
RASSP Information Management Appnote
Abstract
In an integrated product development environment which involves several vendor tools, diverse and
incompatible configuration management mechanisms and authorization management mechanisms across tools
can lead to the inefficiencies in the design process. We describe in this document a common model for
configuration management and authorization management that may be adopted by an integrated product
development environment. We have specified a common minimal set of configuration management
mechanisms that need to be provided by the tools to support the proposed configuration and authorization
models. We have completed a pilot implementation of the Configuration management (CM) and Authorization
Management (AM) models for the Intergraph Asset and Information Management (AIM) software system.
This pilot implementation proves the plausibility and usability of the model.

The RASSP configuration management model supports three types of workspaces -- private, shared, and
global. The workspaces are organized hierarchically with global workspaces as the root of the hierarchy,
shared workspaces as children of the global workspace, and private workspaces as children of the shared
workspaces. The CM model supports three types of versions of design objects -- transient, working, and
released. Transient design objects are created in the private workspaces, and when mature for sharing with the
other members of the team, are promoted to working versions and checked in to a shared workspace. Once the
working version has been thoroughly tested it is them promoted to a released version and checked into the
global workspace.

The RASSP authorization management model supports three types of hierarchies -- an authorization object
hierarchy, an authorization type hierarchy, and an authorization role hierarchy. The authorization object
hierarchy is a composition tree of all the design objects in a project. The authorization type hierarchy is an
implication tree, with a node of a certain access privilege implying a set of access privileges below it in the
inverted tree. The authorization role hierarchy is also an implication tree with a node representing a certain user
role subsuming all the access privileges of the user roles below it in the hierarchy. This hierarchical approach
allows an administrator to specify authorizations in a succinct fashion by creating a three-way relationship
between a node from each of the three hierarchies.

Purpose
The RASSP tools for information management were used for the RASSP benchmark programs at the
Lockheed Martin Advanced Technology Labs. The tools supported a design program involving about ten
engineers, and spanned about two years in duration. The metrics we have collected on the design process
quantifies the benefits of the RASSP CM and AM tools.

This application note is intended for managers and administrators of design groups who are interested in
streamlining the process of building, releasing, and supporting product designs.

Roadmap
1.0 Introduction

2.0 The RASSP Configuration Management Model

2.1 Workspaces and Configurations
2.2 The RASSP CM Mechanisms

2.2.1 Workspace Functions
2.2.1.1Creating a workspace

2.2.2 Accessing an arbitrary workspace

2.2.3 Accessing child workspace
2.2.4 Accessing the parent workspace
2.2.5 Making a workspace visible

2.3 Version Management Functions
2.3.1 Creating a configuration
2.3.2 Inserting data objects into a configuration
2.3.3 Checkout
2.3.4 Checkin
2.3.5 Accessing child version
2.3.6 Accessing the parent version
2.3.7 Naming versions
2.3.8 Retrieving a named version

3.0 The RASSP Authorization Model

3.1 Authorization Objects, Types, and Roles
3.2 Mechanisms to support the RASSP Authorization Model

3.2.1 Mechanisms to manipulate the authorization object hierarchy
3.2.1.1 3.2.1.1 Creating an authorization object
3.2.1.2 Deleting an authorization object
3.2.1.3 Adding a child to an authorization object
3.2.1.4 Associating data files with authorization objects
3.2.1.5 Retrieving an authorization object
3.2.1.6 Retrieving the children of an authorization object

3.2.2 Mechanisms to manipulate the authorization role hierarchy
3.2.2.1 Creating an authorization role
3.2.2.2 Deleting an authorization role
3.2.2.3 Adding a child to an authorization role
3.2.2.4 Associating users with authorization roles
3.2.2.5 Retrieving an authorization role
3.2.2.6 Retrieving the children of an authorization role

3.2.3 Mechanisms to manipulate the authorization type hierarchy
3.2.3.1 Retrieving an authorization type
3.2.3.2 Retrieving the children of a node in the authorization type hierarchy

3.2.4 Mechanisms to grant and revoke authorization
3.2.4.1 Granting authorizations
3.2.4.2 Revoking authorizations

4.0 Implementation of the RASSP Configuration and Authorization Management Models

5.0 Lessons Learned

6.0 References

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 2 The RASSP Configuration Management Model Up: Appnotes Index Previous:Appnote INFO
Index

RASSP Information Management Appnote
1.0 Introduction
Two critical aspects of information management within a computer-aided design environment are the
configuration management and authorization management of the design data. Configuration Management
(CM) is the management of the versioning of design objects. It includes creating, approving and releasing a
new version of a design object; organizing the versions of a design object; and assembling compatible
configurations of versions of design objects to form a release of a product. Authorization Management (AM)
is the management of the granting and revoking of access to the design objects for the various users of the
system. It involves specifying the types of operations that may be performed on data objects, partitioning the
design object space at the appropriate granularity for specifying access controls, and partitioning the users of
the system into the various roles for specifying access privileges. Different CAD vendor tools provide
different mechanisms to support configuration management and authorization management. A mechanism is
an individual function of a system. The mechanisms provided by the tools not only vary in scope, but also in
their semantics. In an integrated product development environment (IPDE) which involves several vendor
tools, such as RASSP, diverse and incompatible configuration management mechanisms and authorization
management mechanisms across tools can lead to the inefficiencies in the design process listed below:

There is no common way of handling the CM and AM of a product throughout its life cycle
The design engineers working on a project have to learn several different paradigms for CM and AM
The CM data on a product generated by one tool cannot be used by another tool
The authorization information cannot be shared among the various tools used in the CAD
environment. Authorizations have to be specified separately in the various tools and the management
of the consistency of the authorization information among the tools is cumbersome.

We describe in this document a common model of configuration management and authorization management
that may be adopted by an integrated product development environment. We have specified a common
minimal set of mechanisms that need to be provided by the tools to support the proposed configuration and
authorization models. An important criterion we CM and AM models have been implemented as part of the
design environment developed for the Rapid Prototyping of Application-Specific Signal Processors (RASSP)
program.

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is a Defense Advanced Research
Projects Agency (DARPA)/Tri-Service program aimed at dramatically improving the process of design,
manufacture, test and procurement of digital signal processors. The RASSP program will deliver an integrated
system called the RASSP system, which integrates the CAD tools used in the RASSP design process under a
framework referred to as the enterprise framework. An enterprise framework provides the facilities and
services necessary to integrate the automated processes of an enterprise. In the RASSP system the enterprise
framework provides support for workflow management, design data management and reuse data
management. The workflow management subsystem of the RASSP enterprise system enables a RASSP
system administrator to model and enforce a particular design methodology for a project. The data
management subsystem of the enterprise framework provides facilities for configuration managing, and
controlling access to design data files that may reside at various sites in a computer network. The reuse data
management subsystem provides facilities for cataloging, classifying and storing reusable design components;
as well as mechanisms for searching for reusable components.

In the next section we present the RASSP CM model, and in section 3 we present the RASSP AM model. In
section 4 we present a pilot implementation of the models, and the lessons learned from the implementation.

The application of the CM and AM tools in a real world design project is the subject of section 5. In section 6
we compare the RASSP CM and AM facilities with an out-of-the-box product data management system.

Next: 2 The RASSP Configuration Management Model Up: Appnotes Index Previous:Appnote INFO
Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 3 The RASSP Authorization Model Up: Appnotes Index Previous: 1 Introduction

RASSP Information Management Appnote
2.0 The RASSP Configuration Management Model

2.1 Workspaces and Configurations

The RASSP Configuration Management (CM) model is based upon the concept of workspaces, and the
concept of configurations. Workspaces are partitions of the design object space to allow designers working
on the various parts of a project to selectively make their design objects visible to others in the project
[Cattell_1991]. Workspaces are organized in a hierarchical fashion as shown in figure 2 - 1, with a global
workspace at the root of the hierarchy, shared workspaces as the intermediate nodes in the hierarchy, and
private workspaces as the leaves in the hierarchy. The links in a workspace hierarchy represent a
parent-child relationship between the linked workspaces. For example, in figure 2 the workspace "Private
WS2" is a child of the workspace "Shared WS1" (and the workspace "Shared WS1" is the parent of the
workspace "Private WS2"). Workspaces provide for varying levels of sharing of data objects. A user of a
workspace has visibility to all the objects residing in the workspace and the objects residing in the ancestor
workspaces of the workspace. Thus all users of the database have visibility to data objects residing in the
global workspace.

Figure 2 - 1: A Workspace Hierarchy

Configurations are related data objects that evolve at the same time and are grouped together for the purpose of
versioning. New configuration objects are typically created in a private workspace, at which point the
configuration is considered a transient version of the configuration. A transient version may be updated or
deleted. Once the transient version of a configuration reaches a state of maturity suitable for sharing with other
designers in a project, it is promoted to a working version of the configuration, by checking in the
configuration from the private workspace where it resides, to its parent workspace. A working version may
not be updated but may be deleted. Working versions of configurations that are considered to represent the
final state of design are promoted to released versions by checking in them to the global workspace. A
released version may not be updated nor deleted. We use the notation statei > statej to denote that statei is a
higher state that statej. Thus released > working > transient .

A new transient version cj of a configuration c, may be created by checking out an existing version ci residing
in a workspace wm to a workspace wn that is a direct or indirect descendent of wm. The source version ci
may be in one of the three states prior to checkout -- released, working or transient. If the state of ci prior to
checkout is released or working, the state of ci remains unchanged after checkout. However, if the state of ci
is transient prior to the checkout, ci is promoted by the system to a working version as part of the checkout
operation.

The versions of a configuration are organized as a directed acyclic graph (DAG), as shown in figure 2 - 2, and
is commonly referred to as a version tree. The new nodes in the tree start out as a transient version and
progressively become working versions and then released versions. A version in a version tree may be deleted
only if it is a transient or a working version, and it is a leaf node in the tree. A directed link between two
versions i and j in a version tree represents the is-derived-from relationship, i.e., version j is derived from
version i. Also, version i is said to be the parent of version j, and version j is said to be a child of version i.
We use the notation ci -> cj to represent the parent-child relationship between the two versions i and j of the
configuration c.

Figure 2 - 2: A Version Tree

The following rule applies to a version tree:
VT-Rule1: Given two version ci and cj of a configuration c, such that ci -> cj, then the state of cj should be
less than or equal to the state of ci.

2.2 The RASSP CM Mechanisms

We describe in this section a minimal set of CM mechanisms that needs to be supported to implement the
RASSP CM model. This set will provide the basis for configuration management of design data in the
different phases of the RASSP design process. The set of CM mechanisms listed here is intended to serve as a
common minimal set; an individual CAD tool may support more than the minimal set proposed here.

We categorize the CM mechanisms into two classes -- workspace functions and version management
functions. In the following sections we use a C-like pseudo code to describe the functions. For example,

 Bar my_func (Foo a_foo);

describes a function "my_func" that takes as a parameter an object of type "Foo" and returns an object of type
"Bar". We use names starting with capital letters, such as "Workspace" to denote the type of object, and
names starting with small letters, such as "create_workspace" and "parent_workspace" to denote a function

name or a parameter name.

 Bar another_func (foo *a_foo=0);

describes a function "another_func" that takes as a parameter a pointer (denoted by the *) to an object of type
"foo&334. The "= 0 " is a default value for the parameter if one is not provided. Thus the parameter "a_foo"
is an optional parameter for the function "another_func", while it is a required parameter for the function
"my_func".

The C-like style we are using to describe the mechanisms is for the brevity of the descriptions, and does not
have any implications as to the implementations of these functions, nor the user interface provided by the
systems to these functions.

2.2.1 Workspace Functions

2.2.1.1 Creating a workspace

 Workspace *create_workspace (char *workspace_name,
 Workspace *parent_workspace=0);

Creates a child workspace of the specified parent workspace, and assigns it the supplied name. If a parent
workspace is not specified, the new workspace is made a child of the global workspace. The global
workspace is a system-created workspace that exists in every database, and has the name "global_workspace"
assigned to it.

2.2.2 Accessing an arbitrary workspace

 Workspace *get_workspace (char *workspace_name);

Returns a pointer to the workspace with the specified name.

2.2.3 Accessing child workspaces

 Workspace_List child_workspaces (Workspace *a_workspace);

Returns a list of pointers to child workspaces of the specified workspace.

2.2.4 Accessing the parent workspace

 Workspace *parent_workspace (Workspace *a_workspace);

Returns a pointer to the parent workspace of the specified workspace.

2.2.5 Making a workspace visible

 void set_current_workspace (Workspace *a_workspace);

Sets the specified workspace to be the current workspace for the application program. The application
program can access only objects that reside in the current workspace, or in the ancestor workspaces of the
current workspace.

2.3 Version Management Functions

2.3.1 Creating a configuration

 Configuration *create_configuration ();

Creates a new configuration and returns a pointer to it.

2.3.2 Inserting data objects into a configuration

 void insert_into_configuration (Configuration *a_configuration,
 void *a_design_object);

Inserts the design object pointed to by "a_design_object" into the specified configuration.

2.3.3 Checkout

 Configuration *checkout (Configuration *a_configuration,
 char *version_name=0);

Creates a new version of the configuration pointed to by "a_configuration", and makes the new version visible
in the current workspace. The new version may also be provided an optional version name. The version name
is an arbitrary name provided by the user. If the configuration pointed to by a_configuration is a transient
version, it is promoted by the system to a working version, by performing a checkin operation (see section
2.3.4), before performing the checkout. The configuration pointed to by "a_configuration" may reside in the
current workspace, or in any of the ancestor workspaces of the current workspace. This function returns a
pointer to the newly created version of the configuration.

2.3.4 Checkin

 void checkin (Configuration *a_configuration);

Checks in the configuration pointed to by "a_configuration". This results in the configuration being made
visible to the parent workspace of the current workspace. If the parent workspace is the global workspace,
then the configuration is promoted to a released version, otherwise it is promoted to a working version. A
working version of a configuration that is checked in to a non global workspace is not promoted in the process
of checkin, but is made visible to the parent workspace.

2.3.5 Accessing child versions

 Configuration_List child_versions
 (Configuration *a_configuration);

Returns a list of pointers to the child versions of the configuration pointed to by a_configuration.

2.3.6 Accessing the parent version

 Configuration *parent_version (Configuration *a_configuration);

Returns a pointer to the parent version of the configuration pointed to by "a_configuration".

2.3.7 Naming versions

 void name_version(Configuration *a_configuration, char *a_name);

Assigns the character string pointed to by "a_name" as the name of the specified configuration.

2.3.8 Retrieving a named version

 Configuration *get_named_version (Configuration *a_configuration, char *a_name);

Returns the version of the specified configuration that has the name pointed to by "a_name". If no such
version exists a null pointer is returned.

Next: 3 The RASSP Authorization Model Up: Appnotes Index Previous: 1 Introduction

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 4 Implementation of the RASSP Configuration and Authorization Management Models Up: Appnotes Index
Previous:2 The RASSP Configuration Management Model

RASSP Information Management Appnote
3.0 The RASSP Authorization Model

3.1 Authorization Objects, Types, and Roles

An authorization is a triplet {oi, rj, tk } where oi is an authorization object in an authorization object hierarchy, rj is a
authorization role in an authorization role hierarchy, and tk is an authorization type in an authorization type hierarchy
[Rabbitti, 1991]. An authorization object is a data object on which an authorization may be specified. Authorization
objects in a database are organized as a directed acyclic graph as shown in figure 3 - 1. An authorization role is a
collection of users that have the same set of authorizations on the same set of objects. The authorization roles in an
organization are also organized as a directed acyclic graph as shown in figure 3 - 2. An authorization type is a type of
operation that may be performed on a data object. The authorization types for a database are also organized as directed
acyclic graphs as shown in figures 3 - 3 and 3 - 4. In figure 3 - 3 the "Grant" authorizations are authorizations to grant an
authorization to another role in the role hierarchy. The authorization type hierarchy for projects also contains the "Grant"
authorizations, but are not shown in figure 3 - 4 to avoid cluttering the figure. The directed links between two nodes in a
hierarchy represent an implication relationship between the nodes. For example, an authorization for the engineering
manager to update design data, implies the authorization to update system definition data, architecture data, etc., as they
follow design data in the authorization object hierarchy. The authorization implies the same authorization for the project
manager also, as the engineering manager follows project manager in the authorization role hierarchy. Also, since the
operation read follows the operation update in the authorization type hierarchy for data objects, the authorization to update
design data implies an authorization to read design data as well.

Figure 3 - 1: An Example Authorization Object Hierarchy

Figure 3 - 2: An Example Authorization Role Hierarchy

Figure 3 - 3: The Authorization Type Hierarchy for Design Objects

Figure 3 - 4: The Authorization Type Hierarchy for Projects

An authorization may be positive , granting an authorization, or negative , revoking an authorization. An explicit or an
implicit positive authorization {oi, rj, tk } has to exist for an operation of type tk to be performed by a user belonging to
role rj on a data object belonging to the authorization object oi . A positive (or negative) authorization specified on a node
ni in an authorization hierarchy may be overridden by a negative (or positive) authorization on a node nj that follows ni
in the authorization hierarchy. For example, a positive authorization for a particular role to update design data (in the
example authorization object hierarchy in figure 3 - 1) may be overridden by a negative authorization for the same role to
update mechanical design data. Similarly, a positive authorization for the engineering manager (in the example authorization
role hierarchy in figure 3 - 2) to update configuration data (in the example authorization object hierarchy in figure 3 - 1)
may be overridden by a negative authorization to update waiver data.

The authorization object hierarchy and the authorization role hierarchy for a project may be customized by a RASSP
systems administrator. The authorization type hierarchies, however, are not customizable by a RASSP systems
administrator. Each authorization type has an associated operation such as checkin, checkout, update etc. Thus, defining a
new authorization type will typically involve adding a new functionality to the system.

3.2 Mechanisms to support the RASSP Authorization Model

We describe in this section four sets of mechanisms the data management subsystem of a CAD environment needs to
provide in order to support the RASSP authorization model.

3.2.1 Mechanisms to manipulate the authorization object hierarchy

3.2.1.1 Creating an authorization object

 Authorization_Object *create_authorization_object
 (Authorization_Object *parent=0, char *name);

Creates a new authorization object, as a child of the specified parent authorization object and assigns it the specified name.
If no parent authorization object is specified then the root node of a new authorization object hierarchy is created.

3.2.1.2 Deleting an authorization object

 void delete_authorization_object
 (Authorization_Object *an_authorization_object);

Deletes the subset of the authorization object hierarchy rooted at the specified authorization object, from the authorization
object hierarchy.

3.2.1.3 Adding a child to an authorization object

 void add_child (Authorization_Object *parent,
 Authorization_Object *child);

Adds the sub authorization object hierarchy rooted at the authorization object pointed to by "child" as a child of the
specified parent authorization object. A particular sub authorization object hierarchy may be repeated at a number of nodes
in an authorization object hierarchy.

3.2.1.4 Associating data files with authorization objects

 void associate_data_file
 (Authorization_Object *an_authorization_object,
 char *file_path_name);

Associates an existing data file with a node in the authorization object hierarchy. A number of files may be associated with
an authorization object. An authorization specified on an authorization object will apply to all the files associated with the
authorization object.

3.2.1.5 Retrieving an authorization object

 Authorization_Object *find_authorization_object
 (Authorization_Object *root=0, char *name);

Returns a pointer to an authorization object with the specified name, in the authorization type hierarchy pointed to by
"root". If no root is specified, a pointer to a root of an authorization object hierarchy with the specified name is returned.

3.2.1.6 Retrieving the children of an authorization object

 Authorization_Object_List get_children
 (Authorization_Object *an_authorization_object);

Returns a list of pointers to authorization objects that are children of the specified authorization object.

3.2.2 Mechanisms to manipulate the authorization role hierarchy

3.2.2.1 Creating an authorization role

 Authorization_Role *create_authorization_role
 (Authorization_Role *parent=0, char *name);

Creates a new authorization role, as a child of the specified parent authorization role. If no parent authorization role is
specified then the root node of a new authorization role hierarchy is created.

3.2.2.2 Deleting an authorization role

 void delete_authorization_role
 (Authorization_Role *an_authorization_role);

Deletes the subset of the authorization role hierarchy rooted at the specified authorization role from the authorization role
hierarchy.

3.2.2.3 Adding a child to an authorization role

 void add_child (Authorization_Role *parent,
 Authorization_Role *child);

Adds the sub authorization role hierarchy rooted at the authorization role pointed to by "child" as a child of the specified
parent authorization role. A particular sub authorization role hierarchy may be repeated at a number of nodes in the
authorization role hierarchy.

3.2.2.4 Associating users with authorization roles

 void associate_user
 (Authorization_Role *an_authorization_role,
 char *user_name);

Associates a user with an authorization role. A number of users may be associated with an authorization role. An
authorization specified on an authorization role will apply to all the users associated with the authorization role.

3.2.2.5 Retrieving an authorization role

 Authorization_Role *find_authorization_role
 (Authorization_Role *root=0, char *name);

Returns a pointer to an authorization role with the specified name, in the authorization type hierarchy pointed to by "root".
If no root is specified, a pointer to a root of an authorization role hierarchy with the specified name is returned.

3.2.2.6 Retrieving the children of an authorization role

 Authorization_Role_List get_children
 (Authorization_Role *an_authorization_role);

Returns a list of pointers to authorization roles that are children of the specified authorization role.

3.2.3 Mechanisms to manipulate the authorization type hierarchy

3.2.3.1 Retrieving an authorization type

 Authorization_Type *find_authorization_type
 (Authorization_Type *root=0, char *name);

Returns a pointer to an authorization type with the specified name, in the authorization type hierarchy pointed to by "root".
If no root is specified, a pointer to a root of an authorization type hierarchy with the specified name is returned.

3.2.3.2 Retrieving the children of a node in the authorization type hierarchy

 Authorization_Type_List get_children
 (Authorization_Type *an_authorization_type);

Returns a list of pointers to authorization types that are children of the specified authorization type.

3.2.4 Mechanisms to grant and revoke authorizations

3.2.4.1 Granting authorizations

 int grant_authorization
 (Authorization_Object *an_authorization_object,
 Authorization_Role *an_authorization_role,
 Authorization_Type *an_authorization_type);

Grants an authorization of type "an_authorization_type" on the object pointed to by "an_authorization_object" to the
authorization role pointed to by "an_authorization_role".

3.2.4.2 Revoking authorizations

 int revoke_authorization
 (Authorization_Object *an_authorization_object,
 Authorization_Role *an_authorization_role,
 Authorization_Type *an_authorization_type);

Revokes an authorization of type "an_authorization_type" on the object pointed to by "an_authorization_object" from the
authorization role pointed to by "an_authorization_role".

Next: 4 Implementation of the RASSP Configuration and Authorization Management Models Up: Appnotes Index
Previous:2 The RASSP Configuration Management Model

Next: 5 Lessons Learned Up: Appnotes Index Previous:3 RASSP Manufacturing Interface Usage Scenarios

RASSP Information Management Appnote
4.0 Implementation of the RASSP Configuration and Authorization
Management Models
A pilot implementation of the Configuration management (CM) and Authorization Management models have been completed using
Intergraph Corporation’s Asset and Information Management (AIM) software system. This implementation proves the plausibility
of the model and also provides insight into how the models may be implemented on product data management systems.

AIM is an enterprise-wide electronic object management system. It provides an object-oriented framework with functionality
provided for storage, query, security, and usage control. AIM's architecture provides a graphical environment to assist users in
quickly locating and using objects. AIM manages information by ensuring that access is controlled and integrity is preserved
throughout the life cycle of an object. AIM can be tailored to provide the following functions: administration of user, groups, and
hosts; creation of a generic set of object classes and relationships; object creation, storage, vaults, and queries; and rule-driven
security.

The workspace hierarchy is implemented in AIM using the features of users and vaults . Relationships between workspaces are
enforced by defining groups , which contain related users, and limiting the access of these groups through the use of rules .

In AIM, each user has a private workspace. That is, there is a one-to-one mapping between a user and a private workspace. Rules
are used to enforce the privacy of individual workspaces. Shared workspaces are implemented through the use of vaults. A vault is
a logical collection of shared objects. Rules are used to control access to a vault. User-to-vault relationships can be established to
allow visibility of ancestor workspaces. The global workspace consists of selected data from all shared workspaces (vaults),
obtained through the AIM query capability. The AIM implementation of the RASSP workspace hierarchy is shown in Figure 4 -
1.

Figure 4 - 1: The AIM Workspace Hierarchy

* Legend:

=Represents the physical file system location for the items residing in the associated vault (shared workspace) or user
(private workspace). Vault and work locations may be on the same host machine or on seperate machines wihin a
network.
VL=Vault Location: Each vault location will be associated with only 1 vault.
WL=Work Location: Each work location will be associated with only 1 user.

=Represents a DM2 saved query.
SQ=Saved Query: Every user will have access to the Global Workspace through a pre-defined query.

=Represents a logical collection of objects based on ownership. An owner of an object is either a user or a vault. Each
vault will have 1 or more vault locations associated with it. Each user may be associated with 1 or more vaults. Each
user will have 1 or more work locations associated with it.

A global workspace in AIM is mapped to all baselined objects in all vaults within a database. Items are visible in a global
workspace by use of the AIM Saved Query Object Class. Shared workspaces in AIM are mapped to a vault/vault location and
can be accessed by performing transfer, check in, and check out operations. A vault is a logical collection of shared objects. A
vault may contain data objects or actual file system items. A vault location provides a file system location for storing physical files
owned by the vault.

In AIM, each user has a private workspace . Based on projects, a parent-child relationship can be established between private and
shared workspaces. A private workspace may have more than one work location . Similar to vault locations, a work location
provides actual file system space for objects residing in a private workspace. Note: A private workspace may have relationships
with more than one shared workspace.

AIM provides out-of-the-box implementation of the RASSP Authorization model by using the AIM feature of message access
rules. Message access rules are granting in nature. An explicit rule must exist for an action to be performed on an object class. If a
rule exists, then the actions granted by the rule cannot be limited by another rule. In AIM, if two or more rules conflict or overlap,
then the more permissive rule is always followed. Due to the object-oriented nature of AIM, inheritance plays an important part in
maintaining the authorization hierarchy. Message access rules may be inherited throughout the AIM data model.

In addition to class and rule authorization, AIM provides additional enforcement of the RASSP Authorization Model by allowing
roles to be divided into various groups of users. By dividing the users into five types of groups, administrative authority is
distributed over the entire RASSP System. Figure 4 - 2 depicts the design of the RASSP Authorization user group hierarchy, and
the association of the roles to the workspaces.

Figure 4 - 2: RASSP User Group Hierarchy Design

The AIMAdmin user commands the most authority over the RASSP Enterprise Framework. From his/her position in the
hierarchy, he/she may perform any available action on any object, and thus perform the actions defined for any other user in the
system. AIMAdmin controls and defines the RASSP environment. The RASSPAdmin user has limited super user authority. The
RASSPAdmin can perform actions which govern the RASSP environment without being able to change the existing rules that

define it. RASSPAdmin may perform the actions of all users in the system except the AIMAdmin user.

The User Manager grp is a group of assigned users that governs and maintains the user accounts in the RASSP environment.
RASSPAdmin, or AIMAdmin, must assign a user to the User Manager position. The User Manager commands authority over all
the user accounts in the system. From his position in the hierarchy, he may perform any action available in any user account. This
is a useful feature when conditions arise where users are unavailable due to vacation, sickness, or other absence.

The Project Mgr grp is a group of assigned users that control an instantiated project in the RASSP environment. The
RASSPAdmin or AIMAdmin must assign a user to the Project Mgr grp. By doing this, a project manager is created. Each project
manager is all powerful within the context of that project and maintains the associated Project Vault in the system.

The Project grp, and its associated rules, are created when the RASSPAdmin instantiates a new project. It is a group of users
assigned to support an instantiated project in the RASSP environment. The project manager, (or RASSPAdmin or AIMAdmin)
must select an existing user from the user grp, and assign that user to the Project grp. By doing this, the project manager has added
a user to the project support group. Members of a project create design objects and are allowed to share these objects by placing
them in the associated project vault.

The user grp is a group of users that exist in the RASSP environment and are available for assignment to the User Manager grp,
Project Mgr grp, or Project grp. The User Manager, (or AIMAdmin or RASSPAdmin) must create new users, validate them on the
appropriate Host(s), and place them in the user grp. The user grp commands the least authority in the administrative hierarchy.

Next: 5 Lessons Learned Up: Appnotes Index Previous:3 RASSP Manufacturing Interface Usage Scenarios

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 6 Reference List Up: Appnotes Index Previous:4 Implementation of the RASSP Configuration and
Authorization Management Models

RASSP Information Management Appnote
5.0 Lessons Learned
The following lessons were learned from the application of the RASSP enterprise system to the benchmark
programs:

1. It was discovered that the concept of a private workspace, as defined within the RASSP CM model,
is very difficult to apply to the domain of electronic systems design. This is because many of the CAD
tools, used for designing electronic systems, create a single design database and partition it internally
to permit access by multiple designers. So the concept of each designer storing portions of a CAD
tool design database within his private workspace will not work. For example, the schematic for a
PCB cannot be stored in one designer's private workspace while the layout information is stored in
another designer's private workspace because the CAD tool stores all the information regarding the
PCB design within one design database.

The solution to this problem was to modify the RASSP CM model to include the concept of a group
workspace. A group workspace is defined as the place where shared data resides during
development. It exists at the same level as a private workspace within the workspace hierarchy. The
difference between a group workspace and a private workspace is that all designers have access to the
group workspace. It is implemented at the file system level as a common directory to which all
designers have access. An example of shared data, which would reside in the group workspace, is a
Mentor Graphics Corp. design database. Upon completion of the design cycle, the shared data is then
promoted up to either the shared or global workspace, as defined in the RASSP CM model, by
checking it into the AIM PDM system.

2. The RASSP electronic design workflows, in general, represent the ideal "best case" design cycle. The
benchmark programs did not follow best case design scenarios and customization of the workflows
was required to handle unique situations. Even with the customizations in place, situations were
encountered that the workflows were not set up to handle. On-the-fly modifications were required
because it is difficult to predict and anticipate what problems will be encountered during the design
cycle. When this happens, designers cannot wait for the workflow changes to be implemented and
will work outside of the system to stay on schedule and to accomplish their goals. The lessons
learned here are:

more communication is required between the domain experts (e.g. FPGA designers) and the
workflow developers so that workflows may be developed which better models their design
process
workflows must provide for as many contingencies as possible, i.e. be "worst case" vice
"best case" design that uses the philosophy of "what could go wrong will go wrong"
further advances in workflow tool technology are required to provide a capability to better
handle exceptions to design cycles and ad-hoc situations so designers are not forced to work
outside of the workflow tool

3. A complex system such as the RASSP enterprise system is going to require fundamental changes
during its use on any project. Examples of fundamental changes include encapsulating new CAD
tools, modifying the workflows, and adding new users. These types of changes cannot be avoided
because things like new people being added to a project, or changes in project scope often occur. In
order to make these types of changes to the enterprise system, it had to be taken off line. After making
the modifications, the enterprise system had to be brought back on line and restored back to its

original state. The lessons learned here include:
the need to better plan for changes, perform them after hours so as not to adversely affect the
benchmark teams
the need for better communication between the benchmark teams and the enterprise system
developers to minimize the frequency of these changes

4. System administration of the RASSP enterprise system needs to be performed by someone who is
part of the regular systems administration group. Due to the developmental nature of the Enterprise
system, the role of RASSP enterprise system administrator was performed by a member of the
enterprise development team during the benchmark programs. The lack of communication between
the RASSP enterprise system administrator and the services group caused some problems. For
example, the upgrade of one designer's machine from the SunOS 4.1 operating system to the Solaris
operating system resulted in that designer not being able to use the enterprise system. The way to
prevent these types of problems from occurring is to have the RASSP enterprise system
administration functions performed by someone who is cognizant of system administration and is part
of an organization's services group. This can easily be accomplished through training and is not
expected to be a large burden on the system administration staff.

5. The RASSP enterprise system was still in development while being used on the benchmark
programs. Consequently, the benchmark teams encountered problems that should have been
discovered and corrected during a normal testing phase. An example of a problem encountered was
the inability of the DMM workflow tool to permit multiple designers to execute the same workflow
step. Encountering problems like this often resulted in the benchmark teams working outside the
enterprise system until they were corrected. The lesson learned here is that if a system, such as the
RASSP enterprise system, is to be used while still in development, a plan must be put in place
governing its use. The plan must specify the current and planned capabilities along with the
development schedule. Upgrades to the system, such as installing new versions of Oracle, AIM, and
DMM need to be performed during off-hours because they involve taking the system off line during
the time the upgrade is being performed.

6. New users of the RASSP enterprise system should receive at least one week of training before using
it. During the benchmark programs, insufficient time was allocated for training the users of the
enterprise system. Due to ambitious project schedules, members of the benchmark teams were only
able to attend a 1 hour training class before using the system.

Next: 6 Reference List Up: Appnotes Index Previous:4 Implementation of the RASSP Configuration and
Authorization Management Models

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Up: Appnotes Index Previous:5 Lessons Learned

RASSP Information Management Appnote
References
Bsharah, F.L., and Willis, J.F., "Build 1 Application Interpreted Model Report", Rockwell, December 1994.
[AIMRI_94]

Application Interpreted Model, December 1994 [AIMI_94]

Bsharah, F.L., and Willis, J.F., "Build 1 Application Reference Model Report", Rockwell, December 1994.
[ARMRI_94]

Application Interpreted Model, December 1994 [ARMI_94]

Bsharah, F.L., and Willis, J.F., "Build 1 Enterprise Data Model Report", Rockwell, December 1994.
[EDMRI_94]

RASSP Enterprise Data Model, December 1994 [REDMI_94]

Kalathil, B "Library Management Report" Lockheed Martin ATL, June 1995.Application Interpreted Model,
June 1995 [LMR_95]

Bsharah, F.L., and Willis, J.F., "Build 2 Application Interpreted Model Report", Rockwell, March 1996.
[AIMR2_96]

Bsharah, F.L., and Willis, J.F., "Build 1 Enterprise Data Model Report", Rockwell, March 1996.
[EDMR2_96]

Blanchard, D. "The Configuration Management Model for the RASSP System, Version 3 ", Lockheed Martin
ATL, August 1996. [BLANCHARD_96]

Application Notes

Enterprise Framework Implementation
Reuse Methodology and Implementation

Next: Up: Appnotes Index Previous:5 Lessons Learned

Approved for Public Release; Distribution Unlimited Dennis Basara

