provide for function-
ally correct, reliable operation of the interacting com-
ponents. On-chip physical interconnections will pre-
sent a limiting factor for performance and, possibly,
energy consumption.

Silicon technologies face other challenges.
Synchronization of future chips with a single clock
source and negligible skew will be extremely diffi-
cult, if not impossible. The most likely synchro-
nization paradigm for future chips—globally
asynchronous and locally synchronous—involves
using many different clocks. In the absence of a sin-
gle timing reference, SoC chips become distributed
systems on a single silicon substrate. Global con-
trol of the information traffic is unlikely to succeed
because the system needs to keep track of each com-
ponent’s states. Thus, components will initiate data

transfers autonomously, according to their needs.
The global communication pattern will be fully dis-
tributed, with little or no global coordination.

As SoC complexity scales, capturing the system’s
functionality with fully deterministic operation
models will become increasingly difficult. As global
wires span multiple clock domains, synchroniza-
tion failures in communicating between different
domains will be rare but unavoidable events.1

Moreover, energy and device reliability concerns
will impose small logic swings and power supplies,
most likely less than one volt. Electrical noise due
to crosstalk, electromagnetic interference, and radi-
ation-induced charge injection will likely produce
data errors, also called upsets. Thus, transmitting
digital values on wires will be inherently unreliable
and nondeterministic. Other causes of nondeter-
minism include design components with a high level
of abstraction and coarse granularity and distrib-
uted communication control.

Focusing on using probabilistic metrics such as
average values or variance to quantify design objec-
tives such as performance and power will lead to a
major change in design methodologies. Overall,
SoC design will be based on both deterministic and
stochastic models. Creating complex SoCs requires
a modular, component-based approach to both
hardware and software design.

Based on the premise that interconnect technology
will be the limiting factor for achieving SoCs’ opera-
tional goals, we postulate that the layered design of
reconfigurable micronetworks, which exploits the
methods and tools used for general networks, can
best achieve efficient communication on SoCs.

On-chip micronetworks, designed with a layered methodology, will
meet the distinctive challenges of providing functionally correct,
reliable operation of interacting system-on-chip components.

Luca Benini
University of
Bologna

Giovanni
De Micheli
Stanford University

S O C D E S I G N S

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

NEW DESIGN APPROACH
Network engineers have already gained experi-

ence with using stochastic techniques and models
for large-scale designs. We propose borrowing
models, techniques, and tools from the network
design field and applying them to SoC design.

We view a SoC as a micronetwork of compo-
nents. The network is the abstraction of the com-
munication among components and must satisfy
quality-of-service requirements—such as reliabil-
ity, performance, and energy bounds—under the
limitation of intrinsically unreliable signal trans-
mission and significant communication delays on
wires. We propose using the micronetwork stack
paradigm, an adaptation of the protocol stack
shown in Figure 1,2 to abstract the electrical, logic,
and functional properties of the interconnection
scheme.

SoCs differ from wide area networks in their local
proximity and because they exhibit less nondeter-
minism. Local, high-performance networks—such
as those developed for large-scale multiprocessors—
have similar requirements and constraints. Some
distinctive characteristics, such as energy constraints
and design-time specialization, are unique to SoC
networks, however.

Whereas computation and storage energy greatly
benefit from device scaling, which provides smaller
gates and memory cells, the energy for global com-
munication does not scale down. On the contrary,
as the “Wiring Delays” sidebar indicates, projec-
tions based on current delay optimization tech-
niques for global wires3 show that global on-chip
communication will require increasingly higher
energy consumption. Hence, minimizing the energy
used for communications will be a growing con-
cern in future technologies. Further, network traf-
fic control and monitoring can help better manage
the power that networked computational resources
consume. For example, the clock speed and volt-
age of end nodes can vary according to available
network bandwidth.

Another facet of the SoC network design prob-
lem, design-time specialization, raises many new
challenges. Macroscopic networks emphasize gen-
eral-purpose communication and modularity.
Communication network design has traditionally
been decoupled from specific end applications and
is strongly influenced by standardization and com-
patibility constraints in legacy network infrastruc-
tures. In SoC networks, these constraints are less
restrictive because developers design the communi-
cation network fabric on silicon from scratch. Thus,
only the abstract network interface for the end
nodes requires standardization. Developers can tai-
lor the network architecture itself to the applica-
tion, or class of applications, the SoC design targets.

We thus envision a vertical design flow in which
every layer of the micronetwork stack is special-
ized and optimized for the target application
domain. Such an application-specific on-chip net-
work-synthesis paradigm represents an open and
exciting research field. Specialization does not
imply complete loss of flexibility, however. From a
design standpoint, network reconfigurability will
be key in providing plug-and-play component use
because the components will interact with one
another through reconfigurable protocols.

January 2002 71

Projections for future silicon technologies show that chip size
will scale up slightly while gate delays decrease compared to
wiring delays. A simple computation shows that delays on wires
that span the chip will extend longer than the clock period. This
trend is a trivial consequence of the finite propagation speed of
electromagnetic waves, which is v = (0.3/√∈) mm per second in
a homogeneous medium with relative permittivity ∈. In 50 nm
technology, the projected chip die edge will be around 22 mm,
with a clock frequency of 10 GHz.

Thus, the delay for a signal traversing the chip diagonally will
be approximately 100 picoseconds, or one clock period, in the
ideal case that ∈ = 1. A lower bound of two clock periods applies
to general media with ∈ > 1.1 Obviously, signal propagation on

real-life interconnections is much slower than this lower bound,
and optimistic predictions estimate propagation delays for
highly optimized global wires—taking wire sizing and buffering
into account—to be between six and 10 clock cycles for chips
made using 50 nm technology.2

References
1. D. Sylvester and K. Keutzer, “A Global Wiring Paradigm for Deep

Submicron Design,” IEEE Trans. CAD/ICAS, Feb. 2000, pp. 242-
252.

2. R. Ho, K. Mai, and M. Horowitz, “The Future of Wires,” Proc.
the IEEE, Apr. 2001, pp. 490-504.

Software
application
system

Architecture
and control

transport
network
data link

Physical
wiring

Figure 1. Protocol
stack from which
the micronetwork
stack paradigm can
be adapted. Bottom
up, the layers span
increasing design
abstraction levels.

Wiring Delays

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

72 Computer

ON-CHIP SIGNAL TRANSMISSION
Wires are the physical realization of com-

munication channels in SoCs and, for our
purposes, buses function as wire ensembles.
Intensive research3-5 into on-chip wiring has
resulted in the commercial development of
several physical design tools to support auto-
mated wiring. Nevertheless, coping with
global wires that span significant distances,
such as those beyond one millimeter, requires
a paradigm shift.

Most likely, the reverse-scaled global wires
will be routed on the top metal layers pro-
vided by the technology. Wiring pitch and

width increase in higher wiring levels so that wires
at top levels can be much wider and thicker than
low-level wires.5 Increased width reduces wire resis-
tance, even considering the skin effect, while
increased spacing around the wire prevents capac-
itance growth. At the same time, inductance effects
increase relative to resistance and capacitance. As
a result, future global wires will function as lossy
transmission lines,1 as opposed to today’s lumped
or distributed resistance-capacitance models.

In addition to facilitating high-speed communi-
cation, reducing the voltage swing also has a ben-
eficial effect on power dissipation. Reduced-swing,
current-mode transmission requires careful receiver
design, with good adaptation to line impedance and
high-sensitivity sensing, possibly with the help of
sense amplifiers.

When using current technologies, most chip
developers assume that electrical waveforms always
carry correct on-chip information. Guaranteeing
error-free information transfer at the physical level
on global on-chip wires will become more difficult
for several reasons.6 Signal swings will be reduced
and noise—due to crosstalk, electromagnetic inter-
ference, and other factors—will have increased
impact. Thus, it will not be possible to abstract the
physical layer of on-chip networks as a fully reliable,
fixed-delay channel. At the micronetwork stack lay-
ers atop the physical layer, noise is a source of local
transient malfunctions. An upset is the abstraction of
such malfunctions. Upset probability can vary over
different physical channels and over time.

In current designs, wiring-related effects are unde-
sirable parasitics, and designers use specific, detailed
physical techniques to reduce or cancel them. A
well-balanced design should not try to achieve ideal
wire behavior at the physical layer because the cor-
responding cost in performance, energy efficiency,
and modularity may be too high. Physical-layer
design should find a compromise between satisfy-

ing competing quality metrics and providing a clean
and complete abstraction of channel characteristics
for the micronetwork layers above.

MICRONETWORK
ARCHITECTURE AND CONTROL

The architecture specifies the interconnection net-
work’s topology and physical organization, while
the protocols specify how to use network resources
during system operation. Whereas both micronet-
work and general network design must meet per-
formance requirements, the need to satisfy tight
energy bounds differentiates on-chip network
implementations.

Interconnection network architectures
On-chip networks relate closely to interconnec-

tion networks for high-performance parallel com-
puters with multiple processors, in which each
processor is an individual chip. Like multiprocessor
interconnection networks, nodes are physically
close to each other and have high link reliability.
Further, developers have traditionally designed
multiprocessor interconnections under stringent
bandwidth and latency constraints to support effec-
tive parallelization.7 Similar constraints will drive
micronetwork design.

Shared-medium networks. Most current SoCs have
a shared-medium architecture, which has the sim-
plest interconnect structures. In this architecture,
all communication devices share the transmission
medium. Only one device can drive the network
at a time. These networks support broadcast as
well, an advantage for the highly asymmetric com-
munication that occurs when information flows
from few transmitters to many receivers. Within
current technologies, the backplane bus is the most
common example of an on-chip, shared-medium
structure. This convenient, low-overhead inter-
connection handles a few active bus masters and
many passive bus slaves that only respond to bus
master requests.

We need bus arbitration mechanisms when sev-
eral processors attempt to use the bus simultane-
ously. A bus arbiter module performs centralized
arbitration in current on-chip buses. A processor
seeking to communicate must first gain bus mas-
tership from the arbiter. Because this process
implies a control transaction and communication
performance loss, arbitration should be as fast and
rare as possible.

Together with arbitration, the response time of
slow bus slaves may cause serious performance
losses because the bus remains idle while the mas-

In addition
to facilitating

high-speed
communication,

reducing the voltage
swing also has a

beneficial effect on
power dissipation.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

ter waits for the slave to respond. To minimize the
bandwidth consumption, developers have devised
split transaction protocols for high-performance
buses. In these protocols, the network releases bus
mastership upon request completion, and the slave
must gain access to the bus to respond, possibly
several bus cycles later. Thus, the bus can support
multiple outstanding transactions.

Obviously, bus masters and bus interfaces for
split-transaction buses are more complex than
those for simple atomic-transaction buses. For
example, developers chose a 128-bit split-transac-
tion bus for the Lucent Daytona chip,8 a multi-
processor on a chip that contains four 64-bit
processing elements that generate transactions of
different sizes. To improve bus-bandwidth utiliza-
tion and minimize the average latency caused by
simultaneous requests, the bus partitions large
transfers into smaller packets.

Although well understood and widely used,
shared-medium architectures have seriously lim-
ited scalability. The bus-based organization remains
convenient for current SoCs that integrate fewer
than five processors and, rarely, more than 10 bus
masters. Energy inefficiency is another critical lim-
itation of shared-medium networks. In these archi-
tectures, every data transfer is broadcast, meaning
the data must reach each possible receiver at great
energy cost. Future integrated systems will contain
tens to hundreds of units generating information
that must be transferred. For such systems, a bus-
based network would become a critical perfor-
mance and power bottleneck.

Direct and indirect networks. The direct or point-
to-point network overcomes the scalability prob-
lems of shared-medium networks. In this archi-
tecture, each node directly connects to a limited
number of neighboring nodes. These on-chip com-
putational units contain a network interface block,
often called a router, that handles communication
and directly connects to neighboring nodes’
routers. Direct interconnect networks are popular
for building large-scale systems because the total
communication bandwidth also increases when the
number of nodes in the system increases.

The Raw Architecture Workstation (RAW) archi-
tecture9 is an example of a direct network imple-
mentation derived from a fully programmable SoC
consisting of an array of identical computational
tiles with local storage. Full programmability means
that the compiler can program both the function of
each tile and the interconnections among them.

The term RAW derives from the “raw” hard-
ware’s full exposure to the compiler. To accomplish

programmable communication, each tile has
a router. The compiler programs the routers
on all tiles to issue a sequence of commands
that determines exactly which set of wires
connect at every cycle. Moreover, the com-
piler pipelines the long wires to support high
clock frequency.

Indirect or switch-based networks offer an
alternative to direct networks for scalable
interconnection design. In these networks, a
connection between nodes must go through a set of
switches. The network adapter associated with each
node connects to a switch’s port. Switches them-
selves do not perform information processing—they
only provide a programmable connection between
their ports, setting up a communication path that
can change over time.7 Significantly, the distinction
between direct and indirect networks is blurring as
routers in direct networks and switches in indirect
networks become more complex and absorb each
other’s functionality. As the “Virtex II FPGA” side-
bar indicates, some field-programmable gate arrays
are examples of indirect networks on chips.

Hybrid networks. Introducing a controlled amount
of nonuniformity in communication-network
design provides several advantages. Multiple-back-
plane and hierarchical buses are two notable exam-
ples of the many heterogeneous or hybrid
interconnection architectures that developers have
proposed and implemented. These architectures
cluster tightly coupled computational units with
high communication bandwidth and provide lower
bandwidth intercluster communication links.
Because they use a fraction of the communication
resources and energy to provide performance com-
parable with homogeneous, high-bandwidth archi-
tectures, energy efficiency is a strong driver toward
using hybrid architectures.10

Micronetwork control
Using micronetwork architectures effectively

requires relying on protocols—network control
algorithms that are often distributed. Network
control dynamically manages network resources
during system operation, striving to provide the
required quality of service. Following the micro-
network stack layout shown in Figure 1, we
describe the three architecture-and-control lay-
ers—data link, network, and transport—from the
bottom up.

Data link layer. The physical layer is an unreliable
digital link in which the probability of bit upsets is
non-null. Data-link protocols increase the relia-
bility of the link, up to a minimum required level,

January 2002 73

Energy inefficiency
is a critical
limitation of

shared-medium
networks.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

74 Computer

under the assumption that the physical layer by
itself is not sufficiently reliable.

In a shared-medium network, contention creates
an additional error source. Contention resolution,
fundamentally a nondeterministic process, is an
additional noise source because it requires syn-
chronization of a distributed system. In general,
synchronization can virtually eliminate nondeter-
minism at the price of some performance loss. For
example, centralized bus arbitration eliminates con-
tention-induced errors in a synchronous bus but
the slow bus clock and bus request-and-release
cycles impose a substantial performance penalty.

Packetizing data deals effectively with commu-
nication errors. Sending data on an unreliable chan-
nel in packets makes error containment and
recovery easier because the packet boundaries con-
tain the effect of errors and allow error recovery on
a packet-by-packet basis. Using error-correcting
codes that add redundancy to the transferred infor-

mation can achieve error correction at the data link
layer. Packet-based error-detection and -recovery
protocols that have been developed for traditional
networks, such as alternating-bit, go-back-N, and
selective repeat, can complement error correction.2

Several parameters in these protocols, such as
packet size and number of outstanding packets, can
be adjusted to achieve maximum performance at a
specified residual error probability, within given
energy consumption bounds, or both.

Network layer. This layer implements end-to-end
delivery control in network architectures with
many communication channels. In most current
on-chip networks, all processing elements connect
to the same channel: the on-chip bus, leaving the
network layer empty. However, when a collection
of links connects the processing elements, we must
decide how to set up connections between succes-
sive links and route information from its source to
the final destination. Developers have studied these

Most current field-programmable gate arrays consist of a
homogeneous fabric of programmable elements connected by a
switch-based network. FPGAs can be seen as the archetype of
future programmable SoCs: They contain many interconnected
computing elements. Current FPGA communication networks

differ from future SoC micronetworks in granularity and homo-
geneity.

Processing elements in traditional FPGAs implement simple
bit-level functional blocks. Thus, communication channels in
FPGAs are functionally equivalent to wires that connect logic
gates. Because future SoCs will house complex processing ele-
ments, interconnects will carry much coarser quantities of infor-
mation. The different granularity of computational elements and
communication requirements has far-reaching consequences for
the complexity of the network interface circuitry associated with
each communication channel. Interface circuitry and network
control policies must be kept extremely simple for FPGAs, while
they can be much more complex when supporting coarser-grain
information transfers. The increased complexity will introduce
greater degrees of freedom for optimizing communication as well.

The concept of dynamically reconfiguring FPGAs applies well
to micronetwork design. SoCs benefit from programmability
on the field to match, for example, environmental constraints.
This programmability also lets runtime reconfiguration adapt,
for example, to a varying workload. Reconfigurable micronet-
works exploit programmable routers, switches, or both. Their
embodiment may leverage multiplexers whose control signals
are set—as with FPGAs—by configuration bits in local storage.

For example, Figure A shows the Xilinx Virtex II FPGA with
various configurable elements to support reconfigurable digi-
tal-signal-processor design. The internal configurable rectan-
gular array contains configurable logic blocks (CLBs), random
access memories (RAMs), multipliers (MUL), switches (SWT),
I/O buffers (IUB), and dynamic clock managers (DCM). Routing
switches facilitate programmable interconnection. Each pro-
grammable element connects to a switch matrix, allowing mul-
tiple connections to the general routing matrix. Values stored
in static memory cells control all programmable elements,
including the routing resources. Thus, Virtex II exemplifies an
indirect network over a heterogeneous fabric.

SWT

IOB

SWT

IOB

SWT

IOB

SWT

IOB

SWT

CLB

SWT

CLB

SWT

CLB

SWT

IOB

SWT

CLB

SWT

CLB

SWT

CLB

SWT

IOB

SWT SWT SWT SWT

DCM

SWT

CLB

SWT

CLB

SWT

CLB

SWT

IOB

RAM
MUL

Virtex II FPGA

Figure A. Xilinx Virtex II, a field-programmable gate array architec-
ture that exemplifies an indirect network over a heterogeneous
fabric.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

switching and routing tasks extensively in the con-
text of both multiprocessor interconnects7 and gen-
eral communication networks.2

Switching algorithms can be grouped into three
classes: circuit, packet, and cut-through switching.7

These approaches trade off better average delivery
time and channel utilization for increased variance
and decreased predictability. The low latency of
cut-through switching schemes will likely make
them preferable for on-chip micronetworks from
a performance standpoint. However, aggressive for-
warding of data through switches can increase traf-
fic and contention, which may waste energy.
Depending on the application domain, nondeter-
minism can be more or less tolerable.

Switching is tightly coupled to routing. Routing
algorithms establish the path a message follows
through the network to its final destination.
Classifying, evaluating, and comparing on-chip
routing schemes7 requires analyzing several trade-
offs, such as

• predictability versus average performance,
• router complexity and speed versus achievable

channel utilization, and
• robustness versus aggressiveness.

We can make a coarse distinction between deter-
ministic and adaptive routing algorithms. Deter-
ministic approaches always supply the same path
between a given source-destination pair and offer
the best choice for uniform or regular traffic pat-
terns. In contrast, adaptive approaches use infor-
mation about network traffic and channel con-
ditions to avoid congested network regions. An
adaptive approach is preferable when dealing with
irregular traffic or in networks with unreliable nodes
and links.

We conjecture that future on-chip micronetwork
designs will emphasize speed and decentralization
of routing decisions. Robustness and fault toler-
ance will also be highly desirable. These factors,
and the observation that traffic patterns for spe-
cial-purpose SoCs tend to be irregular, seem to
favor adaptive routing. However, when traffic pre-
dictability is high and nondeterminism is undesir-
able, deterministic routing may be the best choice.
The “SPIN Micronetwork” sidebar describes a
micronetwork that uses deterministic routing.11

Transport layer. Atop the network layer, the trans-
port layer decomposes messages into packets at
the source. It also resequences and reassembles the
messages at the destination. Packetization granu-
larity presents a critical design decision because

most network-control algorithms are highly sen-
sitive to packet size. Most macroscopic networks
standardize packets to facilitate internetworking,
extensibility, and the compatibility of the net-
working hardware that different manufacturers
produce. Packet standardization constraints can
be relaxed in SoC micronetworks, which can be
customized at design time.

In general, either deterministic or statistical pro-
cedures can provide the basis for flow control and
negotiation. Deterministic approaches ensure that
traffic meets specifications, and they provide hard
bounds on delays or message losses. Deterministic
techniques have the disadvantage of being based on
worst cases, however, and they generally lead to sig-
nificant underutilization of network resources.
Statistical techniques offer more efficient resource
utilization, but they cannot provide worst-case
guarantees.

January 2002 75

The Scalable, Programmable, Integrated Network (SPIN) on-chip
micronetwork defines packets as sequences of 32-bit words, with the
packet header fitting in the first word. SPIN uses a byte in the header to
identify the destination, allowing the network to scale up to 256 termi-
nal nodes. Other bits carry packet tagging and routing information, and
the packet payload can be of variable size. A trailer—which does not con-
tain data, but a checksum for error detection—terminates every packet.
SPIN has a packetization overhead of two words. The payload should
thus be significantly larger than two words to amortize the overhead.

The SPIN micronetwork adopts cut-through switching to minimize
message latency and storage requirements in the design of network
switches. However, it provides some extra buffering space on output links
to store data from blocked packets. Figure B shows SPIN’s fat-tree net-
work architecture, which derives its name from the progressively increas-
ing communication bandwidth toward the root. The architecture is
nonblocking when packet size is limited to a single word. Because pack-
ets can span more than one switch, SPIN’s blocking is a side effect of cut-
through switching alone.

SPIN uses deterministic routing, with routing decisions set by the net-
work architecture. In fat-tree networks, tree routing is the algorithm of
choice. The network routes packets from a node, or tree leaf, toward the
tree root until they reach a switch that is a common ancestor with the
destination node. At that point, the network routes the packet toward
the destination by following the unique path between the ancestor and
destination nodes.

N N N N N N N N N N N N N N N N

R

R

R

R

R

R

R

R

SPIN Micronetwork

Figure B. SPIN architecture. R blocks are switches, N blocks are nodes.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

76 Computer

The Silicon Backplane Micronetwork
(http://www.sonicsinc.com), a shared-med-
ium bus based on time-division multiplexing,
offers an example of transport layer issues in
micronetwork design. When a node wants to
communicate, it must issue a request to the
arbiter during a time slot. If arbitration is
favorable, it may be granted access in the fol-
lowing time slot. Hence, arbitration intro-
duces a nondeterministic waiting time in
transmission. To reduce nondeterminism, the
micronetwork protocol provides a form of
slot reservation: Nodes can reserve a fraction

of the available time slots, thereby allocating bus
bandwidth deterministically.

Future development. The theoretical framework
developed for large-scale networks provides a con-
venient environment for reasoning about on-chip
micronetworks as well. Currently very scarcely
explored, the micronetwork design requires fur-
ther work to predict the tradeoff curves in this
space. We also believe that this area offers signifi-
cant room for innovation: On-chip micronetwork
architectures and protocols can be tailored to spe-
cific system configurations and application classes.
Further, the impact of network design and control
decisions on communication energy presents an
important research theme that will become criti-
cal as communication energy consumption scales
up in SoC architectures.

SOFTWARE LAYERS
Network architectures and control algorithms

constitute the infrastructure and provide commu-
nication services to the end nodes, which are pro-
grammable in most cases. The software layers for
SoCs include system and application programs.

System software
The operating system captures the system pro-

grams that support SoC operation. System support
software in current SoCs usually consists of ad hoc
routines designed for a specific integrated core
processor under the assumption that a processor
provides global, centralized system control. In
future SoCs, the prevailing paradigm will be peer-
to-peer interaction among several possibly hetero-
geneous processing elements. Thus, we think that
system software will be designed as a modular dis-
tributed system. Each programmable component
will be provided with system software to support its
own operation, manage its communication with
the micronetwork, and interact effectively with
neighboring components’ system software.

Seamless composition of micronetwork compo-
nents will require system software that is config-
urable according to the network’s requirements.
System software configuration may be achieved in
various ways, ranging from manual adaptation to
automatic configuration. One end of the spectrum
favors software optimization and compactness
while the other end favors ease of design and fast
turnaround time. With this vision, on-chip com-
munication protocols should be programmable at
the system software level to adapt the underlying
layers to the components’ characteristics.

Most SoCs are dedicated to a specific application,
and system software seeks to provide the required
quality of service within the physical constraints of
that application. Consider, for example, a SoC for
a wireless mobile video terminal. Quality of service
relates to the video quality, which implies specific
computation, storage element, and micronetwork
performance levels. Constraints relate to the
strength and signal-to-noise ratio of the radio-
frequency signal and to the energy available in the
battery. Thus, the system software must provide
high performance by orchestrating the information
processing within the service stations and optimiz-
ing information flow. Moreover, the software should
achieve this task while minimizing energy con-
sumption.

The system software provides an abstraction of
the underlying hardware platform. We can view the
system as a queuing network of service stations.
Each service station models a computational or
storage unit, while the queuing network abstracts
the micronetwork. Moreover, we can assume the
following:

• Each service station can operate at various
service levels, providing corresponding per-
formance and energy consumption levels.
This approach abstracts the physical imple-
mentation of components with adjustable
voltage or frequency levels, or both, along
with the ability to disable their functions in
full or in part.

• The system software can control the informa-
tion flow between the various units to provide
the appropriate quality of service. This func-
tion entails controlling information routing,
local buffering into storage arrays, and the
information flow rate.

Thus, the system software must support both
dynamic power management (DPM) of its compo-
nents and dynamic information-flow management.

Network design and
control decisions

will become critical
as communication

energy consumption
scales up in SoC
architectures.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

DPM entails selecting the appropriate compo-
nent state to service a workload with the minimum
energy consumption. For example, an ARM
processor core can be in a sleep, idle, or run state.
Moreover, the processor run state can be subdi-
vided into substates corresponding to the operat-
ing frequencies and voltages. DPM policies provide
the control algorithms for state transitions.12

Transitions among states have a finite delay penalty,
even when changing the operation frequency. Thus,
identifying the policies that maximize performance
under energy constraints or that solve the dual
problem may be computationally complex.12

We envision at least two operating modes for
SoCs with many power-manageable components.
In one mode, the system software running on a
power-manageable component determines its state
transitions, based on the system state and its work-
load. Thus, the component’s system software has
a local DPM policy and controls the underlying
hardware through appropriate system calls. In the
second mode, components send their neighbors
messages requesting state changes. Such requests
originate and are serviced at the system software
level. For example, an image processor can be
required to raise its service levels before receiving a
stream of data. In this case, the system software
embodies policies that accept requests from other
components and perform transitions according to
such requests. At the same time, the policies can
originate requests for other components.

Dynamic information-flow management config-
ures the network and the local interconnection’s
bandwidth to satisfy information-flow requirements.
This problem relates tightly to DPM, and we can
view it as an application of DPM to the micronet-
work instead of to a component. Again, policies
implemented at the system software layer request
either specific protocols or parameters at the lower
layers to achieve the appropriate information flow,
using the least amount of resources and energy.

The Maia processor10 provides an example of
information-flow management. It combines an
ARM8 processor core with 21 satellite units,
including processing and storage units. The ARM8
processor configures the memory-mapped satellites
using a 32-bit configuration bus, and it uses two
pairs of I/O interface ports and direct memory
read/writes to communicate data with satellites. A
two-level hierarchical mesh-structured reconfig-
urable network provides connections between
satellites. Applying dynamic voltage scaling to the
ARM8 core increases energy efficiency. This
approach spatially distributes application programs

to achieve energy savings an order of magni-
tude greater than for DSP processors with the
same performance levels. Such savings derive
from Maia’s ability to reconfigure itself to
best match the applications, activate satel-
lites only when data is present, and operate
at dynamically varying rates.

Application software
Because SoCs will leverage many legacy

applications, the system software must pro-
vide appropriate libraries and facilities to sup-
port standard programming languages. At the
same time, dynamic binary code conversion
may be a useful paradigm for providing alter-
native execution units for application programs.

SoC application software development should
achieve two major goals:

• preserve portability and generality of the appli-
cations across different platforms, and

• provide some intelligence to leverage the dis-
tributed nature of the underlying platform.

One strategy for satisfying these apparently con-
flicting goals is to provide programming interfaces
for applications and system software. Applications
could then acquire information about the specific
platform from the system software while provid-
ing adequate quality of service by asking the sys-
tem software to set the hardware to specific states
that guarantee the desired quality level. System soft-
ware can serve or deny requests from applications
according to the state of other running processes.
Similarly, the software can neglect requests if it rec-
ognizes that they are not pertinent to the platform
the system is using.

D espite numerous challenges, we believe that
developers will find adequate solutions to the
problems of designing SoC networks. At the

same time, we believe that a layered-micronetwork
design methodology will likely be the only path to
mastering the complexity of SoC designs in the
years to come. �

References
1. B. Ackland et al., “A Single Chip, 1.6-Billion, 16-b

MAC/s Multiprocessor DSP,” IEEE J. Solid-State
Circuits, Mar. 2000, pp. 412-424.

2. A. Agrawal, “Raw Computation,” Scientific Am.,
Aug. 1999, pp. 60-63.

January 2002 77

We believe
that a layered-

micronetwork design
methodology will
likely be the only
path to mastering
the complexity of
SoC designs in the

years to come.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

3. L. Benini and G. De Micheli, “System-Level Power
Optimization: Techniques and Tools,” ACM Trans.
Design Automation of Electronic Systems, Apr. 2000,
pp. 115-192.

4. R. Hegde and N. Shanbhag, “Toward Achieving
Energy Efficiency in Presence of Deep Submicron
Noise,” IEEE Trans. VLSI Systems, Aug. 2000, pp.
379-391.

5. W. Dally and J. Poulton, Digital Systems Engineer-
ing, Cambridge Univ. Press, New York, 1998.

6. J. Duato, S. Yalamanchili, and L. Ni, Interconnec-
tion Networks: An Engineering Approach, IEEE CS
Press, Los Alamitos, Calif., 1997.

7. P. Guerrier and A. Grenier, “A Generic Architecture
for On-Chip Packet-Switched Interconnections,”
Proc. IEEE Design Automation and Test in Europe
(DATE 2000), IEEE Press, Piscataway, N.J., 2000,
pp. 250-256.

8. R. Ho, K. Mai, and M. Horowitz, “The Future of
Wires,” Proc. IEEE, Apr. 2001, pp. 490-504.

9. D. Sylvester and K. Keutzer, “A Global Wiring Par-
adigm for Deep Submicron Design,” IEEE Trans.
CAD/ICAS, Feb. 2000, pp. 242-252.

10. T. Theis, “The Future of Interconnection Technol-
ogy,” IBM J. Research and Development, May 2000,
pp. 379-390.

11. J. Walrand and P. Varaiya, High-Performance Com-

munication Networks, Morgan Kaufmann, San Fran-
cisco, 2000.

12. H. Zhang et al., “A 1-V Heterogeneous Reconfig-
urable DSP IC for Wireless Baseband Digital Signal
Processing,” IEEE J. Solid-State Circuits, Nov. 2000,
pp. 1697-1704.

Luca Benini is an associate professor in the Depart-
ment of Electronics and Computer Science at the
University of Bologna. His research interests
include the design of portable systems and all
aspects of computer-aided digital-circuit design,
with special emphasis on low-power applications.
Benini received a PhD in electrical engineering from
Stanford University. Contact him at lbenini@deis.
unibo.it.

Giovanni De Micheli is a professor of electrical
engineering and, by courtesy, of computer science,
at Stanford University. His research interests
include design technologies for integrated circuits
and systems, with particular emphasis on synthesis,
system-level design, hardware and software code-
sign, and low-power design. De Micheli received a
PhD in electrical engineering and computer science
from the University of California at Berkeley. Con-
tact him at nanni@stanford.edu.

Get access
to individual IEEE Computer Society

documents online.

More than 67,000 articles

and conference papers available!

$5US per article for members

$10US for nonmembers

http://computer.org/publications/dlib

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 25, 2008 at 09:38 from IEEE Xplore. Restrictions apply.

