
RASSP Integrated Systems Tool Appnote
Abstract
The goal of the DARPA/Tri-Service-sponsored Rapid Prototyping of Application Specific Signal Processors (RASSP)
program is to reduce development and manufacturing time and cost of signal processors by a factor of four. Lockheed
Martin's Advanced Technology Laboratories (ATL) RASSP team has developed an integrated systems engineering tool set
which forms the basis for a concurrent engineering design environment. This design environment, which consists of
Ascent Logic's RDD-100, Lockheed Martin PRICE Systems parametric cost estimation models, and Management Sciences
Inc. RAM-ILS tools, provides the integrated product development team with cost and reliability estimation data within a
systems engineering toolset. The concurrent engineering design environment is described and an example is provided
which demonstrates the value of the tool integration within the design environment. This design environment enables the
integrated product development team to estimate the life-cycle costs and reliability early in the design process.

Purpose
Systems engineering decisions early in a project significantly impact schedule and cost. Decisions are typically based on the
impact to the current phase of a project, rather than the project's overall life cycle.To help the integrated product
development team (IPDT) make these trade-off decisions, the ATL RASSP team developed a concurrent engineering
environment consisting of Ascent Logic Corporation', (ALC) RDD-100 tool with Lockheed Martin PRICE Systems'
parametric cost estimation models and Management Sciences Inc. (MSI) RAM-ILS tool set. This application note will help
you learn more about using these tools in this concurrent engineering environment to provide design, cost, reliability,
availability, and maintainability support to the IPDT.

Roadmap
1.0 Executive Summary

1.1 Overview
1.2 Introduction
1.3 RASSP Systems Engineering Process Overview
1.4 Design Environment Overview
1.5 Example Trade-Off
1.6 Summary

2.0 Introduction

3.0 Technical Description

3.1 RASSP Systems Engineering Process
3.1.1 Overview
3.1.2 RASSP Systems Process Description

3.1.2.1 Requirement Analysis
3.1.2.2 Functional Analysis
3.1.2.3 System Partitioning

3.2 RASSP Integrated System Tool Description
3.2.1 Overview
3.2.2 Individual Tool Description

3.2.2.1 RDD-100
3.2.2.2 PRICE Cost Estimating Tools
3.2.2.3 RAM-ILS

3.2.3 Integrated Tool Description
3.2.3.1 RASSP Schema Extension Overview
3.2.3.2 Integrated Design to Cost
3.2.3.2 RAM Assessment

3.3 Benefits Using Integrated Sustem Tools

4.0 Application of Integrated System Tools to SAR Benchmark

4.1 SAR Benchmark Description

4.2 Requirements Analysis
4.3 Functional Decomposition
4.4 System Partitioning

4.4.1 Requirements and Functional Allocation
4.4.2 Cost Analysis
4.4.3 Reliability Assessment

4.5 Summary

5.0 References

6.0 Appendix

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 2 Introduction Up: Appnotes Index Previous: Appnote System Index

RASSP Integrated System Tools Appnote
1.0 Executive Summary

1.1 Overview

The goal of the DARPA/Tri - Service sponsored Rapid Prototyping of Application Specific Signal Processors (RASSP) program is
to reduce development and manufacturing time and cost of signal processors by a factor of four. Lockheed Martin Advanced
Technology Laboratories' (LM/ATL) RASSP team has developed an integrated systems engineering tool set which forms the basis
for a concurrent engineering design environment. This design environment, which consists of Ascent Logic's RDD - 100, PRICE
Systems parametric cost estimation models, and Management Sciences RAM - ILS tools, provides the integrated product
developmentd team with cost and reliability estimation data within a systems engineering toolset. The concurrent engineering
design environment is described and an example is provided which demonstrates the value of the tool integration within the design
environment. This design environment enables the integrated product development team to setimate the life-cycle costs and
reliability early in the design process.

1.2 Introduction

Systems enginerring decisions early in a project significantly impact schedule and cost. Decisions are typically based on the impact
to the current phase of a project, rather than the project's overall life cycle. Figure 1 - 1 shows a comparison of cost incurred to
cost committed for a typical project. To help the integrated product development team (PDT) make these trade-offs, the ATL
RASSP team developed a concurrent engineering environment consisting of Ascent Logic Corporation's (ALC) RDD - 100 tool
with PRICE Systems parametric cost estimation models and Management Sciences' (MSI) RAM - ILS tool set, as shown in Figure
1 - 2. Design information is passed among these tools in this concurrent engineering environment to provide design, cost,
reliability, availability, and maintainability support to the IPDT.

Figure 1 - 1: Typical Project Costs

The RASSP concurrent engineering environment provides the IPDT with the information they need to make decisions early, while
making changes is still easy and inexpensive. This environment will allow engineers to make decisions based not only on the
current effect of a change, but on the predicted long-term impacts. This information is essential to significantly reducing life-cycle
costs.

contents

Figure 1 - 2: RASSP Concurrent Engineering Environment

1.3 RASSP Systems Engineering Process Overview

The RASSP design process consists of the signal processing system-level design, architecture selection and detailed
hardware/software design, as shown in Figure 1 - 3. The inputs to the RASSP design process are the physical, functional and
performance requirements for the signal processing system. These requirements typically are passed down from the platform
system level design, which is performed prior to the signal processor design. During the signal processing system design, the
requirements are captured and analyzed, the functional behavior of the system is defined and the requirements and functions are
allocated to the major subsystems of the signal processor. Hardware/software co-design activities are performed during the
architecture selection process and a virtual prototype of the system is developed. Once the processing architectures are determined,
the hardware and software are developed and integrated during the detailed design process. Note that these processes are iterative
in nature and that feedback between the processes is used whenever required. The focus of this section of the application note is to
present an overview of the RASSP systems engineering process.

The RASSP system definition process is a front-end engineering task in which signal processing concepts that meet customer
requirements are developed and top-level trade-offs are performed to determine the processing subsystem requirements. Although
the same type of functional decomposition and allocation is performed as in the traditional design process, several significant
RASSP extensions have been developed which lead to shorter design cycles. Emphasis is placed on understanding the life cycle
impact of early design decisions in the RASSP process. Each member of the integrated product development team participates in
the system-level tradeoffs to ensure that the complete life cycle is considered during the design process. Model year architecture
concepts are used in RASSP designs to ensure that the signal processor can be easily upgraded to support its entire life cycle.

Emphasis is placed on making early design decisions so prototyping activities can begin early in the program to reduce high-risk
elements. The output of the system definition process is a set of executable specifications that have the requirements for each
processing subsystem in an executable form. The executable specifications support the RASSP concept of reuse and minimize
errors due to human interpretation. Traceable system requirements are passed via executable specifications from the system
definition process to the architecture design process. As the design progresses, the ability to meet requirements is passed back to
the system-level simulations so the impact of lower-level trade-offs are analyzed.

Figure 1 - 3: RASSP Design Methodology

1.4 Design Environment Overview

The RASSP concurrent engineering environment consists of ALC's RDD-100, PRICE System's cost estimating tools and MSI's
RAM-ILS toolset, as shown in Figure 1 - 4. The capabilities for each individual tool and for the integrated toolset are described
next.

Figure 1 - 4: RASSP System Tool Integration

The ATL RASSP team selected Ascent Logic Corporation's RDD-100 tool as the central tool of its integrated toolset. This tool
provides requirements analysis, functional analysis, and physical decomposition capabilities. It is an Entity, Relationship, Attribute
(ERA) database tool with a substantial graphical data entry user interface. RDD-100's database capability enables it to be the
primary data storage tool for the tool set. The ATL RASSP Team defined a set database extensions that support the IPDT through
the life of a project.

The RDD-100 tool provides the IPDT with three different views of a system: a requirements view, a functional view, and a
physical view. The requirements can be related to the functions and the functions can be allocated to the physical architecture. The
interrelation of these three views enables users to automatically generate the lower specification documents from the RDD-100
database. The physical view enables cost analysis and reliability and maintainability analyses.

1.4.1 RDD-100

The ATL RASSP team selected Ascent Logic Corporation's RDD-100 tool as the central tool of its integrated toolset. This tool
provides requirements analysis, functional analysis, and physical decomposition capabilities. It is an Entity, Relationship, Attribute
(ERA) database tool with a substantial graphical data entry user interface. RDD-100's database capability enables it to be the
primary data storage tool for the tool set. The ATL RASSP Team defined a set database extensions that support the IPDT through
the life of a project.

The RDD-100 tool provides the IPDT with three different views of a system: a requirements view, a functional view, and a
physical view. The requirements can be related to the functions and the functions can be allocated to the physical architecture. The
interrelation of these three views enables users to automatically generate the lower specification documents from the RDD-100
database. The physical view enables cost analysis and reliability and maintainability analyses.

1.4.2 PRICE Systems Cost Estimation Models

The ATL RASSP team selected Lockheed Martin PRICE Systems' parametric cost estimation models as the cost analysis tool.
These models were originally intended to be used by a cost analyst. PRICE Systems modified them to allow access to the PRICE
models through parameters contained within the RDD-100 database and to provide costing information back to this database. The
PRICE Systems' tools include a set of four parametric cost estimation models, each with a different specialty areas. Three of the
models focus on hardware costing and the fourth model focuses on software costing. These models are summarized below:

PRICE H: This model specifically addresses the costs associated with development and production of hardware. This tool
can use outputs of the PRICE M tool.
PRICE HL: This model uses data generated by PRICE H and calculates the hardware life-cycle costs, including sparing
for a deployment environment.
PRICE M: This model specifically addresses electronic-module-level hardware development and production costs. It
allows engineers to specify individual ASIC and FPGA components to get a detailed cost estimate at the lowest levels.
Software: This model estimates both development costs and life-cycle support costs for software.

The PRICE models are based on historical models and can be calibrated to match any company's process.

1.4.3 Reliability, Availability, Maintainability: Integrated Logistics Support (RAM-ILS)

Management Sciences' Inc. RAM-ILS tools calculate reliability, maintainability, and availability of a system. This tool set
performs mean time between failure (MTBF) and availability calculations using several methods, including Mil-Hdbk-217 and
BelCore. If the system doesn't meet the MTBF requirements, RAM-ILS will perform a cost driven trade-off and recommend
where redundancy can be added to effectively meet the system MTBF requirement. RAM-ILS is integrated with the Mentor Falcon
Framework, which allows it to access the detailed design database to continually improve its estimates as the detailed design
progresses.

1.4.4 Integrated Tools

As a part of the RASSP program, RDD-100, PRICE and RAM-ILS have been integrated so design information can be passed
among the tools when performing system, costing and reliability analyses. It is through the use of the integrated tools that provides
the capabilities needed by the IPDT. The approach used to integrate these tools within the concurrent engineering design
environment is to pass data normally resident within one tool to another tool if that data can be used for analyses within the
receiving tool. There has been no attempt to build a graphical user interface within any tool for another tool. All data exchanges for
these tools are file based.

1.5 Integrated Tools

The following example problem shows how the concurrent engineering environment is applied to a trade-off study.

The ATL RASSP team selected a Synthetic Aperture Radar Digital Signal Processor (SAR-DSP) for a trade-off between two
different architecture candidates. A preliminary functional analysis was performed to identify the hardware and software needed by
each candidate architecture to satisfy the SAR functional requirements. The Candidate 1 architecture uses a mature technology. As
shown in Figure 1-5, this architecture consists of a single-board computer (used as a controller), five processor elements (PE1-5),
a cross bar, a fiber interface, and a VME Bus. Each processor element contains four separate computational elements (CE1-4).
Also shown in Figure 1-5 is the Candidate 2 architecture. This is similar to the first, except that it uses three state-of-the-art
processor elements. In addition, PE2 and PE3 contain only two compute elements rather than four.

Figure 1 - 5: Two Candidate Architectures for Example Trade-Off

During the development phase, the trade-off is difficult because a mature technology is less expensive per module and is lower
risk, while the state-of-the-art technology has fewer modules, is more compact, and consumes less power.

The following tasks were performed when conducting trade-offs between the candidate architectures.

Requirement Capture and Analysis
Functional Analysis
Physical Decomposition
Preliminary Cost Calculation
Preliminary Reliability Calculation
Compute Updated Costing
Architecture Trade-Off.

Each of these tasks are described below.

1.5.1 Requirements Capture and Analysis

The initial requirements capture and most of the requirements analysis are essentially identical for both candidate architectures. The
originating requirements came from a Technical Description Document. The team reworded and reordered these requirements to

create a specifi cation for the signal processor. Af ter completing the initial requirements decomposition, the team performed a
functional analysis.

1.5.2 Functional Analysis

The functional analysis for both candidate architectures is essentially the same since both architectures are functionally equivalent.
The functions are decomposed down to the point where each leaf-level function is allocated to a hardware or software element. At
this point, some information about the hardware/software partition may help minimize future changes to the functional
decomposition.

1.5.3 Physical Decomposition

The physical decomposition is the only information required to perform cost and reliability analysis. The team developed an
equipment/software tree for both candidates that is essentially identical. The primary difference is in the quantities of processor
element assemblies. Table 1 - 1 shows an element tree for each of the candidates.

Architecture 1 Architecture 2

Item QTY NHA Design Maturity QTY
NHA

Design Maturity

Fiber Interface Assembly 1 - - 1 - -

- Data IO Module 1 New Leading Edge 1 New Leading Edge

- Fiber Optic Daughter Card1 COTS Mature 1 COTS Mature

- FIR Filter Daughter Card 1 NEW Leading Edge 1 NEW Leading Edge

Host Interface 1 COTS Mature 1 COTS Mature

Processor Element
Assembly

5 - - 3 - -

- Mother Board 1 COTS Leading Edge 1 COTS Leading Edge

- CE Daughter Card 1 2 COTS Mature 1 or 0 COTS Mature

- CE Daughter Card 2 - 1 COTS SOA

Chassis 1 COTS Mature 1 COTS Mature

Backplane Assembly 1 - - 1 - -

- VME Backplane 1 COTS Mature 1 COTS Mature

- Crossbar 1 COTS Mature 1 COTS Mature

COTS : Commercial of the Shelf SOA : State of the Art QTYNHA: Quantity in Next Higher Assembly

Table 1 - 1: Architecture Candidate Module Complement

While generating the equipment/software tree, the following information is populated in the RDD-100 database for each element:

Component type
Component subtype
Quantity in next higher assembly
Quantity required for operation
Redundancy mode
Budgeted length, width, and depth
Budgeted weight
Budgeted power
Technology
Technology maturity
Design source.

Where possible, the team placed the data entry in enumerated lists to guide the IPDT in how to use these fields.

1.5.4 Preliminary Cost Calculation

The team calculated the preliminary cost using the PRICE H, PRICE HL and PRICE S tools. The PRICE tool was configured
previously with company-specific calibrations and a deployment environment and scenario. The deployment scenario included two
prototypes and 500 production units over a 20-year mission, with 20 organization sites and one depot maintenance site. (An export
to PRICE was run from the RDD-100 tool and an import was then run in the PRICE tools.) Table 1-2 shows the calculated costs
for Candidate 1. This data was exported from the PRICE tools back to RDD-100. The whole cost analysis and back population is
done in less than 1/2 hour. This process allows the IPDT to quickly assess several similar architectures.

Cost Cycle Predicted Cost ($M)

Development Cost 1.9

Production Cost 95.8

Life Cycle Support Cost 36.9

Total Cost 134.6

Table 1 - 2: Candidate 1 Preliminary Cost

1.5.5 Preliminary Reliability Calculation

After completing the first costing, an export is performed from RDD-100 to the RAM-ILS tool set. This tool set then calculates the
overall MTBCF (mean time between critical failure) and compares it to the budgeted value. In this case, Candidate 1 only achieved
a 2069-hour MTBCF for a 2400-hour requirement. Based on a cost trade-off performed within the RAM-ILS tool, this tool
recommends that the requirement can be met if a redundant fiber interface is added. RAM-ILS generates the back population results
for transfer into the RDD-100 tool. Each component has an attribute "quantity requested for RMA" that indicates where the
RAM-ILS tool suggests redundancy. Note that this is just a recommendation from the RAM-ILS tool; systems engineers must
determine the feasibility of this recommendation. All the RMA calculations are performed against the original system. If the users
believe that this suggestion is proper and feasible given the hardware and software configuration, they change the "quantity in next
higher level assembly" within the RDD-100 tool and run the RAM-ILS tool on the new configuration. The final MTBCF for
Candidate 1 with the recommended redundancy is 2607 hours.

1.5.6 Cost Updates

At this point, the architecture has changed and more accurate MTBF numbers were available in the database. The team ran the
PRICE tools a second time, which provided a more accurate cost assessment, as shown in Table 1 - 3.

Cost Cycle Predicted Cost ($M)

Development Cost 2.0

Production Cost 101.0

Life Cycle Support Cost 39.6

Total Cost 142.5

Table 1 - 3: Candidate 1 Updated Costs

1.5.7 Architecture Trade-Off

The team performed similar cost analysis and RMA analysis for Candidate 2. The costing and reliability results for both candidates
are shown in Table 1-4. During a typical project, the development costs are the primary criteria used to select the best architecture.
Therefore, the life-cycle costs would not be minimized. With the concurrent engineering design environment, the IPDT can pick
the most cost-effective solution based on the total life-cycle costs. In the past, Candidate 1 would typically have been selected
because there was no easy process to determine life-cycle costs. It is clear from this example that Candidate 2 is the better solution
because it is less expensive and more reliable.

With the tools in the concurrent design environment, this information is easily estimated, even during a proposal effort.

Cost Type Candidate 1 ($K) Candidate 2 ($K)

Development Cost 2.0 2.1

Production Cost 101.0 89.1

Life Cycle Support Cost 39.6 29.8

Total Cost 142.5 113.0

MTBCF 2607 hours (Redundancy Required) 3296 hours (No Redundancy)

Table 1 - 4: Trade-Off Table

1.6 Summary

The ATL RASSP team has developed a concurrent engineering environment consisting of three existing computer tools
(RDD-100, Price Cost Estimating, and RAM-ILS).

This system design environment quickly provides more detailed and accurate information to the IPDT, and enables them to make
better informed decisions early in a system's life cycle and even in the proposal process. Since these early decisions have the
largest impact on the overall life-cycle costs of a system, it is important that these decisions be based on all life-cycle costs and not
just the cost of the initial development. The tools in this design environment also provide information to support detailed designers
throughout the design process.

As shown in the example, it is possible to select the wrong architecture if the decision is only based on the development costs. The
life-cycle costs in this example are reduced by over 20% just by understanding these costs early in the development phase. This
information is critical in achieving the RASSP goal of a reducing life-cycle costs by a factor of four. The ATL RASSP team is
evaluating other technologies to further reduce design-cycle times and costs on the RASSP program.

Although ATL developed the RASSP concurrent system engineering environment to work well in the signal processing domain,
many of these concepts can be extended into higher-level systems.

Next: 2 Introduction Up: Appnotes Index Previous:Appnote SYSTEM Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 3 Technical Description Up: Appnotes Index Previous: 1 Executive Summary

RASSP Integrated System Tools Appnote
2.0 Introduction
The goal of the DARPA/Tri-Service sponsored Rapid Prototyping of Application Specific Signal Processors
(RASSP) program is to reduce digital signal processor development and manufacturing time and costs by a
factor of four. Systems engineering decisions early in the design process significantly impact both the
schedule and cost of a project. As shown in Figure 1 - 1, 80 percent of a product's life cycle cost are typically
committed by the end of the design development phase. The Lockheed Martin's Advanced Technology
Laboratories' (LM/ATL) RASSP team has developed a concurrent engineering design environment which
helps the integrated product development team (IPDT) make better trade-offs early in the design process which
effectively address life cycle costs. This concurrent engineering environment consists of Ascent Logic
Corporation's (ALC) RDD - 100 systems engineering tool, Lockheed Martin's PRICE Systems parametric
cost estimating tools and Management Sciences' Inc. (MSI) RAM-ILS tool, as shown in Figure 1 - 2. Design
information is passed among these tools in this integrated systems engineering design environment to provide
design, cost, reliability, availability and maintainability support to the IPDT. This design environment
provides the IPDT with the information they need to make informed and effective decisions early, while
making changes is still easy and inexpensive. Engineers are able to determine the impact of design decisions
on life cycle costs with this integrated systems engineering environment.

The focus of this application note is to describe the overall RASSP systems engineering methodology,
describe how the RASSP integrated system tools support this methodology and to illustrate the benefits of
using these tools on an actual application. The intended audience for this application note are program
managers, engineering managers and engineers supporting processing system trade-offs who are interested in
reducing overall life cycle costs. Each of these groups are interested in a different aspect of this application
note. Program managers will be primarily interested how better system level trade-offs can be performed
which result in better system designs with lower development costs. Engineering managers will be interested
in the overall system engineering process improvements presented in this application note. Engineers will be
interested in learning how to perform their jobs more effectively with the use of the integrated RASSP tools.
Although the use of these integrated tools have been tailored for signal processing applications on the RASSP
program, there are no inherent reasons why these tools can not be extended to work in other domains.

The organization of this application note is as follows. Section 1 contains the executive summary which
provides a top level overview for this application note. Section 2 presents the introduction which explains the
overall content and organization of the document. Section 3 discusses the RASSP integrated systems
engineering process, how the RASSP integrated tools support this process and the benefits for using this
process. Section 4 illustrates how the RASSP systems engineering process and integrated tools are used for a
Synthetic Aperture Radar (SAR) signal processing example. Section 5 contains a list of reference documents
which support this application note.

Next: 3 Technical Description Up: Appnotes Index Previous: 1 Executive Summary

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 4 Application of Integrated Systen Tools to SAR Benchmark Up: Appnotes Index Previous:2 Introduction

RASSP Integrated System Tools Appnote
3.0 Technical Description

3.1 RASSP Systems Engineering Process

3.1.1 Overview

The RASSP design process consists of the signal processing system-level design, architecture selection and detailed
hardware/software design as shown in Figure 3-1. The inputs to the RASSP design process are the physical, functional and
performance requirements for the signal processing system. These requirements typically are passed down from the platform
system level design which is performed prior to the signal processor design. During the signal processing system design, the
requirements are captured and analyzed, the functional behavior of the system is defined and the requirements and functions are
allocated to the major subsystems of the signal processor. Hardware/software co-design activities are performed during the
architecture selection process and a virtual prototype of the system is developed. Once the processing architectures are determined,
the hardware and software are developed and integrated during the detailed design process. Note that these processes are iterative
in nature and that feedback between the processes is used whenever required. The focus of this section of the application note is to
describe the RASSP systems engineering process.

Figure 3 - 1: RASSP Design Methodology

It is recommended that Section 3.1.2 be read to understand what is accomplished during the signal processing system design.
Section 3.2.1 entitled "RASSP Integrated System Tool Description Overview" should then be read next to understand the
capabilities of these integrated tools. One can then read Section 3.2.2 for more details about the individual tools and Section 3.2.3
for details on their integration. However, both of these sections may be skipped and the reader can move directly to Section 3.3 to
learn the benefits of using the integrated toolset. The reader can then progress to Section 4 to see an example how the integrated

tools are used on a typical program.

3.1.2 RASSP System Process Description

The RASSP system definition process is a front-end engineering task in which signal processing concepts that meet customer
requirements are developed and top-level trade-offs are performed to determine the processing subsystem requirements. Although
the same type of functional decomposition and allocation is performed as in the traditional design process, several significant
RASSP extensions have been developed which lead to shorter design cycles. Emphasis is placed on understanding the life cycle
impact of early design decisions in the RASSP process. Each member of the integrated product development team participates in
the system-level tradeoffs to ensure that the complete life cycle is considered during the design process. Model year architecture
concepts are used in RASSP designs to ensure that the signal processor can easily be upgraded to support its entire life cycle.
Emphasis is placed on making early design decisions so prototyping activities can begin early in the program to reduce high-risk
elements. The output of the system definition process is a set of executable specifications that have the requirements for each
processing subsystem in an executable form. The executable specifications support the RASSP concept of reuse and minimize
errors due to human interpretation. Traceable system requirements are passed via executable specifications from the system
definition process to the architecture design process. As the design progresses, the ability to meet requirements is passed back to
the system-level simulations so the impact of lower-level trade-offs are analyzed.

The system definition process is shown in Figure 3-2. The inputs to the system definition process include all the customer
documentation detailing the processing system specification. Typical signal processing requirements include system mode
functional descriptions (search, track, waveforms and algorithms), performance requirements (processing gain, timeline and
precision requirements), physical constraints (size, weight, power, cost, reliability, maintainability, testability, etc.), and interface
requirements. Top-level tradeoffs are performed by the multidiscipline product development team to determine how the system will
operate and what set of subsystems are required. System level functional and timeline simulations are developed to characterize
system behavior. The system definition process is iterative, requiring constant interaction with the customer and product
development team. The outputs of the system definition process include the functional, performance and physical requirements for
each signal processing subsystem.

Figure 3 - 2: System Definition Process

As the subsystem designs progress, key system-level simulations are re-run to ensure that performance is maintained. The

subsystem requirements are periodically monitored to make sure that the development risks are appropriately balanced among the
subsystems. There is a feedback path back to the system-level from each subsystem design which is used whenever cost-effective
subsystem designs cannot be obtained. When subsystem requirements can not be met, analyses are performed to determine a
refined partitioning of the system requirements.

3.1.2.1 Requirements Analysis

During requirements analysis a user need is converted into a set of system requirements that satisfies that need. Customer
documentation is reviewed and discussions are held with the customer and user to refine the purpose and manner in which users
will operate the system. The focus of system requirements analysis is to determine what the system is to do and how the system is
to be used. External interfaces to the system are identified. Methods to verify each requirement statement are determined. This
process iterates with the functional analysis and system partitioning efforts to assess feasibility and to structure the requirements
cost-effectively. This iteration also makes the verification process more accurate and cost effective by eliminating ambiguity in the
requirement statements.

The tasks performed during requirements analysis are summarized in Table 3-1. A complete set of customer documents must be
used to determine the requirements since the contractor must understand how users intend to use the system. The system is defined
in terms of its modes and states, functions and interfaces. Trade-offs establish alternative performance and functional requirements
to meet customer needs. Any potential conflicts between the trade-off analysis results and the system requirements are resolved. A
work-off plan for all TBD/TBR items that identify the responsible individual, schedule for resolution, risk analysis and key
trade-offs to be performed is developed. Traceability of system requirements and decisions ensures that the trade-off decisions
made in generating requirements can be tracked and that these requirements are completely and accurately reflected in the final
design. Traceability is also used to assess the impact of changes at any level of the system. System requirements are examined to
ensure completeness and consistency.

Obtain Relevant Information System Requirements
Assessment

 System Definition

Obtain all relevant customer
documentation

Discuss system requirements
with customer

Obtain data on applicable
technology

Assess functional &

performance requirements,
operational environment,
system constraints & measures
of effectiveness

Define system modes &

states
Define system functions
Define system configuration

items
Define system interfaces

TBD/TBR Work-off Planning Requirements Traceability System Specification
Generation

Identify responsible
individual

Perform risk analysis
Develop schedule for

resolution
Identify potential trade-offs
Determine resolution criteria
Assemble work-off plan
Conduct internal review

Capture customer

requirements
Trace system requirements to

source documents
Prepare traceability matrix
Conduct internal review

Analyze inputs
Prepare specification outline
Incorporate applicable

documents & standards
Prepare preliminary

specification
Conduct review
Incorporate comments
Place under configuration

control
Submit for authentication

Table 3 - 1: Requirements Analysis Tasks

The output of the requirements analysis task is the system specification. This specification includes the technical requirements for
the system, allocates the requirements to functional areas, documents the design constraints and defines interfaces between
functional areas. This specification also contains the necessary performance requirements. Essential physical constraints and
requirements for application of any known specific equipment which must be included in the system are included in the
specification. The specification can be in either a written format, an executable format or a combination of both formats.

3.1.2.2 Functional Analysis

During functional analysis, the system is decomposed into its functional elements. This analysis is performed by determining what
functions are required to implement each system requirement. Functions are described by defining the inputs to the function, the
algorithm performed by the function and the outputs of the function. Constraints and timing requirements are established for each
function. The top-level functional behavior is modeled to ensure that the functional requirements are met.

The tasks performed during functional analysis are summarized in Table 3-2. The functional identification task translates system
requirements, customer heritage and customer rationale into functional block diagrams that are used by subsequent processes to
create and evaluate system configurations. This task refines and decomposes the functions identified from the requirements
analysis task. Design constraints for each functions are defined. Functional elements within the RASSP reuse library are examined
to determine whether existing functional library elements can be used.

Functional Identification Functional Decomposition

Analyze system requirements
Identify system functions
Develop functional block diagrams
Identify constraints
Establish performance timelines
Evaluate baseline for consistency and
completeness
Perform traceability to requirements
Provide rationale for functional
identification
Develop alternative functional
configurations

Perform trade-offs to eliminate poor system
configurations
Develop next tier functions
Develop next tier functional block diagrams
Identify next tier constraints
Establish next tier performance timelines
Perform traceability to upper tier functions
and requirements
Provide rationale for decomposition
Identify new library primitive elements

Table 3 - 2: Functional Analysis Tasks

Lower level functions, constraints and performance are generated during functional decomposition. This decomposition continues
until the functionality can be allocated to a specific subsystem. This more detailed information is used in the subsequent
partitioning and architectural trade processes. This functional analysis is performed iteratively to eliminate poor allocation decisions
as soon as possible. Functional elements within the RASSP reuse library are examined to determine whether existing library
elements can be used at this lower level decomposition. If any of the system functions can not be represented by existing library
elements, new primitives are identified for development.

Traceability is established between each functional block and the system requirements.

3.1.2.3 System Partitioning

During system partitioning, candidate system configurations are defined and evaluated to determine which configurations most
effectively meet the functional and system requirements. As many configurations as feasibly possible should be evaluated in
enough detail to rank the alternatives. A structured method must be followed to quickly identify the feasibility of a specific
configuration. The output of the system partitioning process is the set of functional, performance and physical requirements for
each subsystem in the baseline configuration.

The tasks performed during system partitioning are summarized in Table 3-3. Functions and constraints are allocated to entities in a
specific candidate design during the functional allocation task. This task is completed when all functions are allocated to
subsystems and all requirements and constraints are mapped through functions to subsystems. Trade-off analyses assess the risk
and life cycle cost for each alternative system configuration. Design decisions and rationale must be documented as the functions
are allocated. This task iterates until an allocated baseline is established. Many iterations may be needed to refine the system
configuration.

Functional Allocation Performance Verification

Create candidate system configurations
Allocate functions to configuration
Allocate constraints to configuration
Identify interfaces
Perform traceability to functions and
requirements
Provide rationale for allocation
Identify and quantify risks
Identify candidate prototyping activities

Develop metrics
Develop and configure models
Estimate unknown parameters
Execute models
Evaluate results
Perform life cycle cost analysis
Perform reliability and maintainability
assessment
Evaluate trade-offs to eliminate poor
configurations
Reiterate process if completion criteria not
met
Perform traceability
Develop subsystem requirements
Support make/buy decision for each
subsystem

Table 3 - 3: System Partitioning Tasks

The performance verification task supports system partitioning by providing evaluation criteria to determine which candidate
configuration provides the most effective performance. This effort must consider all factors of interest to the product development
team: technical performance, risk, life cycle cost, producability, supportability, testability, etc. The performance evaluation must
reflect objective, demonstrable evaluation metrics and must assure the customer that sufficient candidates were considered. The
behavior of candidate configurations is determined through simulation to ensure all performance requirements are met at the system
level. The system partitioning process iterates with the functional allocation process until the performance of a candidate
configuration meets the completion criteria established during the requirements analysis process.

The output of the system partitioning process includes the set of functional, performance and physical requirements for each
subsystem. This requirements are in the form of an executable requirement and represent the first virtual prototype for the
subsystem.

The RASSP architecture selection process transforms the processing requirements for each processing subsystem into a candidate
architecture of hardware and software elements. The architecture selection process overlaps with the system definition process
during the system partitioning activity. A hierarchical set of simulations is performed at each design level, and the results of these
simulations are back annotated in the higher-level simulations to verify that overall performance is maintained.

3.2 RASSP Integrated System Tools Description

3.2.1 Overview

The ATL RASSP team has developed a concurrent engineering environment based upon COTS tools which supports the RASSP
systems engineering process. This concurrent engineering environment, which is shown in Figure 3-3, consists of Ascent Logic
Corporation's (ALC)RDD-100 system engineering tool, Lockheed Martin PRICE Systems cost estimation tools and Management
Sciences' (MSI) RAM-ILS toolset. RDD-100 is used to capture and analyze the requirements, to define the functional behavior of
the system, to allocate the requirements and functions to the subsystems, and to provide requirements traceability. PRICE cost
estimating tools are used to estimate the development, production and support costs for the processing system. The RAM-ILS tool
is used to perform reliability and maintainability analyses.

Figure 3 - 3: RASSP Integrated System Tools

Each tool passes data to another tool through an ASCI file with the appropriate format. The types of data which are passed from
one tool to another consist of the data that typically resides in that tool and can be used by the other tool. For example, system
engineering data is passed from RDD-100 to the PRICE cost estimating tool. This approach eliminated the need for implementing a
GUI interface for PRICE and RAM-ILS in the RDD-100 tool. The types of parameters which are passed from RDD-100 to PRICE
include the equipment configuration, size, weight, power, technology and complexity factors. The development, production and
support costs are calculated within the PRICE tool and these costs are back annotated into the RDD-100 data base. On the other
side of the interface, the equipment configuration, allocated reliability and maintainability budgets, and cost data are passed from
RDD-100 to the RAM-ILS toolset. The reliability and maintainability assessment is performed within the MSI toolset and the
results of these analyses are back annotated into the RDD-100 data base. In addition, optimizations can be performed within the
RAM-ILS toolset when the reliability requirements are not met and the tool can make a recommendation on how redundancy can be
added in the system in the most cost effective way to meet the requirements.

Now that you have a basic understanding of the integrated toolset, you may read Sections 3.2.2 and 3.2.3 for more detailed
information on the individual tools and their integration. For a shortened version you can skip directly to Section 3.3 to read about
the benefits of using these tools in a cooperative manner.

3.2.2 Individual Tool Description

3.2.2.1 RDD-100

Ascent Logic Corporation's (ALC) RDD-100 is a system engineering tool used for capturing requirements, relating the
requirements to a behavior model, and allocating the functionality to a physical architecture. The tool supports object-oriented
analysis, stimulus response threads, and other analysis techniques. RDD-100 can be used to produce specifications at the system,
segment and/or component level. Traceability of all system level parameters from both requirements to functions and from
functions to components is maintained within RDD-100,

RDD-100 is based upon an entity, relationship and attribute (ERA) database. Entities within the database are the nouns or objects
within the system such as requirements, functions and components. The interrelationship between different entity types are defined
by an extendible schema within RDD-100. It is through these relationships that traceability is maintained within RDD-100. The
base RDD-100 schema has been extended for RASSP to support the integrated costing and reliability analysis and these extensions
are described in Section 3.2.3.1.

The typical use of RDD-100 is illustrated in Figure 3-4. Requirements are initially captured, examined and decomposed into lower
level requirements during the requirements analysis step. The functionality of the system is then defined using behavior diagrams
within RDD-100 during the functional analysis step. Both control and data flow are shown within the same behavior diagram.
Every function within the behavior diagram must be traceable to a requirement. The physical architecture consisting of hardware
and software components is established during the system partitioning step. Each function in the behavior diagram must be
allocated to one component in the system architecture. A traceable path between each function and the component that function is
allocated to is maintained within RDD-100.

Figure 3 - 4: Typical Use for RDD-100

3.2.2.2 PRICE Cost Estimating Tools

Lockheed Martin's PRICE Systems cost estimating models are advanced Computer Aided Parametric Estimating (CAPE) tools
used for calculating cost estimates and schedules for both hardware and software components. Computer-aided parametric
estimating tools are parametric cost models that relate physical and empirical system characteristics to the costs and schedules
required to develop, produce and maintain the system. These cost estimating relationships (CERs) are embodied within the
computer model. PRICE Systems formalizes these relationships by applying regression techniques to hardware and software
systems across various industries. In addition, these estimating relationships can be calibrated for a specific organization so the
outputs obtained from the PRICE tools reflect that organization's costs.

The PRICE cost estimating tools consist of the hardware, microcircuit, hardware lif e cycle and software models and each of these
models are described below.

PRICE H - Hardware Cost Model : The hardware model is used to estimate the cost and schedule for electronic,
electro-mechanical, and structural assemblies. This model incorporates input data concerning weight, size, quantity, process and
design sensitivity, and complexity parameters. The hardware model provides cost and schedule outputs for the development and
production phases of a program.

PRICE M - Microcircuit/Module Cost Model : The microcircuit model is used to estimate the cost and schedule for custom
microcircuits, printed circuit boards, and electronic modules. The model uses functional relationships based upon parameters such
as the number of transistors, percentage of new circuit cells, number of pins, board types and size.

PRICE HL - Hardware Life Cycle Model : The hardware life-cycle model is used to estimate the cost of operating and
maintaining hardware systems throughout their deployment. Inputs to the life cycle model include deployment parameters,
maintenance concepts, cost, and escalation factors. The life cycle model is a supplement to and works in conjunction with the
hardware model.

PRICE S - Software/Software Life Cycle Model : This software model is used to estimate the cost and schedule for the design,
development, integration, testing, and support of software. This model uses functional relationships based upon parameters such
as function, lines of code, complexity, platform, application, and design reuse to estimate costs.

PRICE Systems refine and update their cost estimating models based upon actual costs being incurred on current products of their
users. While the cost models are designed to provide estimates for a typical organization, the models provide the flexibility for the
user to tailor and calibrate the models for their specific organization. As a result of calibration, the costs and schedule outputs of the
models reflect how a particular organization develops their product.

The PRICE model requires that the system be described as a set of hardware and software components in an equipment breakdown
structure (EBS) which is shown in Figure 3-5. Parameters which characterize each component are entered into the model. Global
parameters which define labor rates, financial factors and deployment concepts are also required. The PRICE models determines
the development, production and support costs for each component in the EBS and these costs are accumulated up the equipment
tree to determine the overall system costs.

Figure 3 - 5: PRICE EBS and Output Report

3.2.2.3 RAM-ILS

Management Sciences Incorporated's (MSI) RAM-ILS toolset provides design assurance management for an overall system design
environment. The RAM-ILS toolset consists of synergistic tools within the design framework which measure the quality related
aspects of a design. This toolset is used to assess the functional robustness, functional reliability, functional diagnosability,
manufacturing process reliability, and deployment reliability issues. The features of the RAM-ILS toolset are summarized in Table
3-4.

Design Assurance Tool Value Added

Functional Reliability Risk Allocation Reliability goals for hardware and software

Circuit Based Design Reliability Simulation Stress derating for component selection

Functional Reliability and Longevity Analysis Improved performance in operational life cycle

Deployment Life Cycle Cost Tradeoffs Economic and warranty analysis

Failure Modes and Effects Criticality Analysis Safety and degraded performance analysis

Diagnosability and Repairability Maintenance requirements analysis

Mission and Deployment Reliability Durability, capability and performance analysis

Maintainability and Supportability Support staff/equipment requirements analysis

Worst Case Analysis (Aging and Degradation) Parametric degradation analysis

Thermal Damage Analysis Thermal derating analysis

Table 3 - 4: Features of the RAM-ILS Toolset s

The RAM-ILS toolset can be used for reliability predictions, maintenance analysis, failure modes and effects criticality analysis
(FMECA), and success tree analysis. Each of these capabilities are described below.

Reliability Predictions - Reliability predictions are made within the RAM-ILS tool using reliability block diagrams. Failure models
for each component in the system can be based upon relevant historical data, specialty computational methods, probability
distributions and "similar to" designs. These predictions facilitate trade-off studies when allocating failure rate budgets to system
components.

Maintainability Predictions - The RAM-ILS tool can be used to determine the impact of various maintenance concepts on life cycle
cost. The tool models various maintenance strategies such as level of repair and fault isolation characteristics. Maintenance
diagrams are constructed within the toolset.

Failure Modes and Effects Criticality Analysis (FMECA) - The FMECA portion of the RAM-ILS toolset provides the user with
an understanding how the system will perform when it is operating in either a degraded or failed state.

Success Trees - Success trees are modeled within the RAM-ILS toolset to illustrate how a system successfully operates with
respect to the interaction of system functions and components. Inverted success trees identify unacceptable critical combinational
failures. Success trees can be used to confirm redundancy decisions and identify false redundancy conditions.

The RAM-ILS toolset is integrated with Mentor Graphics Falcon Framework and is illustrated in Figure 3-6. This integration
provides a consistent, well-defined, known user interface. As a result, the user does not need to learn another specialized interface
to use the RAM-ILS tool. In addition, the Mentor interface provides convenient access to detailed design data.

Figure 3 - 6: RAM-ILS User Interface

3.2.3 Integrated Tools Description

3.2.3.1 RASSP Schema Extension Overview

The schema within RDD-100 has been extended on the RASSP program to support both cost estimating and specialty engineering.
An overview of the RASSP schema extensions is presented in this section to give the reader a basic understanding of these
modifications. For more detailed information on the schema extensions see the RDD-100 User's Manual for the Integrated System
Engineering RASSP Schema and the "Specification for Ascent Logic Corporation, RDD-100 Schema Extensions (for the RASSP
program)". The baseline RDD-100 schema has been extended in six basic areas to support cost estimating and specialty
engineering.

Attributes have been added to the component entity, which describe the physical nature of the component.
A cost entity has been added to the schema, which contains the development, production and support costs for each
component in the system.
An RMA entity has been added to the schema, which contains both input parameters needed for specialty engineering

analyses and output results from these analyses.
A life cycle parameter entity has been added which contains parameters that describe how the system is deployed during its
life cycle.
A duplicate component entity has been added to the schema, which identifies multiple instances of the same component
within a system.
An external tool file entity has been added to the schema, which contains file information that the PRICE and RAM-ILS
tools need.

Each of these schema extensions is described below.

3.2.3.1.1 Additional Component Attributes

Additional attributes have been added to the component entity in the RASSP schema to characterize the component for cost and
reliability assessment. A summary of these additional attributes is given in Table 3-6. Some of these attributes are not applicable to
all component types. For example, the attributes which characterize software are not applicable to purely hardware components.

Type of Attribute Attribute Comment

Component
Characterization
Parameters

Component Type

Component Subtype

Design Source

Percent New Design

Technology Maturity

Duplicate Used in Other Assemblies

User input parameters

Component type indicates whether component
is system, subsystem, hardware, software or
firmware

Component subtype indicates whether
component is an assembly, board, module,
power supply, etc.

Design source indicates whether component
will be a new design, COTS or furnished

Quantity Parameters Quantity in Next Higher Assembly

Quantity Requested by RMA

Quantity Required for Operation

Redundancy Mode

RAM-ILS tool back annotated quantity
requested for RMA which indicates optimizations
within the RAM-ILS tool on how system
configuration can be changed for a more cost
effective system

Parameters accommodate redundancy in the
system

Physical Parameters Budgeted Length

Budgeted Width

Budgeted Depth

Budgeted Weight

Predicted Length

Predicted Width

Predicted Depth

Predicted Weight

User enters in the budgeted values

Other tools or user enter in predicted values as
design progresses

Parameters indicate margin between current
design and requirement

Power Parameters Budgeted Average Power

Budgeted Maximum Power

Predicted Average Power

Predicted Maximum Power

User enters in the budgeted values

Other tools or user enter in predicted values as
design progresses

Parameters indicate margin between current
design and requirement

RAM-ILS tool uses power metrics within
sensitivity calculations

Sensitivity
Parameters

Volume Sensitivity

Weight Sensitivity

Power Sensitivity

User input parameters

RAM-ILS uses parameters in sensitivity
calculations when trying to optimize system
configuration to meet requirements

Parameters are used to specify relative
importance among these sensitivities

Hardware
Technology
Parameters

Technology Type 1

Equipment Type 1

Percentage of Type 1 Technology

Technology Type 2

Equipment Type 2

Percentage of Type 2 Technology

Technology Type 3

Equipment Type 3

Percentage of Type 3 Technology

Technology Type 4

Equipment Type 4

Percentage of Type 4 Technology

Technology Type 5

Equipment Type 5

Percentage of Type 5 Technology

User input parameters

Up to five different technology/equipment types
can be used to characterize component

Technology type defines the digital technology
used to construct component, i.e. VLSI

Equipment type specifies the application where
technology is used, i.e. analog, rf, digital,
display, structure, etc.

Percentages of all technology types should add
up to 100 percent

Software Parameters Source Lines of Code

Percent of Memory Utilization

Percent of Processor Utilization

Language

Percent of New Code

User input parameters

Parameters indicate the size, language and
efficiency of the software component

Software
Characterization
Parameters

Percent of Mathematic Code

Percent of String Manipulation Code

Percent of Store and Retrieve Code

Percent of On-line Communication Code

Percent of Operating System & Interactive
Code

Percent of User Defined Code

Difficulty of User Defined Code

User input parameters

Parameters indicate the type of software being
developed

Percentage of all code types should add up to
100 percent

Difficulty factor must be defined if user defined
code is used

Table 3 - 6: Added RASSP Attributes for Component Entity

3.2.3.1.2 Cost Entity

The attributes in the cost entity primarily contain the development, production and support costs, which are back annotated from
the PRICE tool into the RDD-100 database. There must be one cost entity for each component in the equipment tree, which is
related to the component by the "costs" relationship. A summary of the cost entity attributes is given in Table 3-7. The budgeted
costs in this table are entered by the user and represent the cost requirement. The predicted costs are calculated by the PRICE tool
and are back annotated into RDD-100.

Type of Attribute Attribute Comment

Development
Cost Parameters

Purchased Item Cost

Budgeted Development Costs

Predicted Development Costs

Purchased item cost is unit cost of COTS item
entered by user

User enters budgeted cost

PRICE calculates predicted development cost

Production Cost
Parameters

Budgeted Amortized Unit Production Cost

Budgeted Unit Production Cost

Budgeted Production Costs

Predicted Amortized Unit Production Cost

Predicted Unit Production Cost

Total Production Quantity

Predicted Production Costs

User enters budgeted costs

PRICE calculates predicted costs

Total production quantity includes initial spares

Operational Cost
Parameters

Budgeted Operational Costs

Predicted Operational Costs

User enters budgeted costs

Predicted operational costs are entered by user from
either PRICE, RAM-ILS or other source

Support Cost
Parameters

Budgeted Support Costs

Predicted Support Costs

User enters budgeted costs

PRICE calculates predicted costs

Sensitivity Cost
Parameters

Production Cost Sensitivity

Operational Cost Sensitivity

Support Cost Sensitivity

User input parameters

RAM-ILS uses parameters in sensitivity calculations
when trying to optimize system configuration to meet
requirements

Parameters are used to specify relative importance
among these sensitivities

Table 3 - 7: Cost Attributes

3.2.3.1.3 RMA Entity

The attributes in the RMA entity primarily contain reliability and maintainability metrics which are back annotated from the
RAM-ILS tool into the RDD-100 database. There must be one RMA entity for each component in the equipment tree which is
related to the component by the "has rma" relationship. A summary of the RMA entity attributes is given in Table 3-8. The
budgeted RMA attributes in this table are entered by the user and represent the allocated requirement. The predicted RMA attributes
are calculated by the RAM-ILS tool and are back annotated into RDD-100

Type of Attribute Attribute Comment

Reliability
Parameters

Allow RMA Quantity Request

Predicted Availability

Predicted Reliability

Budgeted MTBCF

Predicted MTBCF

Budgeted MTBF

Predicted MTBF

Method used for MTBF Prediction

Optimized MTBF

MTBF Optimization Criteria

User enters budgeted metrics

Allow RMA Quantity Request is a user entered
parameter to indicate to the RAM-ILS tool whether
redundancy can be considered for this component
when optimizing the system

RAM-ILS tool calculates predicted metrics

RAM-ILS can use various methods for MTBF
prediction and this method is back annotated into
RDD-100 database

RAM-ILS tools is used for sensitivity and
optimization studies and the results and criteria used
for these studies are back annotated into the
optimization metrics

Predicted MTBF is used within PRICE life cycle
model

Maintainability
Parameters

Line Replaceable Unit (LRU)

Maintenance Procedure

Budgeted Line MTTR

Predicted Line MTTR

Predicted LRU MTTR at Organization Supply
Location

Predicted Module MTTR at Organization Supply
Location

Predicted LRU MTTR at Intermediate Supply
Location

Predicted Module MTTR at Intermediate Supply
Location

Predicted LRU MTTR at Depot Supply Location

Predicted Module MTTR at Depot Supply
Location

User enters budgeted metric

Line Replaceable Unit (LRU) is a user entered
parameter to indicate to the RAM-ILS tool whether
the component is an LRU

RAM-ILS tool calculates the predicted metrics

Predicted metrics are used as inputs to the PRICE
life cycle model

Maintenance
Concept
Parameters

Maintenance Concept Requested for Cost
Estimating Tool

User enters requested maintenance concept to direct
PRICE which concept to use within the life cycle
model

Maintenance Concept Used in Cost Estimating
Tool PRICE selects most cost effective maintenance

concept if requested concept field is empty

PRICE back annotates the maintenance concept
used within life cycle model into RDD-100 database

Table 3 - 8: RMA Attributes

3.2.3.1.4 Life Cycle Parameter

The attributes in the life cycle parameter entity characterizes the operational environment and deployment scenario for the product
under development. There must be one life cycle parameter entity defined for the system which is related to the system component
through the "satisfies" relationship. A summary of the life cycle parameter attributes is given in Table 3-9.

Type of Attribute Attribute Comment

Operational
Parameters

Operating Environment

Environmental Maximum Temperature

Environmental Minimum Temperature

User input parameters

PRICE uses operating environment in cost
calculations

RAM-ILS uses parameters for reliability assessment

System ‘ility
Parameters

Operational Availability

Inherent Availability

Reliability

User input parameters

System level requirements

RAM-ILS uses these parameters to determine
whether calculated ilities meet the system requirements

Deployment
Parameters

Deployment Quantity

Prototype Quantity

Mission Period

Life Cycle Duration

On Time Factor

User input parameters

PRICE uses parameters for life cycle cost
calculations

RAM-ILS uses parameters for reliability and
maintainability assessments

Sensitivity
Parameters

Volume Sensitivity

Weight Sensitivity

Power Sensitivity

Production Cost Sensitivity

Operational Cost Sensitivity

Support Cost Sensitivity

User input parameters

RAM-ILS uses parameters in sensitivity calculations
when trying to optimize system configuration to meet
requirements

Parameters are used to specify relative importance
among these sensitivities

Table 3 - 9: Life Cycle Parameter Attributes

3.2.3.1.5 Duplicate Component

A component may be replicated in multiple places within the system equipment tree. Since each instance of a component entity
must have a unique name in RDD-100, a means of identifying which components are identical is needed to ensure that the
appropriate development, production and support costs are calculated within the PRICE toolset. The duplicate component entity is
used to identify families of components that are identical and are built from different parent components. The relationship "includes
duplicate" is made from the duplicate component entity to all identical components within a family. Note that when identical
components have the same parent within the equipment tree, the attribute entitled "Quantity in Next High Assembly" is used to

reflect the number of identical components used in the parent and the use of the duplicate component is not needed for this case.

The attributes for the duplicate component entity are essentially identical to the additional attributes added to the component entity in
the RASSP extended schema. The major difference between the attributes is that the various quantity attributes in the component
entity have been replaced by the total system quantity attribute in the duplicate component entity. The total system quantity attribute
contains the total number of identical components used within one system and this number is calculated and back annotated into the
RDD-100 database by running the "Calculate Total System Quantity Report" within RDD-100.

3.2.3.1.6 External Tool File Entity

The attributes in the external tool file entity contains information about file location for both the PRICE and RAM-ILS tool. A
summary of the external tool file attributes is given in Table 3-10.

Type of
Attribute

Attribute Comment

PRICE File
Parameters

Cost Analyst File Requested

Sync File Requested

Lock File Requested

Cost File Used

Sync File Used

Lock File Used

User inputs the requested file names

Specific use of files described in integrated design to
cost section

Cost analyst can specify which file to use in lieu of the
requested file

Names of actual files used are back annotated into
RDD-100 from PRICE

RAM-ILS File
Parameter

RAM-ILS Directory Used RAM-ILS tool back annotates this parameter which
defines the path name of directory which the RAM-ILS
tools uses for RAM analyses

Table 3 - 10: External Tool File Attributes

3.2.3.2 Integrated Design To Cost

3.2.3.2.1 Overview

Traditional cost estimating processes have relied upon estimators and engineers to work within a functionally-oriented
organizational process, as shown in Figure 3-7. As a result, the traditional process is slow, inconsistent and generally not
repeatable. From the cost estimator's perspective, the costing process is a top-down process that requires the translation of
engineering specifications into cost model inputs and an estimating breakdown structure (EBS), and the execution of the model to
obtain preliminary results. These results are then iterated back to engineering several times to resolve any questions that arise.
From the engineer's perspective, the traditional costing process is a bottoms-up process that requires the creation of an engineering
estimate based upon labor hours and a bill of materials supported by vendor quotes. Generally, these two estimates are compared
and a resolution is reached via a process that varies from company to company. Although this process may be valuable in
providing cost perspectives from two different approaches, this process has proven to be much too slow and costly to be
responsive in using cost as a design trade-off parameter in a Design To Cost (DTC) environment.

Figure 3 - 7: Traditional Cost Estimating Process

An automated Integrated Design To Cost (IDTC) environment has been developed which enables engineers and cost estimators to
work efficiently together using their native tools so many design alternatives can be examined during system concept trade-off
studies. As shown in Figure 3-8, the engineer works within his system engineering tool (RDD-100) to enter a physical description
of a potential design. This information is then exported out of the system engineering tool and read into the cost estimating
tool(PRICE). The data is then translated into cost estimating parameters and merged with information from the cost analyst to
produce a complete set of data for the parametric estimating engine. The parametric engine produces a cost and schedule estimate
and exports this data back to the system engineering tool. The engineer can then access this cost data within the system engineering
tool.

Figure 3 - 8: Integrated Cost Estimating Process

This IDTC estimating process is an improvement to the traditional method in many ways. It is faster, enabling more alternatives to
be explored. It is more accurate and repeatable because the estimating relationships are controlled by the estimator, codified into a
language script and executed by a computer. Since the relationships are codified, the engineer does not need to meet with the

estimator every time a cost estimate is needed. This IDTC process allows the engineer and estimator to work effectively together. A
cost estimate can be turned around in minutes instead of days or weeks with this IDTC environment.

The organization of this section is as follows. The physical elements of the IDTC environment are initially described. Then the
process to use the IDTC environment is explained.

3.2.3.2.2 IDTC Environment

The RASSP IDTC environment consists of the RDD-100 and PRICE extensions as shown in Figure 3-9. The schema, consistency
checks and output reports have been developed for RDD-100 which support the IDTC environment. A cost analyst file,
synchronization file, PRICE Rule Language (PRL) import template, and PRL export template have been developed within the
PRICE Enterprise toolset to support the automated IDTC environment. The use of each of these elements within the IDTC
environment is described below. Note that the parameters calculated by the RAM-ILS tool which are used within PRICE to
support cost estimating are not explicitly shown in Figure 3-9, since these parameters are back annotated into the RDD-100
database prior to using them in PRICE.

Figure 3 - 9: IDTC Environment

The schema within RDD-100 has been extended on the RASSP program to support both cost estimating and reliability analysis as
previously described in section 3.2.3.1. The engineer populates the RDD-100 data base with the system engineering parameters
that define the physical configuration of the hardware and software. A consistency report is then executed within RDD-100 to
make sure that the database has been sufficiently populated to obtain a cost estimate. An export report is then run within RDD-100
which outputs the system configuration with all the required attributes in the appropriate format (format needed by the PRICE tool
is defined in the interface specification) to import into the PRICE cost estimating tools. The cost for each system component is then
estimated within the PRICE tool based upon the system engineering parameters and data provided by the cost analyst. The PRICE
tool generates an output file in the standard RDD-100 rdt format which contains the development, production and support costs for
each system component. This cost data is populated within the RDD-100 data base using the standard RDD-100 import facility.

Cost Analysis File - The cost analyst file is used in conjunction with the RDD-100 output file, PRL import template and the
synchronization file to establish all of the parameters the PRICE tool needs to perform a cost estimate. The cost analyst file
contains default parameters for each component in the system which are missing from translation of the RDD-100 file. The
parameters typically defined within the cost analyst file are prototype and production schedule, labor rates, escalation rates and
other financial factors that the PRICE tool needs. The information is entered within the cost analyst file on an element type basis.
Each component within the PRICE estimating breakdown structure has a particular element type such as electro-mechanical,

software and design integration. All components of the same mode type receive the same default parameters contained within the
cost analyst file if the parameter is missing from the RDD-100 file and synchronization file.

Synchronization File - The synchronization file is used in conjunction with the RDD-100 output file, PRL import template and the
cost analyst file to establish all of the parameters the PRICE tool needs to perform a cost estimate. The synchronization file
contains parameters for each component which override any parameter from either the translation of the RDD-100 file or cost
analyst file. It is through the use of the synchronization file that the cost analyst can control the cost estimate since any parameter
within this file will supersede the same parameter from any other source. The information is entered within the synchronization file
on a component name basis which enables each component to have its own parameters within the synchronization file. Since the
PRICE interface has been designed to interface with multiple tools, a lock file name is used within the PRICE tool to identify
which parameters are active for overriding parameters for each tool interface. It is through the use of the lock file name that the
same synchronization file can be used for interfacing PRICE to multiple tools.

PRL Import Template - System engineering parameters within RDD-100 are used to populate attributes within the PRICE toolset.
However, there is not a direct one-to-one mapping of the system engineering parameters within RDD-100 to PRICE attributes. A
simple illustration of this is that the length, depth and width of a component are entered in RDD-100 for a hardware component,
while the PRICE tool only uses volume. As a result, the system engineering parameters must be translated into attributes
understood by the PRICE tool. A proprietary interpreted language called PRICE Rule Language (PRL) was developed to translate
parameters from other tools into PRICE attributes. As a part of the RASSP program, a PRL import template was written which
translates approximately 65 system engineering parameters for each component into about the same number of PRICE attributes.
This import template was developed for the signal processing domain, although it may be applicable to digital hardware and
software systems. To support other domains, additional translations are required that are unique to that particular domain.

PRL Export Template - Development, production and support costs for each component are back annotated from the PRICE tool
into the RDD-100 database. A PRL export template is used to write the cost data out of the PRICE tool into a file with the
appropriate format. In this case, the standard RDD-100 rdt format is used so that the data can be imported into RDD-100 with the
standard import mechanism.

3.2.3.2.3 IDTC Process

The process in which the IDTC team can effectively implement IDTC is shown in an IDEF3 representation in Figure 3-10. This
process diagram is an adaptation of the process used by one of the beta site companies evaluating the RASSP integrated system
tools. Each box in this figure represents a process step. The inputs to the process are shown on the left side of the box, the control
parameters on the top, the resources needed for the process on the bottom and the output of the process on the right side. The
IDTC process consists of six steps which are listed below:

1. Create the parametric estimating relationships;
2. Analyze the programmatic requirements of the project;
3. Create the cost analysis file;
4. Develop and verify system architectures which meet the requirements;
5. Obtain the cost estimate; and
6. Create and maintain the synchronization file.

Each of these process steps is described below. Note that this process is iterative in nature and is repeated as the system design
matures, resulting in more accurate cost estimates.

Figure 3 - 10: IDTC Process

Create Parametric Estimating Relationships - The parametric estimating relationships (PER) which are used to convert system
engineering data into PRICE cost estimating attributes are established and codified into the PRICE Rule Language (PRL) during
this process step. This process step is performed once and should address all product lines and application domains which IDTC is
intended to be used. The generation of the PRL import template should be done once for a company and is not typically part of a
specific project. The PER's and PRL import template are updated to reflect changes in a company's product line. The cost
estimating department is responsible for developing the PER's. The process used to generate these relationships are contained
within a company's work instructions. These relationships are developed from legacy data from previous projects. The output of
this process step is the PRL import template which codifies the rules to translate RDD-100 system engineering parameters into
PRICE attributes. The RDD-100 schema, consistency checks and export reports may need to be modified if additional system
engineering parameters are needed to characterize a company's product.

Analyze Project's Programmatic Requirements - The customer requirements are analyzed in this process step to determine
whether a company is going to proceed in bidding the program. The program management and proposal response teams perform
this process step using the company's legacy data and conceptual baseline architecture for the project. The outputs of this process
step include the job instructions for conducting the project and the set of allocated budgets for the program.

Create the Cost Analyst File - The cost analyst file used to supply default parameters while importing system engineering
parameters into the PRICE tool is created during this process step. The cost estimating department is responsible for the generation
of this file using the PRICE tool. This file contains default parameters which are used to supplement the attributes obtained from
the translation of the RDD-100 parameters. This file typically contains prototype and production schedules, labor rates, escalation
rates and other financial factors.

Develop and Verify System Architectures - Architecture tradeoffs are performed during this process step to determine the
hardware and software elements of the system. This process step is performed by the IPDT team which must consider all aspects
of the system life cycle. The IPDT performs this process step using the allocated budgets, project technical information and cost
data in determining the composition of the system. The requirements are analyzed, the system functions are decomposed and
system architectures are analyzed using RDD-100. This process step is iterative in nature and is repeated for each candidate system
design. The output of this process is the system configuration with costing data. The fidelity of the cost data can either be
comparative in nature, rough order of magnitude or basis of estimate depending upon the rigor used in developing the parametric
estimating relationships.

Obtain the Cost Estimate - The development, production and support costs for a system architecture are determined during this
process step. This process step is performed by importing the RDD-100 generated file containing the system engineering
parameters using the PRL import template, cost analyst file and synchronization file into the PRICE Enterprise toolset. The outputs
of this process step are the cost reports from the PRICE tool and the ASCI file containing the development, production and support
costs. This file is used to import the cost data into the RDD-100 database.

Create and Maintain the Synchronization File - The synchronization file used to supply overriding parameters while importing
system engineering parameters into the PRICE tool is created during this process step. The cost estimating department is
responsible for generating this file using the PRICE tool. This file contains overriding parameters which supersede the values
obtained from either the translation of the system engineering data or cost analyst file. This file provides the mechanism that the
cost analyst can use to control the cost estimate.

3.2.3.3 RAM (Reliability, Availability and Maintainability) Assessment

3.2.3.3.1 Overview

Traditional RAM engineering processes are disjoint with respect to the product development cycle as shown in Figure 3-11.
Reliability engineering has typically been viewed as a necessary evil; a very time consuming effort to be left to specialty engineers.
While most engineers have a basic understanding of quality goals and issues, much of the focus in implementing quality has been
on the statistical aspects of quality rather than applying reliability knowledge in the engineering design effort. Problems associated
with this traditional approach are listed below:

RAM engineers expend significant effort obtaining numbers for logistics, such as MTBF and MTTR, without really being
involved in the early design process.
Large organizations expend time and effort trying to understand why systems fail, but rarely apply the lessons learned
early in a repeatable design process.
The designer performing the detailed design rarely has a documented list of reliability issues to influence the design.

Figure 3 - 11: Traditional RAM Process

Management Sciences, Inc. (MSI) RAM tools provide a new approach to applying traditional "ilities" design techniques early in
the design process. The goal of using RAM tools early in the system engineering effort is to reduce the number of nasty surprises
encountered later in the product life cycle. It is in this early design phase that the most reliability improvements can be recognized
and incorporated cost effectively. Through the early use of the integrated systems tools, reliability requirements and issues are
identified and documented cooperatively and concurrently with other design requirements and issues as shown in Figure 3-12.
Thus, quality related issues can be applied to the architecture selection process, and issues and requirements can be documented,
tracked, and monitored through the product design life cycle.

Figure 3 - 12: Integrated RAM Process

The remainder of this section provides a short discussion of the software integration with Ascent Logic's (ALC) RDD-100 tool.
This discussion is followed with a description of how the MSI tools support the RASSP systems engineering process. The MSI
tools that are discussed include: Quality Function Deployment (QFD), Failure Modes and Effects Analysis (FMEA), and Integrated
RAM Analysis. Through reading this section, you will obtain an understanding of the benefits of using these capabilities early in
the design process.

3.2.3.3.2 Software Integration

The RMA entity type has been added to the RDD100 schema (as described previously in Section 3.2.3.1) to support a combination
of reliability analysis, documentation, and statistical analysis. This entity type contains statistical values such as MTBF, Reliability,
MTTR, and Availability which are used in performing integrated cost estimating and detailed statistical reliability analysis.

The systems engineer populates the RDD-100 data base with the equipment configurations, functional descriptions, interface items
and allocated RAM budgets. An export report is run within RDD-100 which outputs the system configuration and its associated
attributes in the appropriate format for the MSI RAM toolset. The specialty engineer uses this data within the MSI toolset with
detailed CAD data from existing designs to support a variety of RAM analyses such as Quality Function Deployment (QFD),
Failure Modes and Effects Analysis (FMEA) and RAM assessment. The predicted RAM attributes calculated by the MSI toolset are
back populated within the RDD-100 data base.

3.2.3.3.3 Quality Function Deployment (QFD)

The relationship among the requirements, architecture candidates and customer expectations can be depicted in Quality Function
Deployment models. These QFD charts (typically referred to as "House of Quality") show a correlation between what must be
done, how to do it, and the relative benefits of each candidate architecture as shown in Figure 3-13. Functions, components and
interface items within the RDD-100 data base can be used to populate various elements within the QFD spreadsheet template in the
MSI toolset at the indenture level desired. A different chart is created for each function or component within the system. The
specialty engineer can then populate the remaining items of this spreadsheet when performing the QFD analysis.

Figure 3 - 13: Quality Function Deployment Template

3.2.3.3.4 Failure Modes Effects Analysis (FMEA)

FMEA models define the relationship between components, functions and failures in meeting mission performance requirements.
FMEA spreadsheets depict a correlation matrix between how things fail, how the failures will be detected, and what is likely to
happen in the event of a failure. The engineer uses this analysis to understand these relationships early in the design and to make
changes to the architecture candidate that facilitate a safer, more maintainable, and more reliable system.

Components, functions and interface items defined within the RDD-100 data base are used to initially populate a FMEA data base
within the MSI toolset. The specialty engineer can then use this FMEA data base to perform the following tasks:

Identify potential interface link failure modes and the effects of these failures on the immediate function and mission
performance.
Determine the anticipated method of detecting each failure mode.
Identify the worst possible consequence of each failure mode.
Enumerate redundancies or compensating provisions available for each failure mode.
Identify changes to the RDD system configuration to eliminate or minimize failure modes.

An example of a FMEA spreadsheet populated automatically from the RDD-100 data base is shown in Figure 3-14. Data items that
are missing from the worksheet must be manually populated by the engineer.

Figure 3 - 14: Automated FMEA Worksheet

3.2.3.3.5 Integrated RAM Analysis

RAM models define the relationship between architecture candidates, failure probabilities, availability, and repair times. The
components hierarchy and allocated RAM defined within the RDD-100 data base are used to populate the MSI RAM toolset. This
toolset can be then used for the following tasks:

Calculate reliability and availability for designs incorporating redundancy.
Identify candidate architectures that adversely affect system reliability or availability.
Model maintenance strategies, such as level of repair and fault isolation characteristics.
Form basis for more accurate cost estimates for warranty and life cycle cost.
Identify designs that do not meet RAM requirements.
Perform sensitivity analysis .
Determine methods for solving reliability problems.
Develop strategy to support the detailed design cycle.

The RAM predictions within the MSI toolset are based upon the data populated from RDD-100 and data the user adds within the
RAM tools. Typical sources for MTBF and MTTR values used for the system engineering activities are estimates of acceptable
loss rate, "similar to" designs, historical data and vendor data. The results of the RAM assessments within the MSI toolset are back
annotated in the RDD-100 data base.

3.3 Benefits of Using the RASSP Integrated System Tools

The integrated system tools provide a concurrent engineering environment where tradeoffs considering a product's complete life
cycle are performed. Multi-disciplinary design data is stored in one location that the entire IPDT team can assess. As a result, the
entire design team uses the same data within their analyses which eliminates the confusion when parameters are maintained in
multiple locations. Cost performance tradeoffs are performed using the integrated tools to optimize the system design over multiple
disciplines. The integrated tools provide a quick impact analysis capability, as detailed design data can be used to update the
reliability and cost predictions.

The integrated system tools provide an efficient process for the engineer to access cost data. Engineers can obtain complete life
cycle costs using the system tools without becoming an expert cost analyst. The integrated system tools provide an environment
which can be effectively used to implement either Design To Cost (DTC) or Cost as an Independent Variable (CAIV) programs
which are being emphasized within DoD. The cost estimation process has been established so the cost analyst is able to control the
estimate.

The integrated system tools provide a reliability and maintainability analysis capability throughout the design process. These tools
provide the mechanism that allows specialty engineers to be involved early in the design process. The RAM-ILS tool provides
capabilities to perform reliability, maintainability, success tree and FMECA analyses. In addition, the system architecture can be
optimized to meet reliability requirements in a cost effective fashion with the integrated system tools.

Next: 4 Application of Integrated Systen Tools to SAR Benchmark Up: Appnotes Index Previous:2 Introduction

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 5 References Up: Appnotes Index Previous:3 Technical Description

RASSP Integrated System Tools Appnote
4.0 Technical Description

4.1 SAR Benchmark Overview

A series of benchmark activities have been performed on the RASSP program to demonstrate how the 4x design improvement are
met as the program progressed. The initial benchmark, conducted primarily during 1995, consisted of the development of a signal
processor for a Synthetic Aperture Radar (SAR) application. Hardware/software co-design tradeoffs were performed to determine
the most cost effective implementation for each function of the SAR processor. The hardware and software were then designed,
built and integrated. Although the RASSP system tools had not been integrated in time to directly support this benchmark, these
integrated tools were applied to this application after the system had been developed to illustrate how these integrated tools could
lead to more cost effective designs early in the design cycle. Additional detailed information may be found in the SAR Case Study.

Note: Several capabilities of the integrated tools described in the previous section will not be illustrated in this example as a
complete system level design can not be presented in this application note.

Two of the most prominent architectures for the SAR application form the basis of this example. These two architectures are
illustrated in Figure 4 - 1. The number of processing boards required in each architecture was initially determined from the
processing throughput requirements, the peak processing capability of each board and an estimate for the processing efficiency for
each approach. The first architecture candidate consists of five signal processing boards containing four compute elements per
board. These processing boards are based upon mature signal processing technology. The signal processing boards are connected
via a crossbar network. Radar data enters through the fiber interface and control is provided by the single board computer. The
second architecture candidate uses state-of-the-art signal processing boards. As a result, only three boards are required to perform
the same SAR application. These boards have either two or four processing nodes per board. The same types of network interface,
radar interface and control computer are used in the second architecture as the first. The integrated RASSP system tools are used in
this example to determine the most viable approach between these two architectures. A description of how the individual system
tools are used on this application is also included in this example.

Figure 4 - 1: Two Candidate Architectures for SAR Application

4.2 Requirements Analysis

RDD-100 is used to support the requirements analysis task for the SAR benchmark. The system level requirements for the SAR
processor are contained within a technical description document. The text for each requirement paragraph of this document is
initially parsed into its own requirement within RDD-100. Each requirement paragraph is then refined and decomposed into lower
level requirements within RDD-100. Each requirement must be decomposed to a single testable unit so that it can be verified during
system acceptance testing. An illustration of the requirements decomposition is shown in Figure 4 - 2 . A graphical representation
of one requirement paragraph decomposed into lower level requirements within RDD-100 is shown in this figure. A naming
convention which incorporates SOW as part of the requirement name is used so that the source requirements are readily apparent
within the database. This top level requirement is decomposed into six lower level requirements as the initial requirement paragraph
within the technical description document actually contains multiple requirements. The "incorporates" relationship within the
RDD-100 schema is the relationship which links a parent requirement to a child requirement. This requirements decomposition is
used to identify and resolve any ambiguous or missing requirements with the customer. The decomposed and refined set of
requirements is used to generate the specification for the signal processor.

Figure 4 - 2: Requirements Decomposition

4.3 Functional Decomposition

A functional decomposition of the SAR processor is performed after the initial set of requirements are well understood. This
decomposition is performed by defining the set of functions, interfaces, control and data flow needed to satisfy the system
requirements. The initial functional decomposition is performed without the notion of the physical architecture. However, this
process is performed concurrently with the system partitioning task, as elements of the physical architecture impact the physical
decomposition. Behavioral simulations (see the Token-Based Performance Modeling application note) of the system are performed
during functional decomposition using other complimentary tools/languages to ensure that all system requirements are met.

RDD-100 is used during this task to define the system functionality using an ALC graphical representation called a behavior
diagram. The top level behavior diagram showing the interaction of the SAR processor with its external environment is shown in
Figure 4 - 3. The rectangular boxes represent functions, while the rectangular boxes with rounded corners indicate data items. The
outside world (radar system) and the SAR processor functions appear on parallel branches in this figure since each can operate
independently from each other. The flow of data between the SAR processor and its outside world is shown in this figure. The
SAR processor receives control and sensor data from the outside world, while it sends output processed SAR and diagnostic data
back to the external system. The black square in the upper corner of a box indicates there is a hierarchy of functions contained
within that box. The top level system functionality is decomposed into lower level functions until the leaf level function can be
allocated to a specific hardware or software item.

Figure 4 - 3: Top Level Functional View

The next level of functional decomposition for the SAR processor is shown in Figure 4 - 4 (Only a portion of this diagram has
been included in the figure due to its large size. A full view of this diagram is found in the SAR case study.) This diagram
illustrates the top level functionality the processor and the data items passed among these functions. The functional decomposition
for one of the top level functions (host interface platform functions) is shown in Figure 4 - 5. Note that both data and control flow
are shown in this behavior graph. Data flow is shown from left-to-right, while control flow, illustrated by the loops in this
diagram, is shown from top-to-bottom. The functional decomposition is used to fully characterize the set of functions, interfaces,
control and data flow needed to meet system requirements.

Figure 4 - 4: Top Level SAR Processing Functions

Figure 4 - 5: Host Interface Functions

Traceable links are established in RDD - 100 between the requirements and system functions to ensure that every requirement has
been allocated to a function and that every function is directly attributed to a requirement. The links established in RDD - 100 for
one of the originating requirement paragraphs are illustrated in Figure 4 - 6. The "specifies" relationship within the RDD - 100
schema is the relationship which links requirements to functions.

Figure 4 - 6: RDD Links Between Requirements and Functions

4.4 System Partitioning

System level tradeoffs are performed during the system partitioning task to determine the most effective set of subsystems needed
to satisfy the requirements. All aspects of the system's life cycle should be considered when performing these tradeoffs. The
system partitioning task is performed concurrently with functional decomposition since the selection of subsystems does impact the
functional decomposition.

The use of the integrated tools which support the requirements and functional allocation, cost analysis and reliability tradeoffs is
described within this section. Emphasis is placed on illustrating how these three tools can be used cooperatively to perform
tradeoffs that consider the entire life cycle.

4.4.1 Requirements & Functional Allocation

The third view of a system within RDD-100 is the physical view. The equipment tree for the first architecture (mature signal
processor) in this example is shown in Figure 4 - 7 . Each of the blocks in this figure represents either a hardware or software
component in the system. Traceable links are established in RDD-100 between the system functions and components to ensure that
every function has been allocated to a component and that every component is directly attributed to a function. The links
established in RDD-100 for one of the originating requirement paragraphs are illustrated in Figure 4 - 8 . The "allocated to"
relationship within the RDD-100 schema is the relationship which links functions to components. The full set of military
specifications can be generated from the information within the RDD-100 database.

Figure 4 - 7: Equipment Configuration for First Candidate Architecture

Figure 4 - 8: RDD Links Between Functions and Components

4.4.2 Cost Analysis

The RDD-100 schema has been enhanced on RASSP so engineers can easily get a cost estimate to support system level tradeoffs.
Four different files are needed to generate a cost estimate: a PRICE Rule Language (PRL) import file which contains the translation
functions needed to convert system engineering parameters into cost estimating attributes, an output file from RDD-100 which
contains the system engineering parameters for the system being costed, a cost analysis file which contains default cost estimating
parameters and a synchronization file which contains parameter values which supersede the values obtained from translation of the
system engineering parameters. Each of the files used to generate the cost estimate for this example are described below.

PRL import file - An initial set of translation functions was developed and codified for signal processing applications on RASSP.
These functions define the mapping between 65 system engineering parameters and approximately the same number of PRICE
parameters. The PRL import template is typically generated once for a company and should address the complete product line and
application domains. The baseline PRL import file developed for RASSP is used in this example.

RDD-100 Output File - Attributes which characterize the system architecture, hardware, software and product life cycle must be
populated in the RDD-100 database prior to exporting the file needed for cost estimating. The types of attributes that must be
entered into the RDD-100 database for both a custom digital board (data i/o module) and software (signal processing firmware) are
shown in Figure 4 - 9 . The data i/o module is a new, custom board development requiring 75 percent new design. This board has
a VME size and expected to weigh 1.5 pounds. The maturity of the technology the board is built with is state-of-the-art technology
with 70 percent of the board built with VLSI technology, 25 percent of LSI technology and 5 percent of SSIC technology. The
signal processing software is new code to be developed which requires 50 percent new design. The technology maturity for the
software development is leading edge. This software is written in the C programming language and is estimated to be 2400 lines of
code. The software is characterized as real time software. Each system component must be characterized to this level of detail to
generate a cost estimate. The complete set of attributes for each component in the first candidate architecture is given in the
appendix.

Attributes characterizing the system's life cycle must also be populated in the RDD-100 database. The life cycle attributes for this
example are shown in Figure 4 - 10. The operational environment, deployment quantity, mission period and duration of the life
cycle are shown in this figure. The sensitivity factors included at the bottom of Figure 4 - 10 are used in the RAM-ILS tool to
optimize the physical configuration of the system to meet reliability requirements. The production and support costs have been
emphasized in this example.

A consistency report is run in RDD-100 which identifies whether a sufficient set of attributes have been populated to get a valid
cost estimate. Once the database is populated with the required parameters for costing purposes, an export report is run in
RDD-100 that generates a file containing the system engineering parameters in the correct format for cost estimating.

Figure 4 - 9: RDD Links Between Functions and Components

Figure 4 - 10: Life Cycle Parameters

Cost Analyst File - The cost analyst file contains default PRICE parameters for each component in the system which are missing
from translation of the RDD-100 file. The parameters typically defined within the cost analyst file are prototype and production
schedule, labor rates, escalation rates and other financial factors that the PRICE tool needs. The information is entered within the
cost analyst file on an element type basis. The cost analyst is typically responsible for generating this file. The basic labor rates,
escalation rates and financial factors included in the PRICE tool are used in this example. The only information specific for this
example that is included within the cost analyst file is schedule information as shown in Figure 4 - 11. This figure shows the
default parameters for the electro-mechanical element type. The only information included for this element type is a 10/96
development start date, a 6/98 production start date and a 12/99 production end date.

Figure 4 - 11: Default Parameters for Electro-Mechanical Element Type in Cost Analyst File

Synchronization File - The synchronization file contains PRICE parameters for each component which supersede any parameter set
from either the translation of the RDD-100 file or cost analyst file. It is through the use of the synchronization file that the cost
analyst can control the cost estimate since any parameter within this file will take precedence over values set from any other source.
The cost analyst is typically responsible for generating this file. Information is entered in the synchronization file on a component
name basis which enables each component to have its own parameters within the synchronization file. The PRICE life cycle tool
has various maintenance concepts that the tool can choose from in determining the most cost effective concept . The maintenance
concept is restricted to a subset of possible concepts in this example to illustrate the use of the synchronization file. As shown in
Figure 4 - 12, the maintenance concept for the Data I/O Module is limited to concepts 1, 11, 20, 21 and 22 (the valid maintenance
concepts are indicated by the black squares in this diagram). The definition for each of these concepts is included in the figure. The
PRICE toolset will select the most cost effective concept among these five potential maintenance concepts for this module

regardless of any data within either the RDD-100 fil e or cost analyst fil e.

Figure 4 - 12: Maintenance Concept Selection for Data I/O Module in Synchronization File

Cost Estimate - The PRL import file, RDD-100 output file, cost analyst and synchronization files are used to populate the PRICE
tool with all the parametric cost estimating attributes needed to perform a cost estimate. The process to translate the system
engineering parameters from the RDD-100 file to PRICE attributes and to apply both the cost analyst and synchronization file takes
several minutes for this example. The equipment breakdown structure for the first candidate architecture after the data has been
imported into the PRICE toolset is shown in Figure 4 - 13. This equipment breakdown structure is identical to the physical
equipment tree established in RDD-100. The tree icons in this figure represent assemblies which contain lower level components.
Note that the backplane and host interface assemblies have been collapsed in this figure to reduce its overall size. The lightning bolt
icon represent custom digital boards, while the dollar icons are COTS items. The workstation icon represents a software
component. Note that elements of both hardware and software are contained within this single equipment tree. Design integration,
hardware/software integration, and integration and test elements are added in the appropriate places to the PRICE equipment tree
during the translation process even though these elements are not included within the RDD-100 database. The costs for these
integration elements are included as a part of the assembly level costs when exporting the cost data back to RDD-100.

Figure 4 - 13: Equipment Breakdown Structure for the First Candidate Architecture

The development and production cost estimates from the PRICE tool for the first candidate architecture are shown in Figure 4 - 14.
The first column in this figure shows the development costs and the second column depicts the production costs. The engineering
costs are in the top half of the cost summary, while the manufacturing costs are in the bottom half. The development costs for the
first candidate architecture is $1.9M and the production costs for 500 systems is $90M. The average system cost is $179.9K.

Figure 4 - 14: Development and Production Costs for the First Candidate Architecture

The life cycle cost estimates from the PRICE tool for the first candidate architecture are shown in Figure 4 - 15. The first column in
this figure shows the development costs, the second column gives the production costs for the 500 systems and initial spares, and
the third column shows the support costs over the twenty year life cycle. The total life cycle costs for this architecture is $134.6M.

Figure 4 - 15: Support Costs for the First Candidate Architecture

Export of Costs to RDD-100 - The development, production and support cost estimates calculated by the PRICE toolset are back
annotated in the RDD-100 database. This back annotation is performed by exporting the cost data out of the PRICE tool into a file
with the standard rdt format which RDD-100 uses. This file is generated by executing a PRL export script within the PRICE
toolset. This file is then imported into RDD-100 using the standard import facility. An RDD-100 view of the cost and reliability
data for the SAR system for the first candidate architecture is shown in Figure 4 - 16. The costs in this figure were calculated in the
PRICE tool. The reliability data in this figure is empty, as this analysis will be performed in the next section.

Figure 4 - 16: Cost and Reliability Data for SAR System

4.4.3 Reliability Assessment

A preliminary architecture has been defined and an initial cost estimate calculated for the first candidate system. A reliability
assessment of this system is made next to ensure that all requirements are met. The RDD-100 schema has been extended on the
RASSP program to support this reliability assessment. The only external data that the RAM-ILS toolset needs to perform a
reliability assessment is contained within the file generated within RDD-100. This file contains the complete system architecture,
physical attributes of the system components, allocated reliability budgets, parameters characterizing the operational environment,
sensitivity parameters and cost data. Each of these elements is described in more detail below for the SAR example.

Attributes which characterize the system architecture and the hardware components must be populated in the RDD-100 database
prior to exporting the file needed for reliability assessment. Most of these attributes are the same attributes needed to generate the
cost estimate for the PRICE tool. The attributes used to characterize the data i/o module have been previously shown in Figure 4 -
9. Redundancy parameters are included in this set of parameters which are used within the RAM-ILS tool for the reliability
assessment. For this example, there is no redundancy included in the initial system architecture. Tradeoffs are performed within
the RAM-ILS tool in this example to determine how the system architecture can be changed in a cost effective way to meet system
reliability requirements.

A reliability assessment can be performed using the RAM-ILS based upon previous designs, similar to designs or from the
allocated failure rate budget. The reliability assessment in this example is based upon the allocated failure rate budget as the focus
of this example is showing how the integrated tools can be used early in the design process when detailed design data is not
available. The systems engineer allocates the system level mean time between critical failures (MTBCF) to the system components
within the RDD-100 tool. The system engineer performs this allocation based upon available component data, interactions with
reliability engineers and his judgment based on past experience. Parameters specific to reliability and maintainability are entered in
the RMA entity type for each component. The RMA entity for the data i/o module is shown in Figure 4-17. A MTBCF of 30,000
hours has been allocated to the data i/o module. The system engineer also indicates in this entity type whether the component can
be considered for redundancy when performing a system architecture optimization within the RAM-ILS tool. Redundancy is not
allowed for the data i/o module in this example (attribute name is Allow RMA Quantity Request within the RDD-100 schema).
Note that the maintenance concept which the PRICE toolset selected for its life cycle support optimization has been back annotated
in the RDD-100 database. In addition, a mean time to repair (MTTR) and an indication whether this component is a line replaceable
unit have been indicated in Figure 4 - 17. The complete set of attributes for each component in this example is given in the
Appendix.

Figure 4 - 17: RMA Entity for the Data I/O Module

The operational environment for the system must be defined prior to performing a reliability assessment. This environment is
specified within the Life Cycle Parameter entity type in RDD-100 and the life cycle attributes for this example were previously
shown in Figure 4 - 10 as many of these parameters are needed in the PRICE tool to calculate support costs.

Optimizations are performed within the RAM-ILS toolset to determine the most effective architecture which satisfies the system
level reliability requirements. The system configuration can be optimized relative to size, weight, power, cost or a combination of
these factors. The user must indicate the importance of these metrics on a relative basis either at the component or system level.
The sensitivity factors are defined at the system level and emphasize production and support costs for this example as shown in
Figure 4 - 10.

A consistency report is run in RDD-100 which identifies whether a sufficient set of attributes have been populated to get a valid
reliability assessment. Once the database is populated with sufficient parameters, an export report is run in RDD-100 that generates
a file containing the system engineering parameters in the correct format for reliability assessment. This file is then imported into
the RAM-ILS toolset which establishes the system architecture and the pertinent parameters needed to perform a reliability
estimate. A reliability assessment based upon the equipment configuration and allocated budgets is made within the predictor
portion of the RAM-ILS toolset. An output report containing the reliability assessment at the system level from the RAM-ILS tool
for this example is shown in Figure 4 - 18. The mean time to critical failure (MTBCF) for the first candidate architecture is
calculated as 2068 hours. This system configuration did not meet the required 2400 hour system-level MTBCF. As a result, the
system configuration must be changed to meet the reliability requirement.

Figure 4 - 18: System Reliability Assessment

The block diagram evaluator (BDE) portion off the RAM-ILS toolset is used to optimize the physical architecture when
requirements are not met. This optimization is performed by determining both the overall improvement in the system-level MTBF
and the associated cost for adding redundancy for each hardware component in the system. The output of BDE for the first
candidate architecture is shown in Figure 4 - 19. The first column in this output report shows the improvement in the system-level
reliability when an additional redundant unit is added for a particular component. The second column shows the aggregate cost of
this additional redundant unit which is calculated from the component's physical parameters and sensitivity factors. The third
column in this report shows the impact of adding redundancy for this particular component which is calculated by dividing the cost
of the redundancy by the overall improvement. The component with the smallest number in the third column is the most cost
effective place to initially add redundancy to improve the system-level reliability. The data I/O assembly is the most cost effective
component to add redundancy in this example. The RAM-ILS tool then determines the overall system-level MTBCF when the
most cost effective redundant component is added to the system architecture. This procedure iterates until the system requirements
are met. For this example, the MTBCF improves to 2607 hours and meets the overall requirements when a redundant data I/O
assembly is added to the system architecture.

Figure 4 - 19: Redundancy Optimization for First Candidate Architecture

The results of the reliability assessment calculated by the RAM-ILS toolset are back annotated in the RDD-100 database. This back
annotation is performed by exporting the reliability data out of the RAM-ILS tool into a file with the standard rdt format which
RDD-100 uses. This file is generated automatically within the RAM-ILS toolset after the reliability calculations are made. This file
is then imported into RDD-100 using the standard import facility. The reliability results that are back annotated into the RDD-100
database are for the baseline system configuration sent to the RAM-ILS tool. A critical issue is generated in the RDD-100 database
when the allocated reliability budgets are not met. All optimizations results obtained using the RAM-ILS toolset are back annotated
in the RDD-100 database as a suggestion for change, as shown in Figure 4 - 20 for this example. The system engineer must
determine whether to accept the redundancy recommendation or make other changes to meet the requirements. For this example,
redundancy at the data i/o assembly is acceptable and the system architecture must be changed by the systems engineer in the
RDD-100 database to reflect this redundancy.

Figure 4 - 20: Redundancy Recommendation Within RDD-100 Database

An updated reliability assessment and cost estimate is needed whenever the physical configuration of the system is changed. Thus,
the processes used to generate both a cost estimate and reliability assessment are repeated when the data i/o assembly redundancy is
added to the system architecture in this example. The resulting costs and reliability estimate for this system with redundancy are
summarized in Figure 4 - 21. The development costs increased by $30K, the per unit production costs have increased by $10K
and the support costs have increased by $2.6M when the redundant data i/o assembly is included in the system architecture for the
first candidate.

Figure 4 - 21: Cost Estimate and Reliability Assessment for First Candidate Architecture With Redundancy

4.4 System Cost And Reliability Assessment

In the previous section, a cost estimate and reliability assessment were made for the first candidate architecture. The same
procedure is used to determine the cost and reliability for the second candidate architecture. The second architecture did not require
redundancy as the baseline system met the system reliability requirements. The cost and reliability results for both architectures are
summarized in Table 4-1. The development costs are $100K more expensive for the second architecture. However, the per unit
production costs are $39K cheaper for the second architecture and the support costs are also approximately $10M cheaper. The
total life cycle costs for the second candidate architecture is almost $30M cheaper than the first architecture. In addition, the
reliability of the second candidate architecture is superior than the first system.

This example illustrates how important it is to perform cost and reliability trade-offs early in the design cycle. These tradeoffs must
consider the entire life cycle as opposed to the costs for a particular phase of the program. As can be seen from this example, a
slight increase in costs during the development phase results in significant life cycle cost savings.

 First Candidate
Architecture

Second Candidate
Architecture

Development Costs $ 2.0M $ 2.1M

Production Costs $ 101.0M $ 81.1M

Unit Production Costs $ 190K $ 151K

Support Costs $ 39.6M $ 29.8M

Total Life Cycle Costs $ 142.5M $ 113.0M

MTBCF 2607 hours 3297 hours

MTBF 1714 hours 3297 hours

Table 4 - 1: Trade-off Cost and Reliability Summary

4.5 Summary

The ATL RASSP team have developed a concurrent engineering environment consisting of three existing computer tools
(RDD-100, PRICE cost estimating tools and RAM-ILS). This system design environment quickly provides more detailed and
accurate information to the integrated product team and enables them to make better informed decisions early in the development
process. Since these early decisions have the largest impact on the overall life cycle costs of a system, it is important that these
decisions be based on all life cycle costs and not just the cost of initial development.

As shown in the SAR example, it is possible to select the wrong architecture if the decision is only based upon the development
costs. The life cycle costs in this example were reduced by over 20 percent just by understanding these costs early in the
development phase. This information is critical in achieving the RASSP goal of reducing life cycle costs by a factor of four.
Although the RASSP concurrent system engineering environment has been developed to work well in the signal processing
domain, many of these concepts can be extended for higher level systems.

Next: 5 References Up: Appnotes Index Previous:3 Technical Description

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 6 Appendix Up: Appnotes Index Previous:4 Application of Integrated System Tools to SAR
Benchmark

RASSP Integrated System Tools Appnote
5.0 References
RDD-100 User's Manual for the Integrated System Engineering (ISE) (RASSP) Schema, Ascent Logic
Corporation. [RDD_ISE_USERS_97]

ISE/RASSP Design Guide Reports Supplement, Version 1, Ascent Logic Corporation, December 1996.
[RDD_DESIGN_GUIDE_96]

PRICE Enterprise Release 1.0 Client Reference, First Edition, PRICE Systems, June 1997.
[ENTERPRISE_PRICE_97]

Specification for Ascent Logic Corporation, RDD-100 Schema Extensions to Support Lockheed Martin
PRICE, Management Sciences Inc and JRS Research Laboratories Toolsets, Ascent Logic Corporation,
December 1996. [SPEC_SCHEMA_EXT_96]

Barnett, G., and C. Fry, P. Blemel, J. Walter, R. Whitman, "The RASSP Integrated Systems Tool Set
Provides a Concurrent Engineering Environment for Design Trade-Offs", 1997 Proceedings for the Annual
Reliability and Maintainability Symposium, Philadelphia, PA, January 1997. [BARNETT_97]

5.1 Appnotes

Hardware/Software Codesign
Token Based Performance Modeling
Virtual Prototype

5.2 Case Studies

Synthetic Aperture Radar (SAR)

Next: 6 Reference List Up: Appnotes Index Previous:4 Implementation of the RASSP Configuration and
Authorization Management Models

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Up: Appnotes Index Previous:5 References

RASSP Integrated System Tools Appnote
Appendix
RDD - 100 Component Attributes of First Candidate Architecture for SAR Example [RDD_ATTRIBUTES]

Next: Up: Appnotes Index Previous:5 References

Approved for Public Release; Distribution Unlimited Dennis Basara

