
Program Verification and Hardware Synthesis 1
Program Veri�cationandHardware Synthesis

A common approach to hardware design is towrite a program in a hardware descriptionlanguage and then compile it to a state machineusing a synthesis system. Some correctnessproperties are naturally expressed at theprogramming level and established by programveri�cation methods, but others are best speci�edin terms of the state transitions of the synthesisedmachine. I will give examples of both kinds ofproperties, and then discuss how they can be canbe veri�ed using a theorem-prover.This talk is intended for a general audience.
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 2
Synthesis Design Flow(From Kurt Keutzer's paper in FMCAD '96)

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 3
Register Transfer Level

� Currently RTL is the `workhorse' level{ lower levels for EE experts{ higher levels still experimental� Two views of RTL:{ programming (HDL){ state machine (structure)� Speci�cation and veri�cation needed withrespect to both views{ program veri�cation for some properties{ state space analysis for others
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 4
Veri�cation� Traditional veri�cation uses simulation{ event simulation{ cycle simulation� Formal veri�cation uses automated proof{ boolean equivalence checking� uses OBDDs etc� now standard{ model checking� checks properties of state machines� currently used by Intel, TI, HP etc{ theorem proving� uses powerful undecidable logics� long term promise� still a research area� Reasons for formal veri�cation{ commercial: better debugging{ safety critical: save lives{ security critical: ensure privacy/secrecy

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 5
Rest of Talk

� Mainly RTL Veri�cation{ ideas relevant to behavioural level too� Combine:{ program veri�cation{ state machine analysis� HDL semantics{ based on simple hardware synthesis� Discussion of needed theorem prover support{ methodology, not details� Some related current research at Cambridge
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 6
Program Speci�cation

� Hoare triples:fpreconditiong program fpostconditiong� Semantics (total correctness):{ if the precondition holds{ then the program terminates{ in a state in which the postcondition holds� Example: a simple division program(X divided by Y gives quotient Q & remainder R)fY > 0g (precondition)begin R = X; Q = 0;while (Y < R)beginR = R - Y;Q = Q + 1;endendfX = R+Y�Q ^ R < Yg (postcondition)
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 7
Program Logic

� Much knowledge about verifying Hoare triples{ establishing invariants{ termination via `variants'{ weakest preconditions� Standard{ taught to undergraduates{ textbooks� Nice to mechanise{ veri�cation conditions

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 8
Hardware versus Program

� Continuously running{ always <statement>� Calculations may spread over several cycles{ @CLOCK <statement>� Need input/output protocol,various possibilities:{ tri-state bus{ handshake, e.g:� device available when BUSY=0� to start assert Start=1� results on Q and R when next BUSY=0

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 9
Division Program + I/Oalways @CLOCKif (Start)beginX = In1; Y = In2;BUSY = 1;R = X; Q = 0;while (Y<R)begin@CLOCKR = R-Y;Q = Q+1;endBUSY = 0;end� Start, Inp1, Inp2 controlled by environment� X, Y, Q, R, BUSY controlled by program(initially 0)� device available when BUSY=0� to start computation assert Start=1� results on Q and R when next BUSY=0Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 10
Control + Data

HDL program speci�es a machine:MDIV def= always @CLOCKif (Start)beginX = In1; Y = In2;BUSY = 1;SDIVBUSY = 0;endthat contains an embedded program:SDIV def= R = X; Q = 0;while (Y<R)begin@CLOCKR = R-Y;Q = Q+1;end
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 11
Specifying Properties of Machines
� Machines determine sequences of states{ one for each cycle� Environment provides values for In1, In2� Read inputs & update state every clock tick(RTL behaviour)� Variables range over sequences of values� Temporal operators specifyproperties of sequences2(Y>0)value of Y always greater than 03(X = R+(Y�Q))sometime X will equal R+(Y�Q)2(BUSY=1 ) 3(BUSY=0))if BUSY=1 then sometime later BUSY=0Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 12
Correctness of HDL Divider

Need to show:� If Start is asserted when BUSY=0 then:{ Inp1 and Inp2 read during that cycle{ eventually BUSY becomes 0 again{ X = R+Y�Q ^ R<Y when next BUSY=0� Can split these into:{ program correctness (Hoare logic)fY > 0gSDIVfX = R+Y�Q ^ R < Yg{ control correctness (temporal logic):BUSY=1 , control inside SDIVand2(BUSY=1 ) 3(BUSY=0))
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 13
Making Cycles Explicit

With respect to an HDL program:always @CLOCKif (Start)beginX = In1; Y = In2;BUSY = 1;SDIVBUSY = 0;endHow do we interpret Hoare triples:fY > 0g SDIV fX = R+Y�Q ^ R<Ygand temporal formulasBUSY=1 , control inside SDIV2(BUSY=1 ) 3(BUSY=0))Answer:� convert HDL to a state machine� then interpret w.r.t. input/state sequencesMike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 14
Synthesis Semantics

� HDL semantics = translation to machine� De�nitional synthesis{ not optimised implementation!{ c.f. de�nitional interpreters forprogramming languages� Doesn't reveal IP of proprietary tools{ approach being used to de�ne semantics ofsynthesisable Verilog{ i.e. `Synopsys subset'(Synopsys are helping)� Engineer friendly
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 15
Compiling to State Machines

� Introduce a `program counter' pc{ intialised to 0{ encodes control state{ one state for each @CLOCK� Symbolically execute{ from each @CLOCK{ to next @CLOCK� Examplealways @CLOCK (State 0)beginX = Inp;@CLOCK (State 1)X = X + 1;endcompiles to (using Verilog-like notation)case (pc)0 : pc = 1 k X = Inp (parallel assignment)1 : pc = 0 k X = X + 1endcase
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 16
Another Sequencing Example

always @CLOCK (State 0)beginX = Inp1; Y = X + Inp2;@CLOCK (State 1)OUT = X + Y;endcompiles tocase (pc)0 : pc = 1k X = Inp1k Y = Inp1 + Inp2k OUT = OUT1 : pc = 0k X = Xk Y = Yk OUT = X + Yendcase
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 17
Conditional Example

always @CLOCK (State 0)beginif (Choose) X = In1; else X = In2;@CLOCK (State 1)OUT = X + 1;endcompiles tocase (pc)0 : pc = 1k X = Choose ? In1 : In2k OUT = OUT1 : pc = 0k X = Xk OUT = X + 1endcase

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 18
While Example: divideralways @CLOCK (State 0)if (Start)begin X = In1; Y = In2; BUSY = 1;R = X; Q = 0;while (Y < R)@CLOCK (State 1)beginR = R - Y; Q = Q + 1;endBUSY = 0;endcompiles tocase (pc)0 : pc = Start ? In2 < In1 ? 1 : 0 : 0k X = Start ? In1 : Xk Y = Start ? In2 : Yk R = Start ? In1 : Rk Q = Start ? 0 : Qk BUSY = Start ? In2 < In1 ? 1 : 0 : BUSY1 : pc = Y < (R-Y) ? 1 : 0k X = Xk Y = Yk R = R-Yk Q = Q+1k BUSY = Y < (R-Y) ? BUSY : 0endcaseBUSY = 1, control inside SDIVcan now be interpreted as2(BUSY = 1 , pc = 1)Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 19
Divider + more states

always @CLOCK (State 0)if (Start)begin X = In1; Y = In2;BUSY = 1;@CLOCK (State 1)R = X; Q = 0;@CLOCK (State 2)while (Y < R)begin@CLOCK (State 3)R = R - Y;@CLOCK (State 4)Q = Q + 1;endBUSY = 0;end� Allocating operations to states isbehavioural synthesis� Functional speci�cation unchanged byadditional states
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 20
Corresponding Machine

case (pc)0 : pc = Start ? 1 : 0k X = Start ? In1 : Xk Y = Start ? In2 : Yk R = R k Q = Qk BUSY = Start ? 1 : BUSY1 : pc = 2k X = X k Y = Yk R = Xk Q = 0k BUSY = BUSY2 : pc = Y < R ? 3 : 0k X = X k Y = Y k R = R k Q = Qk BUSY = Y < R ? BUSY : 03 : pc = 4k X = X k Y = Yk R = R-Yk Q = Qk BUSY = BUSY4 : pc = Y < R ? 3 : 0k X = X k Y = Y k R = Rk Q = Q+1k BUSY = Y < R ? BUSY : 0endcaseBUSY = 1, control inside SDIVcan now be interpreted as2(BUSY = 1 , pc 2 f1; 2; 3; 4g)Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 21
Program Proof + State Exploration
� Data processing veri�cation viaordinary program logic{ may require human guided reasoning(e.g. guessing invariants)� Control correctness via state space ofsynthesised machine{ often automatic (c.f. model checking)
design = program + machineveri�cation veri�cation analysis

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 22
Hoare Logic as Temporal Logic

� Hoare triples can be interpreted on machinebehaviours{ roughlyfPg S fQgis:2(P ^ pc2S ) pc2S Until Q^ :pc2S)� Hoare-style reasoning principles derivable{ for ideas (applied to real-time) see:M.J.C. Gordon, A mechanized Hoarelogic of state transitions, in A ClassicalMind, Festschrift for Professor C.A.R.Hoare edited by Roscoe, W.,Prentice-Hall, 1994, pp. 143-159.{ for RTL hardware see lecture notes on webhttp://www.cl.cam.ac.uk/users/mjcg/
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 23
Tower of Semantic AbstractionEverything can be reduced to pure logicHoare TriplefPg S fQg

Temporal Logic2(P ^ pc2S ) pc2S Until Q^ :pc2S)
Raw Logic8t: P(t) ^ pc(t)2S )9t0: t0 > t ^ Q(t0) ^ :pc(t0)2S ^(8t00: t< t00 ^ t00 < t0 ) pc(t00)2S)

� P Until Qmeans Q will eventually hold trueand until it does P holdsMike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 24
Handling Multiple Descriptions

� Need to represent{ Hoare triples{ temporal formulas & state machines{ veri�cation conditions(could involve complex arithmeticor even real analysis { e.g. FP, DSP)� Need a general purpose formalism{ suitable for `arbitrary mathematics'{ mechanizable� Several general systems exist{ set theory(Isabelle/ZF, HOL-ST){ classical higher order logic(PVS, HOL, Isabelle/HOL, IMPS){ constructive type theory(Nuprl, Lego, Coq, Alf)Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 25
Pragmatic Requirements

� Combine general framework with `bestpractice' specialised tools� Many decision procedures known(hot research area: CAV etc.){ tautologies{ linear arithmetic{ temporal properties� Partial decision procedures can often handlesimple veri�cation conditions (CADE){ inductive proofs (Boyer-Moore, Clam){ tableau methods
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 26
Existing Approaches to Integration
� Add `trusted' external oracles to generalproof system{ OBDD and model checkers for PVS{ arithmetic decision procedures to Isabelle{ LTL in HOL (Karlsruhe)Features:{ get state-of-the-art e�ciency{ only as sound as the oracle{ low integration with other tools� E�cient derived rules{ tableau provers in Isabelle & HOL{ linear arithmetic in HOLFeatures:{ guaranteed sound{ ine�cient (not as bad as some say){ high integration with other toolsMike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 27
New Project(PROSPER)

� Attempt to have our cake and eat it{ general purpose system{ clean integration with external oracles{ support for speci�c applications{ theorem provenance tracking� Approach{ start by `deconstructing' HOL98� theory database� rewriting engine� decision procedures and provers� interactive shell{ devise protocol for external tools(maybe use XML to specify data formats)� Experiments:{ link to SMV model checker{ link to NP Prover tautology checker{ support Verilog and VHDL� Vapourware!{ but strong team : : :(Cambridge,Glasgow,Karlsruhe,IFAD,NP)
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 28
Grand Long-Term Goals

� Use industry-standard syntax{ Verilog, VHDL, : : :� Develop di�erent semantic views{ familiar to engineers{ compatible with standard design &veri�cation ows{ mutually consistent� Provide semantically compatible tools{ compilers, simulators, veri�ers etc.

Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 29
Ongoing Research at Cambridge� Semantics of synthesisable Verilog(with Abhijit Ghosh of Synopsys){ industrial strength subset{ simulation (event) semantics{ state-machine (cycle) semantics{ analysis of syntactic conditions forevent and cycle semantics to agree{ semantics based tools� Simulation core for VHDL and Verilog{ common simulation cycle{ rigorously speci�ed and analysed{ application to OMI{ just started (Daryl Stewart's PhD)� Hardware compilation workbench{ based around Ian Page's Handel language{ implement design manipulation tools{ compare Handel, Verilog design ows{ postdoc: Myra VanInwegenMike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 30
Conclusion

� Need diverse kinds of speci�cations{ for di�erent abstraction levels� Need diverse veri�cation tools{ specialised algorithms{ general theorem-proving� Can embed speci�cations in powerful logics{ gives uni�ed framework{ but hard to preserve e�ciency� Software veri�cation methods useful forhardware{ hardware and software theories merging
Mike Gordon www.cl.cam.ac.uk/users/mjcg



Program Verification and Hardware Synthesis 31

THE END

Mike Gordon www.cl.cam.ac.uk/users/mjcg


