
101 Innovation Drive
San Jose, CA 95134
(408) 544-7000
www.altera.com

RapidIO MegaCore Function

MegaCore Version: 7.1
Document Date: May 2007

User Guide

http://www.altera.com

Copyright © 2007Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device des-
ignations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and
service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Al-
tera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants
performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make
changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the ap-
plication or use of any information, product, or service described herein except as expressly agreed to in writing by Altera
Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published in-
formation and before placing orders for products or services.

ii MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

UG-MC_RIOPHY-2.5

Altera Corporation MegaCore Version 7.1 iii
May 2007 RapidIO MegaCore Function User Guide

Contents

About This User Guide
Revision History ... vii
How to Contact Altera ... xii

Chapter 1. About This
MegaCore Function

Release Information ... 1–1
New in RapidIO MegaCore Function Version 7.1 .. 1–1
Device Family Support ... 1–1
Performance and Size .. 1–2
Features ... 1–5
General Description ... 1–6

MegaCore Function Design Flows ... 1–7
OpenCore Plus Evaluation .. 1–7

Chapter 2. Getting Started
Design Flow .. 2–1
MegaWizard Plug-In Manager Design Flow Walkthrough .. 2–3

Create a New Quartus II Project .. 2–3
Launch the MegaWizard Plug-In Manager .. 2–4
Parameterize ... 2–7
Set Up Simulation and Generate the Function ... 2–15
Simulate the Design ... 2–21
IP Functional Simulation Model .. 2–26
Compile the Design .. 2–27

SOPC Builder Design Flow Walkthrough ... 2–27
Create a New Quartus II Project .. 2–29
Launch SOPC Builder from Quartus II ... 2–31
Instantiate and Parameterize the RapidIO Component ... 2–32
Add the RapidIO Component .. 2–37
Add the DMA Controller .. 2–38
Add the On-Chip Memory ... 2–38
Connect the System Components .. 2–39
Assign Addresses and Set the Clock Frequency .. 2–40
Generate the System .. 2–42
Simulate the System ... 2–43
Compile the System ... 2–44

Program a Device .. 2–44
Set Up Licensing .. 2–45

iv MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Contents

Chapter 3. Physical Layer—Serial Specifications
Functional Description .. 3–1
Features ... 3–1
Interfaces ... 3–3

RapidIO Interface ... 3–3
Atlantic Interface .. 3–3
Avalon-MM Slave Interface .. 3–5
XGMII External Transceiver Interface ... 3–5
Clock Domains .. 3–6
Resets .. 3–10

Layer 1 ... 3–12
Receiver .. 3–12
Transmitter .. 3–15

Layer 2 ... 3–17
Receiver .. 3–18
Transmitter .. 3–19

Layer 3 ... 3–20
Receiver .. 3–20
Transmitter .. 3–23

OpenCore Plus Time-Out Behavior .. 3–25
Parameters .. 3–26
Signals ... 3–27
Software Interface .. 3–32

Physical Layer Registers .. 3–33
MegaCore Verification .. 3–38

Simulation Testing ... 3–38
Hardware Testing ... 3–39
Interoperability Testing ... 3–39

Chapter 4. Variations with Physical, Transport, and Logical Layers
Functional Description .. 4–1

Interfaces .. 4–2
Clock & Reset .. 4–4
Transport Layer Module ... 4–6
Concentrator Register Module ... 4–8
Maintenance Module ... 4–12
Input/Output Logical Layer Modules .. 4–21
Doorbell Module .. 4–41
Avalon-ST Pass-Through Interface .. 4–46
OpenCore Plus Time-Out Behavior ... 4–54

Error Detection and Management ... 4–55
Physical Layer Error Management .. 4–55
Protocol Violations ... 4–57
Fatal Errors .. 4–57
Logical Layer Error Management .. 4–58
Maintenance Avalon-MM Slave ... 4–59
Maintenance Avalon-MM Master .. 4–60

Altera Corporation MegaCore Version 7.1 v
May 2007 RapidIO MegaCore Function User Guide

Contents

Input/Output Avalon-MM Slave .. 4–61
Input/Output Avalon-MM Master ... 4–63
Avalon-ST Pass-Through Port .. 4–64

Demonstration Testbench Description ... 4–67
Parameters .. 4–79
Signals ... 4–80
Software Interface .. 4–87

CARs, CSRs, Extended Features, and Implementation-Defined Registers 4–88
MegaCore Verification .. 4–118

Simulation Testing ... 4–118
Hardware Testing ... 4–118
Interoperability Testing ... 4–119

Appendix A. Initialization Sequence

Appendix B. XGMII Interface Timing
Data Alignment ... B–1
Setting Quartus II TSU and TH Checks ... B–2
Example .. B–2

vi MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Contents

Altera Corporation MegaCore Version 7.1 vii
May 2007 RapidIO MegaCore Function User Guide

About This User Guide

About This User Guide

Revision History The table below displays the revision history for the chapters in this user
guide.

Chapter Date Version Changes Made

1 May 2007 7.1 ● Added Arria™GX device support
● Updated the performance information.

December 2006 7.0 ● Added Cyclone® III device support.

December 2006 6.1 ● Added Doorbell Message support.
● Added Stratix® III support.

April 2006 3.1.0 ● Updated the release information and device
family support tables.

● Updated the performance information.

January 2006 3.0.1 ● Updated the release information and device
family support tables.

● Updated the features.
● Updated the performance information.

October 2005 3.0.0 ● Updated the release information and device
family support tables.

● Removed all references to the AIRbus
interface.

● Updated the performance information.

April 2005 2.2.2 ● Updated the release information and device
family support tables.

January 2005 2.2.1 ● Updated the release information.

December 2004 2.2.0 ● Updated the release information.
● Updated the features.
● Updated the performance information.

March 2004 2.1.0 ● Updated the release information and device
family support tables.

● Moved the Configuration Options table to
Chapters 3 and 4.

● Moved Interfaces and Protocols descriptions
to Chapters 3 and 4.

● Added OpenCore® Plus description.
● Updated the performance information.

2 May 2007 7.1 ● Updated MegaWizard® Plug-In Manager
Design Flow and added the SOPC Builder
Design Flow

viii MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Revision History

2 December 2006 7.0 ● No change.

December 2006 6.1 ● Revised the MegaWizard Getting Started
section

April 2006 3.1.0 ● Updated format.

January 2006 3.0.1 ● Updated the system requirements.
● Updated the walkthrough instructions and

screen captures.
● Updated the demonstration testbench

description.

October 2005 3.0.0 ● Updated the system requirements.
● Updated the walkthrough instructions.
● Removed all references to the AIRbus

interface.

April 2005 2.2.2 ● Updated the system requirements.

January 2005 2.2.1 ● No change.

December 2004 2.2.0 ● Updated the system requirements.
● Added IP CD installation instructions.
● Updated the walkthrough instructions.
● Added the 4× serial parameter.
● Added the receive priority retry threshold

parameters.
● Removed the receive buffer control interface

parameter.
● Removed the Set Constraints section.

March 2004 2.1.0 ● Added Linux instructions.
● Moved the configuration parameters

description to Chapters 3 and 4.
● Updated the walkthrough instructions.
● Added IP functional simulation models

information.

3 May 2007 7.1 ● Chapter reorganization, which now contains
only a serial interface that uses only the
Physical layer.

● Removed parallel interface information.

Chapter Date Version Changes Made

Altera Corporation MegaCore Version 7.1 ix
May 2007 RapidIO MegaCore Function User Guide

About This User Guide

3 December 2006 7.0 ● No change.

December 2006 6.1 ● Revised the section on clock inputs.

April 2006 3.1.0 ● Updated the clock domains section and
modified Figure 3–2.

● Updated parameters table and a few signals.

January 2006 3.0.1 ● Added description of Avalon-MM interface
and signals.

● Added description of external transceiver
interface and signals.

● Updated the clock information.
● Updated the Parameters table.
● Added the MegaCore Verification section.

October 2005 3.0.0 ● Removed all references to the AIRbus
interface.

April 2005 2.2.2 ● Updated the Error Handling section.
● Added the Forced Compensation Sequence

Insertion section.
● Added more description to the atxovf

signal.

January 2005 2.2.1 ● No change.

December 2004 2.2.0 ● Updated the Functional Description section,
to add the 4× serial feature and description.

● Removed the receive buffer control interface.
● Updated the description of sublayers 1 and

3.
● Updated the Parameters, Signals, and some

Registers tables.

March 2004 2.1.0 ● Added OpenCore Plus time-out behavior
description.

● Added Interfaces and Protocols descriptions.
● Added Parameters description (table).
● Updated, renamed, and deleted some

signals.
● Updated the register set.

4 May 2007 7.1 ● Reorganized chapter to discuss a variation
that uses the Physical, Transport, and
Logical layers.

● Improved description of the error detection
and management, Maintenance module,
software interface, and Avalon™-ST Pass-
Through port.

● Added IO slave interface example.

Chapter Date Version Changes Made

x MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Revision History

4 December 2006 7.0 ● No change.

December 2006 6.1 ● Revised the section on clock inputs.

April 2006 3.1.0 ● No change.

January 2006 3.0.1 ● Added description of Avalon-MM interface
and signals.

● Updated the Parameters table.
● Updated the MegaCore Verification section.

October 2005 3.0.0 ● Removed all references to the AIRbus
interface.

● Removed the MegaCore Verification section.

April 2005 2.2.2 ● Updated the Error Handling section.
● Added more description to the atxovf

signal.

January 2005 2.2.1 ● No change.

December 2004 2.2.0 ● Updated the features, Figure 4-1, and Figure
4-2.

● Removed the receive buffer control interface.
● Updated the description of sublayers 2 and

3.
● Updated the Parameters, Signals, and some

Registers tables.
● Added the MegaCore Verification section.

March 2004 2.1.0 ● Removed 16-bit port width feature, related
description and figures.

● Added OpenCore Plus time-out behavior
description.

● Added Interfaces and Protocols descriptions.
● Added Parameters description (table).
● Updated, renamed, and deleted some

signals.
● Updated the register set.

5 May 2007 7.1 ● New chapter contains SOPC Builder Design
Example. Former chapter 5 is now chapter 4.

December 2006 7.0 ● No change.

December 2006 6.1 ● Added the doorbell feature information.
● Updated the MegaCore and RapidIO version

numbers.
● Revised the section on clock inputs.

April 2006 3.1.0 ● Updated content throughout this chapter.

January 2006 3.0.1 ● Updated content throughout this chapter.

October 2005 3.0.0 ● Added this new Transport & Input/Output
Logical layer Specifications chapter.

Chapter Date Version Changes Made

Altera Corporation MegaCore Version 7.1 xi
May 2007 RapidIO MegaCore Function User Guide

About This User Guide

A May 2007 7.1 ● Previous Appendix A has been removed.
New Appendix A, Initialization Sequence,
was Appendix C in previous releases.

December 2006 7.0 ● No change.

April 2006 3.1.0 ● No change.

January 2006 3.0.1 ● No change.

October 2005 3.0.0 ● No change.

December 2004 2.2.0 ● Added Stratix® II references.

B May 2007 7.1 ● Former Appendix B has been removed from
this release.

● New Appendix B is the XGMII interface.

December 2006 7.0 ● No change.

April 2006 3.1.0 ● No change.

January 2006 3.0.1 ● No change.

October 2005 3.0.0 ● No change.

December 2004 2.2.0 ● Added Stratix II references.
● Removed Stratix timing information.

March 2004 2.1.0 ● Removed all references to APEX II device
family, including static timing information.

C May 2007 7.1 ● Former Appendix C is now appendix A.

December 2006 7.0 ● No change.

April 2006 3.1.0 ● No change.

January 2006 3.0.1 ● Added this Initialization Sequence appendix.

October 2005 3.0.0 ● Removed the Compliance appendix.

December 2004 2.2.0 ● Removed the packet retry transmission order
compliance issue from Table C3.

● Added the port link time-out control issue to
Table C2.

March 2004 2.1.0 ● Added this Compliance appendix.

Chapter Date Version Changes Made

xii MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

How to Contact Altera

How to Contact
Altera

For the most up-to-date information about Altera® products, refer to the
following table.

Information Type Contact (1)

Technical support www.altera.com/mysupport/

Technical training www.altera.com/training/

Technical training services custrain@altera.com

Product literature www.altera.com/literature

Product literature services literature@altera.com

FTP site ftp.altera.com

Note to table:
(1) You can also contact your local Altera sales office or sales representative.

http://www.altera.com/mysupport/
http://www.altera.com/training/
mailto:custrain@altera.com
http://www.altera.com/literature
mailto:literature@altera.com
ftp://ftp.altera.com

Altera Corporation MegaCore Version 7.1 xiii
May 2007 RapidIO MegaCore Function User Guide

About This User Guide

This document uses the typographic conventions shown below.

Visual Cue Meaning

Bold Type with Initial
Capital Letters

Command names, dialog box titles, checkbox options, and dialog box options are
shown in bold, initial capital letters. Example: Save As dialog box.

bold type External timing parameters, directory names, project names, disk drive names,
file names, file name extensions, and software utility names are shown in bold
type. Examples: fMAX, \qdesigns directory, d: drive, chiptrip.gdf file.

Italic Type with Initial Capital
Letters

Document titles are shown in italic type with initial capital letters. Example: AN 75:
High-Speed Board Design.

Italic type Internal timing parameters and variables are shown in italic type.
Examples: tPIA, n + 1.

Variable names are enclosed in angle brackets (< >) and shown in italic type.
Example: <file name>, <project name>.pof file.

Initial Capital Letters Keyboard keys and menu names are shown with initial capital letters. Examples:
Delete key, the Options menu.

“Subheading Title” References to sections within a document and titles of on-line help topics are
shown in quotation marks. Example: “Typographic Conventions.”

Courier type Signal and port names are shown in lowercase Courier type. Examples: data1,
tdi, input. Active-low signals are denoted by suffix n, e.g., resetn.

Anything that must be typed exactly as it appears is shown in Courier type. For
example: c:\qdesigns\tutorial\chiptrip.gdf. Also, sections of an
actual file, such as a Report File, references to parts of files (for example, the
VHDL keyword BEGIN), as well as logic function names (for example, TRI) are
shown in Courier.

1., 2., 3., and
a., b., c., etc.

Numbered steps are used in a list of items when the sequence of the items is
important, such as the steps listed in a procedure.

■ ● • Bullets are used in a list of items when the sequence of the items is not important.

v The checkmark indicates a procedure that consists of one step only.

1 The hand points to information that requires special attention.

c A caution calls attention to a condition or possible situation that can damage or
destroy the product or the user’s work.

w A warning calls attention to a condition or possible situation that can cause injury
to the user.

r The angled arrow indicates you should press the Enter key.

f The feet direct you to more information on a particular topic.

xiv MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

How to Contact Altera

Altera Corporation MegaCore Version 7.1 1–1
May 2007 RapidIO MegaCore Function User Guide

1. About This
MegaCore Function

Release
Information

Table 1–1 provides information about this release of the RapidIO®
MegaCore® function.

New in RapidIO
MegaCore
Function Version
7.1

■ Support for Arria™ GX device family
■ SOPC Builder support
■ Avalon™ Streaming (Avalon-ST)
■ Improved error detection and recovery
■ Multicast event reception

Device Family
Support

MegaCore functions provide either full or preliminary support for target
Altera® device families:

■ Full support means the MegaCore function meets all functional and
timing requirements for the device family and may be used in
production designs.

■ Preliminary support means the MegaCore function meets all
functional requirements, but may still be undergoing timing analysis
for the device family; it may be used in production designs with
caution.

Table 1–1. RapidIO Release Information

Item Description

Version 7.1

Release Date May 2007

Ordering Code IP-RIOPHY

Product ID 0095

Vendor ID 6AF7

1–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Performance and Size

Table 1–2 shows the level of support offered by the RapidIO MegaCore
function to each Altera device family.

Performance
and Size

Table 1–3 lists the resources and expected performance for a selection of
variations using the Serial Physical layer with the I/O Master and Slave
Avalon-MM and Maintenance Master modules of the Logical layer
enabled. These results were obtained using the Quartus® II software
version 7.1 for the following devices:

■ Cyclone II (EP2C35F484C6)
■ Cyclone III (EP3C55F780C6)
■ Stratix GX (EP1SGX40DF1020C5)

Table 1–2. Device Family Support

Device Family Support

Arria GX Preliminary

Cyclone® II Full

Cyclone III Preliminary

HardCopy® II Full

Stratix® II Full

Stratix II GX Full

Stratix III Preliminary

Stratix GX Full

Other device families No support

Table 1–3. Serial RapidIO Utilization

Device

Parameters

LEs

Memory

Lane Baud Rate
(Gbaud)

Atlantic Port
Width (bits)

Buffer Size
(Kbytes) M4K M512

Cyclone II

1x 3.125 with external
SERDES

32 8 TX, 4 RX 12,119 87 –

4x 1.250 with external
SERDES

64 8 TX, 4 RX 15,962 105 –

Cyclone III

1x 3.125 with external
SERDES

32 8 TX, 4 RX 12,909 78 –

4x 1.250 with external
SERDES

64 8 TX, 4 RX 15,823 86 –

Stratix GX
1x 3.125 32 8 TX, 4 RX 13,321 79 21

4x 1.250 64 8 TX, 4 RX 16,103 73 17

Altera Corporation MegaCore Version 7.1 1–3
May 2007 RapidIO MegaCore Function User Guide

About This MegaCore Function

Table 1–4 lists the resources for additional selections of variations using
the Serial Physical layer with the I/O Master and Slave Avalon-MM and
Maintenance Master modules of the Logical layer enabled. These results
were obtained using the Quartus II software version 7.1 for the following
devices:

■ Arria GX (EP1AGX60DF780C6)
■ Stratix II (EP2S30F672C3)
■ Stratix II GX (EP2SGX30D780C3)
■ Stratix III (EP3SE260F1508)

Table 1–5 shows the recommended device family speed grades for the
supported link widths and internal clock frequencies. In all cases it is
recommended that the Quartus II Analysis & Synthesis Optimization
Technique be set to Speed. See the “Compile the Design” section for
information on how to apply this setting.

Table 1–4. Serial RapidIO Utilization

Device

Parameters

Combinational
ALUTs

Logic
Registers

Memory

Mode Baud Rate
(Gbaud)

Atlantic
Port

Width
(bits)

Buffer Size
(Kbytes)

M4K
or

M9K
(1)

M512

Arria GX
1x 2.5 32 8 TX, 4 RX 7,764 11,506 84 13

4x 2.5 64 8 TX, 4 RX 15,783 15,783 82 13

Stratix II

1x 3.125 with
external

SERDES

32 8 TX, 4 RX 7,757 11,511 85 14

4x 1.250 with
external

SERDES

64 8 TX, 4 RX 9,152 14,507 80 12

Stratix II GX
1x 3.125 32 8 TX, 4 RX 7,696 8,433 84 13

4x 3.125 64 8 TX, 4 RX 10,343 11,539 81 14

Stratix III

1x 3.125 with
external

SERDES

32 8 TX, 4 RX 8,862 12,741 50 –

4x 3.125 with
external

SERDES

64 8 TX, 4 RX 10,654 16,202 53 –

Notes for Table 1–4
(1) M9K for Stratix III, M4K for all others.

1–4 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Performance and Size

Table 1–5. Recommended Device Family and Speed Grades

Device Family

Mode 1x 4x

Rate 1.25
Gbaud 2.5 Gbaud 3.125 Gbaud 1.25

Gbaud 2.5 Gbaud 3.125 Gbaud

Fmax 31.25MHz 62.50MHz 78.125MHz 62.5MHz 125MHz 156.25MHz

Arria GX (3) -6 -6 – -6 -6 –

Stratix II,
Stratix II GX

-3, -4, -5 -3, -4, -5 -3, -4, -5 -3, -4, -5 -3, -4 -3(1)

Stratix III -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3, -4 -2, -3

Stratix GX -5, -6, -7 -5, -6, -7 -5, -6, -7 -5 -5(2) –

Cyclone II,
Cyclone III

-6, -7, -8 -6, -7, -8 -6, -7 -6, -7, -8 – –

Notes for Table 1–5:
(1) 4x 3.125 Gbaud is possible in a -4 Stratix II and Stratix II GX only with the smallest Rx and Tx buffer sizes.
(2) 4x 2.5 Gbps may be possible in Stratix GX with the use of multiple seeds when using the Quartus II Design Space

Explorer.
(3) Only the -6 speed grade is available for the Arria GX device family.

Altera Corporation MegaCore Version 7.1 1–5
May 2007 RapidIO MegaCore Function User Guide

About This MegaCore Function

Features ■ Physical layer features
● 1×/4× Serial

• Arria GX support, including 1x and 4x up to 2.5 Gbaud
• Stratix II GX and Stratix GX support, including 1× and 4×

up to 3.125 Gbaud
• Cyclone II, Cyclone III, Stratix II, Stratix III, and

HardCopy II support with an XGMII-like interface to an
external high-speed full-duplex, serializer/deserializer
(SERDES) transceiver

● Packet buffering for receiver and transmitter, flow control, error
detection, packet assembly and delineation

■ Transport layer features
● Supports multiple Logical layer modules

• A round robin outgoing scheduler chooses packets to
transmit from various Logical layer modules

● Supports 8-bit device IDs
■ Capability Registers (CARs) and Command and Status Registers

(CSRs)
● 32-bit Avalon® Memory-Mapped (Avalon-MM) interface bus

slave supporting local single-word access
■ Maintenance Master Logical layer module

● 32-bit Avalon-MM bus master supporting the reception of
single-word access

■ Maintenance Slave Logical layer module
● 32-bit Avalon-MM bus slave supporting single-word access
● 32-bit wide Avalon-MM bus slave interface to access remote

CARs and CSRs
■ Input/Output Avalon-MM Master Logical layer module

● Avalon-MM bus masters support burst transfers of up to 256
bytes (64 32-bit words or 32 64-bit words)

■ Input/Output Avalon-MM Slave Logical layer module
● Avalon-MM bus slaves support burst transfers of up to 256 bytes

(64 32-bit words or 32 64-bit words)
■ Avalon streaming interface allows custom implementation of

Message module and SAR (Segmentation and Reassembly) functions
■ Doorbell Module

● 32-bit Avalon-MM slave, supporting single-word access
● Supports 16 outstanding doorbell packets with timeout

mechanism
■ Compliant with all applicable standards, including:

● RapidIO Trade Association, RapidIO Interconnect Specification,
Revision 1.3, February 2005.

● Altera Corporation, FS-13: Atlantic™ Interface.
● Altera Corporation, Avalon Memory-Mapped Interface

Specification.
● Altera Corporation, Avalon Streaming Interface Specification

■ Easy-to-use MegaWizard interface

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_atlantic.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

1–6 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

General Description

■ SOPC Builder support
■ IP functional simulation models for use in Altera-supported VHDL

and Verilog HDL simulators
■ Support for OpenCore Plus evaluation

General
Description

The RapidIO interconnect—an open standard developed by the RapidIO
Trade Association—is a high-performance packet-switched interconnect
technology designed to pass data and control information between
microprocessors, digital signal processors (DSPs), communications and
network processors, system memories, and peripheral devices.

The RapidIO MegaCore function targets high-performance,
multicomputing, high-bandwidth I/O applications. Figure 1–1 on
page 1–6 shows an example system implementation.

Figure 1–1. Typical Application

DSP
ASSP

DSP
ASSP

CPU

M
em

or
y

M
em

or
y

M
em

or
y

M
em

or
y

System Interconnect Fabric

DSP

In
te

rf
ac

e

B
rid

ge

FPGA

C
on

tr
ol

le
r

Proprietary,
CPRI, OBSAI,

Ethernet,
UTOPIA, etc.

RapidIO
MegaCore
Function

DSP
ASSP

Serial

Switch
RapidIO

Altera Corporation MegaCore Version 7.1 1–7
May 2007 RapidIO MegaCore Function User Guide

About This MegaCore Function

MegaCore Function Design Flows

Optimized for Altera devices, the RapidIO MegaCore function can be
customized to support a wide variety of applications. You can use either
the MegaWizard® Plug-In Manager or SOPC Builder interfaces to
customize the MegaCore function.

MegaWizard Plug-In Manager Design Flow

You can use the MegaWizard Plug-In Manager interface in the Quartus II
software to parameterize and manually instantiate a custom MegaCore
function variation. The wizards guide you as you set parameter values
and select optional ports. This flow is best for manual instantiation of the
MegaCore function in a higher-level design.

SOPC Builder Design Flow

The SOPC Builder flow enables integration of a RapidIO endpoint into an
SOPC Builder system with an automatically generated system
interconnect. The SOPC Builder design flow automatically connects user
instantiated components with system interconnect fabric, eliminating the
requirement to design low-level interfaces and significantly reducing
design time.

OpenCore Plus Evaluation

With the Altera free OpenCore Plus evaluation feature, you can perform
the following actions:

■ Simulate the behavior of a megafunction (Altera MegaCore function
or AMPP™ megafunction) within your system using the Quartus® II
software and Altera supported VHDL and Verilog HDL simulators

■ Verify the functionality of your design, as well as evaluate its size
and speed quickly and easily

■ Generate time-limited device programming files for designs that
include MegaCore functions

■ Program a device and verify your design in hardware

You only need to purchase a license for the MegaCore function when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

f For more information on OpenCore Plus hardware evaluation using the
RapidIO MegaCore function, see “OpenCore Plus Time-Out Behavior”
on page 4–53, and AN 320: OpenCore Plus Evaluation of Megafunctions.

1–8 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

General Description

Altera Corporation MegaCore Version 7.1 2–1
May 2007 RapidIO MegaCore Function User Guide

2. Getting Started

Design Flow To evaluate the RapidIO MegaCore function and use the OpenCore Plus
feature include these steps in your design flow:

1. Obtain and install the RapidIO MegaCore function.

The RapidIO MegaCore Function is part of the MegaCore IP Library,
which is distributed with the Quartus II software and downloadable
from the Altera website, www.altera.com.

f For system requirements and installation instructions, refer to Quartus II
Installation & Licensing for Windows or Quartus II Installation & Licensing
for UNIX & Linux Workstations on the Altera website.

Figure 2–1 shows the directory structure for the RapidIO MegaCore
function, where <path> is the installation directory. The default
installation directory on Windows is c:\altera\<version number>; on
UNIX and Solaris it is /opt/altera/<version number>.

Figure 2–1. Directory Structure

2. Decide whether to use the MegaWizard® Plug-In Manager or SOPC
Builder design flow.

rapidio
Contains the RapidIO MegaCore function files and documentation.

doc
Contains the documentation for the MegaCore function.

lib
Contains encrypted lower-level design files.

<path>

common
Contains shared components.

ip
Contains the MegaCore IP Library.

Installation directory

http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf
http://www.altera.com/
http://www.altera.com/
http://www.altera.com/
http://www.altera.com/
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_install.pdf
http://www.altera.com/literature/manual/quartus_unix.pdf

2–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Design Flow

• If using the MegaWizard Plug-In Manager flow, create a
custom variation of the RapidIO MegaCore function.

• If using SOPC Builder flow, instantiate and parameterize
the RapidIO SOPC Builder component.

3. Implement the rest of your design using SOPC Builder or the design
entry method of your choice.

4. Use the IP functional simulation model to verify the operation of
your design.

1 For more information on IP functional simulation models,
refer to the Simulating Altera IP in Third-Party Simulation
Tools chapter in Volume 3 of the Quartus II Handbook.

5. Use the Quartus II software to compile your design.

1 You can also generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

6. Purchase a license for the RapidIO MegaCore function.

After you have purchased a license for the RapidIO MegaCore function,
follow these additional steps:

1. Set up licensing.

2. Generate a programming file for the Altera device(s) on your board.

3. Program the Altera device(s) with the completed design.

http://www.altera.com/literature/lit-qts.jsp
http://www.altera.com/literature/lit-qts.jsp

Altera Corporation MegaCore Version 7.1 2–3
May 2007 RapidIO MegaCore Function User Guide

Getting Started

MegaWizard
Plug-In Manager
Design Flow
Walkthrough

This walkthrough explains how to create a RapidIO MegaCore function
using the MegaWizard Plug-In Manager and the Quartus II software.
When you finish generating a custom variation of the RapidIO MegaCore
function, you can incorporate it into your overall project.

1 You also can generate an OpenCore Plus time-limited
programming file, which you can use to verify the
operation of your design in hardware.

This walkthrough consists of the following steps:

■ Create a New Quartus II Project
■ Launch the MegaWizard Plug-In Manager
■ Parameterize
■ Set Up Simulation and Generate the Function
■ Simulate the Design
■ Compile the Design

Create a New Quartus II Project

You start the design process by creating a new Quartus II project with the
New Project Wizard, which specifies the working directory for the
project, assigns the project name, and designates the name of the top-level
design entity. To create a new project follow these steps:

1. Choose Programs > Altera > Quartus II <version> from the
Windows Start menu to run the Quartus II software. Alternatively,
you can use the Quartus II Web Edition software.

2. On the FIle Menu, click New Project Wizard.

3. Click Next in the New Project Wizard Introduction (the
introduction does not display if you turned it off previously).

4. In the Name, Top-Level Entity page, enter the following
information:

a. Specify the working directory for your project. For example,
this walkthrough uses the c:\altera\projects\rio_project
directory.

b. Specify the name of the project. This walkthrough uses
rio_example for the project name.

1 The Quartus II software automatically specifies a top-level
design entity that has the same name as the project. Do not
change this name.

2–4 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

5. Click Next to close this page and display the Add Files page.

1 When you specify a directory that does not already exist, a
message asks if the specified directory should be created.
Click Yes to create the directory.

6. If you installed the MegaCore IP Library in a different directory
from where you installed the Quartus II software, you must add the
user libraries manually:

a. Click User Libraries.

b. Type <path>\ip into the Library name box, where <path> is the
directory in which you installed the RapidIO MegaCore
function.

c. Click Add to add the path to the Quartus II project.

d. Click OK to save the library path in the project.

7. Click Next to close this page and display the Family & Device
Settings page.

8. On the Family & Device Settings page, select the target device
family in the Family list.

9. The remaining pages in the New Project Wizard are optional. Click
Finish to complete the Quartus II project.

You have finished creating your new Quartus II project.

Launch the MegaWizard Plug-In Manager

To launch the MegaWizard Plug-In Manager in the Quartus II software,
follow these steps:

1. Start the MegaWizard Plug-In Manager. On the Tools menu, select
MegaWizard Plug-In Manager. The MegaWizard Plug-In Manager
dialog box displays (see Figure 2–2).

1 Refer to Quartus II Help for more information on how to
use the MegaWizard Plug-In Manager.

Altera Corporation MegaCore Version 7.1 2–5
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Figure 2–2. MegaWizard Plug-In Manager

2. Click Create a new create a new custom megafunction variation
and then click Next.

3. Expand the Installed Plug-Ins and Interfaces lists, click RapidIO,
and then click RapidIO v7.1. See Figure 2–3.

4. In the Which device family will you be using? box, select the
device family you want to use for this MegaCore function variation.
For this example, select Stratix II GX.

5. In the Which type of output file do you want to create? box, click
the output file type for your design; the MegaWizard interface
supports VHDL and Verilog HDL. In this example, click Verilog
HDL.

6. In the What name do you want for the output file? box, The
MegaWizard Plug-In Manager shows the project path that you
specified in the New Project Wizard. Append a variation name for
the MegaCore function output files <project path>\<variation name>.
For this example, specify rio_example for the output file name.
Figure 2–3 shows the MegaWizard interface after you have made
these settings.

2–6 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Figure 2–3. Select the MegaCore Function

7. Click Next to display the Parameter Settings page for the RapidIO
MegaCore function (see Figure 2–4).

1 You can change the page that the MegaWizard interface
displays by clicking Next or Back at the bottom of the
dialog box. You can move directly to a specific page by
clicking on the page name: Physical Layer, Transport and
Maintenance, I/O and Doorbell, or Capability Registers.

Altera Corporation MegaCore Version 7.1 2–7
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Parameterize

This section describes the parameters available for the RapidIO
MegaCore function, and the benefits of different options.

1 Not all parameters are supported by, or are relevant for every
MegaCore function variation.

To parameterize your MegaCore function, follow these steps (see
Figure 2–4):

Figure 2–4. Physical Layer Parameters

1. On the Physical Layer page, under Device Options, select options
for Mode Selection and Transceiver Selection.

2–8 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Table 2–1 shows the baud rates supported by the serial RapidIO
MegaCore function for each device family.

2. From the Transceiver Selection list, select the transceiver.

Select the appropriate PHY option for the Arria GX, Stratix GX, or
Stratix II GX device.

For devices without transceivers, selecting External Transceiver
allows your design to use the serial RapidIO MegaCore function
with any supported device.

3. Click the Configure Transceiver... button to configure the
transceiver for Arria GX, Stratix GX, or the Stratix II GX PHY
transceiver.

The Configure Transceiver dialog box (see Figure 2–5) is displayed.
This walkthrough uses alt2gxb as the example.

1 The Arria GX, Stratix GX, or Stratix II GX PHY transceiver
requires that you configure the altgxb or alt2gxb
megafunction.

a. Under the Transmitter Functionality in the Voltage Output
Differential (VOD) panel for the Specify VOD control setting,
select a value of 0, 1, 2, 3, 4, or 5.

Table 2–1. Serial RapidIO Device Support

Device Family
Lane Serial 1x Serial 4x

Baud Rate 1.250 2.500 3.125 1.250 2.500 3.125

Arria GX v v (1) v v (1)

HardCopy II with External Transceiver v v v v v v
Stratix II GX v v v v v v
Stratix III or Stratix II with External Transceiver v v v v v v
Stratix GX v v v v v (1)

Cyclone III or Cyclone II with External Transceiver v v v v (2) (1)

Note:
(1) This device does not support 3.125 Gbaud.
(2) This device does not support 2.500 Gbaud 4x lanes

Altera Corporation MegaCore Version 7.1 2–9
May 2007 RapidIO MegaCore Function User Guide

Getting Started

b. Under the Transmitter Functionality for the Specify a pre-
emphasis control setting, select a value of 0,1, 2, 3, 4 or 5.

For Stratix II GX devices, the pre-emphasis control values
supported are 0,1,2,3,4, and 5. For 0, pre-emphasis is off. For 1,
the pre-emphasis will be the maximum negative value. For 2,
pre-emphasis will be the medium negative value. The value 3 is
a special value in which only the first posttap is set (set to the
maximum), while the other taps are off. A value of 4 yields a
medium positive value, while 5 sets the pre-emphasis values to
the maximum positive supported values.

c. Under the Transmitter Functionality in the Bandwidth mode
box, select low or high.

d. Under the Receiver Functionality in the Equalizer Specify
equalizer control setting, the receiver, choose an equalizer
control setting value of 0,1, 2, 3, 4, or 5.

For Stratix II GX devices the supported equalizer control setting
values are 0,1, 2, 3, and 4. These values correspond to 0 for the
lowest/off, 1 for a value between medium and lowest, 2 is
medium, a 3 is between medium and high, and a 4 is high.

e. Under the Receiver Functionality in the Bandwidth mode box,
select low or high.

f. Click Finish to return to the previous page.

2–10 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Figure 2–5. Configure Transceiver for altgxb and alt2gxb Megafunctions

4. Under Data Settings, set the following options:

a. For baud rate, specify a baud rate (Mbaud).

b. For Internal data path width, select a datapath width. For this
example, select 32.

c. For the Receive buffer and Transmit buffer, select a buffer size
(KBytes).

5. For the Receive Priority Retry Threshold, set preferences. Turn on
or off Auto-configured from receiver buffer size. If you turn off the
check box, specify a value for each of the priority boxes:

a. Enter a value for Receive Priority 0 Retry Threshold.

b. Enter a value for Receive Priority 1 Retry Threshold.

c. Enter a value for Receive Priority 2 Retry Threshold.

1 Receiver priority retry thresholds are expressed in terms of
64-byte buffers. Each maximum size packet requires five
buffers.

6. Click Next to display the Transport and Maintenance page (see
Figure 2–6).

Altera Corporation MegaCore Version 7.1 2–11
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Figure 2–6. Transport Layer & Maintenance Parameters

7. Under Transport layer, click No Transport Layer or Transport Layer.

a. If click No transport Layer, you are finished parameterizing
your custom Physical layer-only variation. Click Finish and go
to “Set Up Simulation and Generate the Function” on
page 2–15.

b. If you click Transport Layer, turn on or off the Avalon-ST pass-
through port.

1 The Transport layer routes all unrecognized packets to the
Avalon-ST pass-through port. Unrecognized packets
contain ftypes for Logical layers not enabled in this
MegaCore function, or destination IDs not assigned to this
endpoint.

8. Under the Input/Output Maintenance Logical Layer Module,
select the Maintenance Logical Layer interfaces.

2–12 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

If you select an Avalon-MM Master and Slave interface or just an
Avalon-MM Slave interface, also select the Number of transmit
address translation windows. You can select from 1 to 16 windows.

9. Click Next to display the I/O and Doorbell page; see Figure 2–7.

Figure 2–7. I/O Logical Doorbell Layer Parameters

10. Select one of the I/O logical layer interface(s).

11. If your selection in Step 10 included an Avalon-MM Slave interface,
select an I/O slave address width. The value can be an integer in the
range of 25 through 32.

1 The I/O slave address width is set to 30 by default.
However, to avoid over-allocating Avalon-MM memory
space, Altera recommends setting this value to the lowest
value for your system.

Altera Corporation MegaCore Version 7.1 2–13
May 2007 RapidIO MegaCore Function User Guide

Getting Started

12. If your selection in Step 10 included an Avalon-MM Master
interface, select the Number of RX address translation windows.
You can choose from 1 to 16 windows.

13. If in Step 10 you selected an Avalon-MM Slave interface, select the
Number of TX address translation windows. You can choose from
1 to 16 windows.

14. Under Doorbell Slave, click Doorbell TX enable and/or Doorbell
RX enable to turn on transmitting and/or receiving doorbell
messages. This option determines if the rapidIO MegaCore function
can transmit or receive doorbell messages from the user’s custom
software interface.

15. Click Next to display the Capability Registers page; see Figure 2–8.

1 If you want to set up a simulation model, do not click Finish
now because clicking Finish now bypasses simulation setup.

2–14 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Figure 2–8. Capability Registers

16. Under Device Registers, specify the device registers values: Device
ID, Vendor ID, and Revision ID.

17. Under the Assembly Registers values: specify the Assembly ID,
Vendor ID, Revision ID, and Extended features pointer.

18. Under Processing Element Features, turn on or off the Bridge
support, Memory access, and Processor present.

19. Under Switch Support, turn on or off the Enable switch support.

a. If you turn on Enable switch support, select the Number of
ports and enter a Port number. You can select from 1 to 16
ports.

Altera Corporation MegaCore Version 7.1 2–15
May 2007 RapidIO MegaCore Function User Guide

Getting Started

20. For Data Messages, turn on or turn off the Source Operation
and/or Destination Operation messages.

1 Turning on or off these options allows host user logic to
implement message passing that can be used by the
RapidIO MegaCore function and that reports user logic
errors through standard error management.

21. Click the Simulation Model tab.

Set Up Simulation and Generate the Function

1. To set up a simulation model, turn on Generate Simulation Model
(see Figure 2–9).

2. Select the Language for the simulation model. You can select VHDL
or Verilog HDL.

2–16 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Figure 2–9. Simulation Model

3. Click Next to continue to the Summary page. On this page you can
you specify the files that are generated (see Figure 2–10). After
clicking on the files to be generated, click Finish to generate the
function and simulation model files.

The IP functional simulation model is a cycle-accurate VHDL or Verilog
HDL model file produced by the Quartus II software. This model
supports fast functional simulation of IP using industry-standard VHDL
and Verilog HDL simulators.

c Only use these simulation model output files for simulation
purposes and expressly not for synthesis or any other purposes.
Using these models for synthesis creates a nonfunctional design.

Altera Corporation MegaCore Version 7.1 2–17
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Figure 2–10. Summary Page

4. To generate the specified files and close the MegaWizard Plug-In
Manager, click Finish.

The Generation panel displays file generation status. When all files have
been generated, the Generation panel returns a Generation Successful
status message as Figure 2–11 illustrates. Click Exit to close the panel. The
generation phase can take several minutes to complete. A generation
report, written to the project directory and named <variation name>.html,
lists the files and ports generated.

2–18 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

Figure 2–11. Generated Files Message

You can view the generated files by opening the file
<variation_name>.html.

Table 2–2 describes the generated files and other files that may be in your
project directory. The names and types of files specified in the report vary
based on whether you created your design with VHDL or Verilog HDL.

Table 2–2. Project Files Note (1) (Part 1 of 4)

Filename (2) Description

<variation_name>.bsf Quartus II symbol file for the MegaCore function variation. You
can use this file in the Quartus II block diagram editor.

<variation_name>.html The MegaCore function report file.

<variation_name>.ppf This XML file describes the MegaCore pin attributes to the
Quartus II Pin Planner. MegaCore pin attributes include pin
direction, location, I/O standard assignments, and drive strength.

 <variation_name>.v A MegaCore function variation file which defines a Verilog HDL
top-level description of the custom MegaCore function.
Instantiate the entity defined by this file inside of your design.
Include this file when compiling your design in the Quartus II
software.

 <variation_name>.vo Verilog HDL IP functional simulation model.

 <variation_name>_avalon_bfm_master.v Verilog Avalon-MM master bus functional model for use in
simulation with the demo testbench.

Altera Corporation MegaCore Version 7.1 2–19
May 2007 RapidIO MegaCore Function User Guide

Getting Started

 <variation_name>_avalon_bfm_slave.v Verilog Avalon-MM slave bus functional model for use in
simulation with the demo testbench.

 <variation_name>_bb.v Verilog HDL black-box file for the MegaCore function variation.
Use this file when using a third-party EDA tool to synthesize your
design.

 <variation_name>_concentrator.v Encrypted Verilog RTL for the Avalon-MM Concentrator module.
This is used to access all the registers from a common Avalon
interface. Required for Place and Route.

<variation_name>_concentrator_sister.v Encrypted Verilog RTL for the Avalon-MM Concentrator module.
Required for running the demo testbench.

 <variation_name>_constraints.tcl Tcl script to apply required constraints and assignments.
Required for place and route. Run this script before you compile
the MegaCore function.

 <variation_name>_drbell.v Encrypted Verilog RTL for the Doorbell Logical layer module.
Required for place and route.

 <variation_name>_drbell_sister.v Encrypted Verilog RTL for the Doorbell Logical layer module of
the sister RapidIO MegaCore. Required for running the demo
testbench.

<variation_name>_hookup.iv Verilog include file instantiating the RapidIO MegaCore function
and utilities in the demo testbench. Used for simulation.

 <variation_name>_hutil.iv Verilog include file containing various utilities used for simulation
with the demo testbench.

 <variation_name>_io_master.v Encrypted Verilog RTL for Input/Output Logical layer Avalon-MM
master module. Required for Place and Route.

 <variation_name>_io_master_sister.v Encrypted Verilog RTL for Input/Output Logical layer Avalon-MM
master module of the sister RapidIO MegaCore function.
Required for running the demo testbench.

<variation_name>_io_slave.v Encrypted Verilog RTL for Input/Output Logical layer Avalon-MM
slave module. Required for Place and Route.

 <variation_name>_io_slave_sister.v Encrypted Verilog RTL for Input/Output Logical layer Avalon-MM
slave module of the sister RapidIO MegaCore function. Required
for running the demo testbench.

 <variation_name>_maintenance.v Encrypted Verilog RTL for Maintenance Logical layer module.
Required for Place and Route.

 <variation_name>_maintenance_sister.v Encrypted Verilog RTL for Maintenance Logical layer module of
the sister RapidIO MegaCore function. Required for running the
demo testbench.

<variation_name>_phy_mnt.v Encrypted Verilog RTL for the physical layer’s CAR and CSR
access module. Required for Place and Route.

Table 2–2. Project Files Note (1) (Part 2 of 4)

Filename (2) Description

2–20 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

 <variation_name>_phy_mnt_sister.v Encrypted Verilog RTL for the physical layer’s CAR and CSR
access module of the sister RapidIO MegaCore function.
Required for running the demo testbench

 <variation_name>_reg_mnt.v Encrypted Verilog RTL for main CAR and CSR access module,
including error management registers. Required for Place and
Route.

 <variation_name>_reg_mnt_sister.v Encrypted Verilog RTL for main CAR and CSR access module of
the sister RapidIO MegaCore function. Required for running the
demo testbench.

 <variation_name>_rio.v Verilog RTL of the top level module, in clear text. Required for
Place and Route.

<variation_name>>_rio_sister.v Verilog RTL of the top level module of the sister RapidIO
MegaCore function, in clear text.
Required for running the demo testbench.

 <variation_name>_sister_rio.vo Verilog HDL IP functional simulation model.

 <variation_name>_riophy_dcore.ocp OpenCore Plus description file. Required to generate time-limited
device programming files for OpenCore Plus hardware evaluation
of the RapidIO MegaCore function without a license.

 <variation_name>_riophy_dcore.v Encrypted Verilog RTL for the main portion of the physical layer
of the RapidIO MegaCore function. Required for Place and
Route.

<variation_name>_riophy_dcore_sister.v Encrypted Verilog RTL for the main portion of the physical layer
of the sister RapidIO MegaCore function. Required for running
the demo testbench.

 <variation_name>_riophy_gxb.v Clear text Verilog instantiation of the altgxb or alt2gxb or alt2gxb
SerDes MegaFunction. Required for place and route.

 <variation_name>_riophy_sister_gxb.v Clear text Verilog instantiation of the altgxb or alt2gxb or alt2gxb
SerDes MegaFunction of the sister RapidIO MegaCore. Required
for running the demo testbench.

 <variation_name>_riophy_reset.v Clear text Verilog reset controller module for serial RapidIO
MegaCore. Required for place and route.

 <variation_name>_riophy_reset_sister.v Clear text Verilog reset controller module for the sister RapidIO
MegaCore. Required for running the demo testbench.

 <variation_name>_riophy_xcvr.v Clear text Verilog RTL wrapper for altgxb MegaFunction or XGMII
interface for SerDes. Required for Place and Route.

<variation_name>_riophy_xcvr_sister.v Clear text Verilog RTL wrapper for altgxb MegaFunction or XGMII
interface for SerDes. Required for running the demo testbench.

<variation_name>_run_modelsim.tcl Tcl script to run the demo testbench under ModelSIM and report
the PASS/FAIL status of the testbench.

 <variation_name>_tb.v Verilog demo testbench for the RapidIO MegaCore function.
Used in simulation.

Table 2–2. Project Files Note (1) (Part 3 of 4)

Filename (2) Description

Altera Corporation MegaCore Version 7.1 2–21
May 2007 RapidIO MegaCore Function User Guide

Getting Started

5. After you review the generation report, click Exit to close the
MegaWizard.

You can now integrate your custom MegaCore function variation into
your design, simulate, and compile.

1 Constraints are automatically set by the MegaWizard Plug-In
Manager.

Simulate the Design

You can simulate your design using the MegaWizard interface-generated
VHDL or Verilog HDL functional simulation model.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in Volume 3 of
the Quartus II Handbook.

The RapidIO MegaCore function automatically generates a Verilog HDL
demonstration testbench to match your specific variation. Scripts to
compile and run the demonstration testbench using a variety of
simulators and models also are provided. This testbench demonstrates
how to instantiate a model in a design, and includes some simple
stimulus to control the user interfaces of the RapidIO interface.

<variation_name>_transport.v Encrypted Verilog RTL for the Transport layer module. Required
for Place and Route.

 <variation_name>_transport_sister.v Encrypted Verilog RTL for the Transport layer module of the sister
RapidIO MegaCore function. Required for running the demo
testbench.

 <variation_name>_xgmii.v Verilog RTL for the Serial RapidIO MegaCore function, in clear
text, for the XGMII interface module. Required for Place and
Route and for simulation with the demo testbench.

 <variation_name>_xgmii_sister.v Verilog RTL for the sister RapidIO MegaCore function’s XGMII
interface module.
Required for running the demo testbench.

Notes to Table 2–2:
(1) These files are variation dependent, some may be absent or their names may change.
(2) <variation name> is a prefix variation name supplied automatically by the MegaWizard interface.

Table 2–2. Project Files Note (1) (Part 4 of 4)

Filename (2) Description

http://www.altera.com/literature/lit-qts.jsp

2–22 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

f For a complete list of models or libraries required to simulate the
RapidIO MegaCore function, refer to the
<variation name>_run_modelsim.tcl script provided with the
demonstration testbench.

Demonstration Testbench for Variations with a Physical Layer Only

The demonstration testbench that is generated when you use only the
physical layer tests the following functions:

■ Port initialization process
■ Transmission, reception, and acknowledgment of packets with 8 to

256 bytes of data payload
■ Writing to and reading from the Atlantic interfaces
■ Reading from the software interface registers

The testbench consists of two RapidIO MegaCore functions
interconnected through their high-speed serial interfaces, see
Figure 2–12. (Each MegaCore function’s td output is connected to the
other MegaCore function’s rd input.) The testbench module provides
clocking and reset control along with tasks to write to and read from the
MegaCore function’s Atlantic interfaces, and a task to read from the
command and status register (CSR) set. For variations with external
transceivers, these MegaCore functions are interconnected through their
XGMII interfaces.

Altera Corporation MegaCore Version 7.1 2–23
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Figure 2–12. Serial RapidIO Physical Layer Demonstration Testbench Note (1)

Note to Figure 2–12:
(1) The external blocks, shown in white, are Verilog HDL tasks.

The testbench starts with the MegaCore functions in a reset state. A
common reference clock is provided to all clock inputs. After coming out
of reset, the MegaCore functions start the port initialization process to
detect the presence of a partner and establish bit synchronization and
code group boundary alignment. After the MegaCore functions have
asserted their port_initialized output signals, the testbench checks
that the port initialization process completed successfully by reading the
Error and Status CSR to confirm the expected values of the PORT_OK
and PORT_UNINIT register bits.

Packets with 8 to 256 bytes of data payload are then transmitted from one
MegaCore function to the other. The receiving MegaCore function sends
the proper acknowledgment symbols and the received packets are
checked in the expected sequence for data integrity.

RapidIO B

Atlantic
Interface

RapidIO A

A_Send_Packet

A_Receive_Packet

B_Receive_Packet

B_Send_Packet

Atlantic
Interface

A_Read_Register B_Read_Register

Avalon-MM
Interface

Avalon-MM
Interface

tb module

td rd
rd td

RapidIO
LP-Serial Links

Reference
Clock

Reference
Clock

SisterDUT

2–24 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

The format of the transmitted packets is described in Table 2–3.

The received packet format is similar, but cyclic redundancy codes
(CRCs) and padding (when required) are appended to the packet and an
intermediate CRC is inserted in the packets after the first 80 bytes, when
the packet size exceeds 80 bytes.

Table 2–4 lists the tasks used to write packets to a MegaCore function for
transmission, read and check a received packet, and read the value from
a register and compare it to an expected value.

Table 2–3. Serial Packets Format

Packet Byte Format Description

First Header word {AckID[4:0],Reserved[2:0],
prio[1:0],tt[1:0],ftype[3:0]}

AckID is set to zero and is replaced by the
transmitting MegaCore function. The prio field is
used by the receiver to select the output queue. The
tt and ftype fields are used by the transport and
logical layers and are ignored by the physical layer
MegaCore functions, except I/O logical maintenance
packet type.

DestinationID {DestinationID[15:0]} These fields are used by the Transport and Logical
layers and are transferred unchanged by the physical
layer MegaCore functions.

SourceID {SourceID[15:0]}

Last Header word {Transaction[3:0],Size[3:0],TID[7:0]}

Payload bytes 8 to 256 bytes The payload bytes in the packet are set to an
incrementing sequence starting at 0.

Table 2–4. Serial Tasks

Function Prototype Comments

Write Packet to an
Atlantic slave sink.

task send_packet;
 input [1:0] prio;
 input [1:0] tt;
 input [3:0] ftype;
 input [8:0] payload_sizes;

The payload_size should be an even number between
8 and 256 inclusive.

The actual name of the task is pre-pended with A_ or B_
depending on which MegaCore function it should act.

prio—packet priority
tt—transport type
ftype—packet format type
payload size—size of the packet payload

Read and check a
packet from an
Atlantic slave
source.

 task receive_packet;
 input [1:0] prio;
 input [1:0] tt;
 input [3:0] ftype;
 input [8:0] payload_size;

Read from Register task read_register;
 input [15:0]address;
 input [31:0]expected;

The read value is compared to the expected value, any
difference is flagged as an error. “don’t care” values can be
specified by putting ‘x’s in the corresponding bit position.

Altera Corporation MegaCore Version 7.1 2–25
May 2007 RapidIO MegaCore Function User Guide

Getting Started

All of the packets are sent contiguously, in sequence. After all packets
have been sent, the idle sequence is transmitted until the end of the
simulation.

The testbench concludes by checking that all of the packets have been
received. If no error is detected and all packets are received, the testbench
issues a TESTBENCH PASSED message stating that the simulation was
successful.

If an error is detected, a TESTBENCH FAILED message is issued to
indicate that the testbench has failed. A TESTBENCH INCOMPLETE
message is issued if the expected number of checks is not made. For
example, if not all packets are received before the testbench is terminated.
The variable tb.exp_chk_cnt determines the number of checks done to
insure completeness of the testbench.

To get a value change dump file called dump.vcd for all viewable signals,
uncomment the line //`define MAKEDUMP in the <variation name>_tb.v
file.

Demonstration Testbench for Variations with a Transport and
Logical Layers.

When the variation includes a Transport layer and a Logical layer, the
generated testbench tasks that generate and monitor packets on the
Atlantic interfaces for the Physical-layer-only variations are replaced by
tasks that generate and monitor transactions on the Avalon-MM and
Avalon-ST interfaces.

If the Maintenance module is present, the testbench causes a few
maintenance type read and write request packets to be sent from the main
RapidIO MegaCore device under test (DUT) to a sister RapidIO
MegaCore function. Transaction are initiated by doing Avalon-MM
transactions on the DUT's Maintenance Slave Avalon-MM interface, and
are checked on the sister's Maintenance Master Avalon-MM interface.
Similarly, Input/Output or Doorbell, transactions are generated if the
corresponding module has been selected when the MegaCore was
parameterized. Avalon-ST packets are transferred through the Avalon-ST
pass-through port if it is present.

2–26 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaWizard Plug-In Manager Design Flow Walkthrough

IP Functional Simulation Model

To use the IP functional simulation model that you created, follow these
steps:

For Solaris or Linux operating systems, type these commands:

1. Turn the <variation name>_run_modelsim.tcl script into executable
files and change the permissions by typing:

chmod +x <variation name>_run_modelsim.tcl r

2. Run the script by typing:

./<variation name>_run_modelsim.tcl r

For Windows operating systems, run the script by typing this command:

vish <variation name>_run_modelsim.tcl r

1 In all cases, the testbench itself is in Verilog HDL, therefore a
license to run mixed language simulations is required to run the
testbench with the VHDL model.

In addition to the specified model, the scripts use a few clear-text source
files: (See Table 2–2 on page 2–18.)

■ <variation name>_tb.v is the top level testbench file
■ <variation name>_hutil.iv defines a few general purpose testing

utilities
■ <variation name>_demo_hookup.iv connects the two instantiations

of the MegaCore functions together and generates the required clock
and reset signals

■ <variation name>_demo_util.iv defines the tasks to read and write on
the Avalon-MM or Atlantic interfaces.

Altera Corporation MegaCore Version 7.1 2–27
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Compile the Design

You can use the Quartus II software to compile your design. Refer to
Quartus II Help for instructions on compiling your design.

1 The script file <variation name>_constraints.tcl sets required
constraints for the compilation place and route. Run this script
in the Quartus II software before you compile the variation.

SOPC Builder
Design Flow
Walkthrough

When building a system with SOPC Builder, you use the SOPC Builder
interface to instantiate a RapidIO MegaCore function component and
other available SOPC Builder components. The software automatically
generates HDL files that include all of the specified components and
interconnections. The HDL files are ready to be compiled in the Quartus
II software to generate hardware for your system. A testbench module
also is generated that includes basic transactions to validate the
correctness of the generated HDL files.

f For more information, refer to these topics and documents:

■ The system interconnect fabric, refers to the System Interconnect
Fabric chapter in volume 4 of the Quartus II Handbook.

■ SOPC Builder, refer to Section 1, SOPC Builder Features, and Section
II, Building Systems with SOPC Builder in volume 4 of the Quartus II
Handbook.

This walkthrough explains how to use SOPC Builder and the Quartus II
software to generate a system containing the following components:

■ RapidIO MegaCore function
■ DMA controller
■ On-chip memory

Figure 2–13 shows a block diagram of the system you create in this
walkthrough.

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp
http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

2–28 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

Figure 2–13. Example SOPC Builder System

In this walkthrough, follow these steps:

■ Create a New Quartus II Project
■ Launch the SOPC Builder from Quartus II
■ Instantiate and Parameterize the RapidIO Component
■ Generate and Simulate the System

This example walkthrough does not use all available parameters and
options. The RapidIO SOPC Builder design flow supports a subset of the
RapidIO Megawizard Plug-In Manager flow parameters. The following
parameters are supported in SOPC Builder flow as outlined below:

■ The Transport layer is automatically enabled
■ The Avalon-ST pass-through port is unavailable

For more information on specific parameters used in this walkthrough,
refer to the MegaWizard Plug-In Manager Design Flow Walkthrough or
Table 4–19 on page 4–78, Transport & I/O Logical Layer Parameters.

RapidIO
Test Module

System Interconnect Fabric

DMA
 On-Chip
Memory

SOPC Builder System

 RapidIO
MegaCore Function

Altera Corporation MegaCore Version 7.1 2–29
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Create a New Quartus II Project

You need to create a new Quartus II project with the New Project Wizard,
which specifies the working directory for the project, assigns the project
name, and designates the system name. To create a new project follow
these steps:

1. On the Windows Start menu, click Programs > Altera> Quartus II
<version> to start the Quartus II software. Alternatively, you can use
the Quartus II Web Edition software.

2. On the File menu, click New Project Wizard...

3. On the New Project Wizard: Introduction page, click Next.

1 This introduction page does not display if you turned it off
previously.

4. In the New Project Wizard: Directory, Name, Top-Level Entity
page, enter the following information:

a. Specify the following working directory for your project:

c:\altera\project_rio\rapidio_sopc

b. Specify rio_sys for the project name. You must specify the same
name for both the project and the top-level design entity.

1 The Quartus II software automatically specifies the top-
level system that has the same name as the project. Do not
change it.

c. Click Next twice (on this and the next page) to display New
Project Wizard: Family & Device Settings.

5. On the Family & Device Settings page, select the following target
device family and options:

a. In the Family list, select Stratix II GX.

This walkthrough creates a design targeting the Stratix II GX device
family. You also can use these procedures for other supported device
families.

b. In the Target device box, select Specific device selected in
Available devices list.

2–30 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

c. Under Show in ‘Available device’ list, all fields should have
the default value of Any.

d. In the Available devices list, select EP2SGX90EF1152C3.

6. The remaining pages in the New Project Wizard are optional. Click
Finish to complete the Quartus II project.

You have finished creating your new Quartus II project.

7. Before starting SOPC Builder, check to ensure the RapidIO library is
in the Quartus II Global User Libraries. If the RapidIO library is not
listed in the Global User Libraries, add the RapidIO library by
following these steps:

a. On the Quartus II Tools menu, select Options.

b. Select Global User Library.

c. In the Library name box, you can use the browser to locate the
library for the RapidIO MegaCore function and add the
RapidIO library path to the Global User Library or you can
specify the path using the format:

<ip installed path> /rapidio/lib

d. Click Ok after specifying the RapidIO MegaCore function
installation path to include this path in the Quartus II Global
User Library.

Altera Corporation MegaCore Version 7.1 2–31
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Launch SOPC Builder from Quartus II

Launch SOPC Builder from the Quartus II software.

1. On the Tools menu, click SOPC Builder... to start SOPC Builder. The
Altera SOPC Builder window appears. See Figure 2–14.

1 Refer to Quartus II Help for more information on how to
use SOPC Builder.

Figure 2–14. SOPC Builder Interface System Name Request Dialog

2. In the System Name box, type rio_sys for the project top-level
system name. Under Target HDL, select Verilog and click OK. See
Figure 2–14.

1 In this example, you are choosing the SOPC Builder-
generated system file to be the same as the project’s top
level file. This is not required for your own design.

2–32 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

1 For your own project you can use Verilog or VHDL,
however the RapidIO SOPC Builder testbench is only
provided in Verilog. Additionally, the SOPC Builder
simulation scripts only support a single HDL and thus can
only run the RapidIO SOCP Builder testbench when the
Target HDL is Verilog. To complete this walkthrough you
must use Verilog as the Target HDL.

Instantiate and Parameterize the RapidIO Component

To instantiate and parameterize the RapidIO MegaCore component in
your system, follow these steps:

1. Under Interface Protocols in the High Speed directory, click the
RapidIO MegaCore component. See Figure 2–15

2. Click Add.... The SOPC Builder interface displays showing the
RapidIO component. See Figure 2–15.

Figure 2–15. Add RapidIO MegaCore Function Component

In this section, you parameterize the RapidIO MegaCore function
component.

Altera Corporation MegaCore Version 7.1 2–33
May 2007 RapidIO MegaCore Function User Guide

Getting Started

1 Not all parameters are supported by and are relevant for every
MegaCore function variation.

In SOPC Builder, the RapidIO MegaCore function automatically enables
the Transport layer but the Avalon-ST pass-through port is not available.

Figure 2–16. Physical Layer Parameters

To parameterize your MegaCore function, follow these steps (see
Figure 2–4):

1. On the Physical Layer page, in Mode Selection: select Serial 4x.

1 Table 2–1 shows the baud rates supported by the serial RapidIO
MegaCore function for each device family.

2–34 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

2. In the Transceiver Selection, select the Stratix II GX PHY
transceiver.

The Arria GX, Stratix GX or Stratix II GX PHY transceiver requires
that you configure the altgxb or alt2gxb megafunction. For this
example, the default settings are used. See Figure 2–17.

Figure 2–17. Configure Transceiver Settings

3. Under Data Settings set the following options:

● For Baud rate, specify 2500.
● For Internal datapath width, specify 64 bits.

4. Under receive Priority Retry Threshold, turn on the Auto-
configured from receiver buffer size.

1 Receiver priority retry thresholds are expressed in terms of
64-byte buffers. Each maximum size packet requires five
buffers.

5. Click the Next to display Transport and Maintenance page; see
Figure 2–18.

Altera Corporation MegaCore Version 7.1 2–35
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Figure 2–18. Transport Layer & Maintenance Parameters

1 For SOPC Builder, the Transport layer is always enabled and the
Avalon-ST pass-through port is always disabled.

6. Under Input/Output Maintenance Logical Layer Module, select
the following options:

● For the Maintenance logical layer interface(s): select Avalon-
MM Master.

● For the Number of transport address translation windows:
select 1.

7. Click Next to display the I/O and Doorbell page; see Figure 2–19.

2–36 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

Figure 2–19. I/O Logical Layer and Doorbell Parameters

8. For the I/O Logical layer Interfaces, select Avalon-MM Master and
Slave.

9. For the I/O slave address width, select 25.

1 The Input/Output Slave address width is set to 30 by
default. However, to avoid over-allocating Avalon-MM
memory space, setting this value to the lowest value for
your system is highly recommended.

10. For the Number of RX address translation windows, select 1.

11. For the Number of TX address translation windows, select 1.

Altera Corporation MegaCore Version 7.1 2–37
May 2007 RapidIO MegaCore Function User Guide

Getting Started

12. Doorbell Slave messaging is not turned on for this example.

When doorbell messaging is turned on, a 32- bit Avalon slave port
enables doorbell messaging from the user application to the
MegaCore function. Turning off doorbell messaging reduces
resource usage and may be desirable for some applications.

13. Click Finish to complete parameterization and add the RapidIO
MegaCore function to the SOPC Builder system

Add the RapidIO Component

After adding the RapidIO MegaCore function component to your system,
various Avalon-MM ports are created and shown as connection points in
the SOPC Builder interface. Error messages indicate that these ports are
not connected. See Figure 2–20.

Figure 2–20. RapidIO MegaCore Function Component Added and Avalon-MM Ports Created

These errors are resolved after you add the remaining components to
your system and make all of the appropriate connections. The default
instance name of the RapidIO MegaCore function component is rapidio.

2–38 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

You can change the default name by right-clicking on the component
name and click Rename. The component name must be unique; it cannot
be the name of the system name.

Add the DMA Controller

Expand the Memories and Memory Controllers directory to add the
DMA controller to your system.

1. Apply the DMA controller settings shown in Figure 2–21.

2. Click Finish to add the DMA controller to your SOPC Builder
system.

Figure 2–21. Add the DMA Controller

Add the On-Chip Memory

Expand the On-Chip directory to locate and add the On-Chip Memory
(RAM or ROM) to your system.

1. Apply the On-Chip memory settings shown in Figure 2–22.

Altera Corporation MegaCore Version 7.1 2–39
May 2007 RapidIO MegaCore Function User Guide

Getting Started

2. Click Finish to add the memory to your SOPC Builder system.

Figure 2–22. Add the On-Chip Memory (RAM or ROM)

Connect the System Components

For the external RapidIO processing elements to access the internal
registers of the RapidIO variation, your created system must meet the
following criteria:

■ The Maintenance Master port must be connected to System
Maintenance Slave port

■ The System Maintenance Slave port Base address must be assigned
to address 0x0.

2–40 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

With all the system components added, in this step, connect the
components as follows:

1. Connect rapidio mnt_master to sys_mnt_slave.

2. Connect rapidio io_read_master and io_write_master to
onchip_mem s1.

3. Connect the rapidio io_read_master and io_write_master to
the dma control_port_slave.

4. Connect the dma read_master to rapidio io_read_slave.

5. Connect dma write_master to rapidio io_write_slave.

6. Connect dma read_master and write_master to onchip_mem
s1.

Refer to Figure 2–23 to ensure you correctly connected the above ports.

Figure 2–23. Complete System Connections

Assign Addresses and Set the Clock Frequency

Make the following address assignments:

1. Assign rapidio sys_mnt_slave base address to 0x00000000.

2. Assign rapidio io_read_slave and io_write_slave base
address to 0x10000000.

3. Assign dma control_port_slave base address to
0x00001000.

Altera Corporation MegaCore Version 7.1 2–41
May 2007 RapidIO MegaCore Function User Guide

Getting Started

4. Assign onchip_mem s1 base address to 0x00000000.

5. In the Clock Settings box, select the 50.0, type 125 for the external
clock source clk and type r .

6. On the File menu, click Save to save the SOPC Builder system.

Figure 2–24 shows the completed SOPC Builder example system.

Figure 2–24. Complete SOPC Builder Example System

2–42 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

SOPC Builder Design Flow Walkthrough

Generate the System

After you create your system with all the required components and
connections and you have resolved any errors, generate the system by
following these steps:

1. Click on the System Generation tab.

2. Turn on Simulation. Create project simulator files. This enables the
generation of the testbench and simulation model files for your
SOPC Builder system. See Figure 2–25.

3. Click Generate to start the generation process. See Figure 2–25.

Generating the system files, the simulation models, and environment
takes a few minutes.

When the SOPC Builder system has been generated successfully, the
system HDL files are added to your project directory and are ready
to be simulated and compiled with the Quartus II software.

Figure 2–25. System Generation

Altera Corporation MegaCore Version 7.1 2–43
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Simulate the System

To simulate your system with the sample testbench, follow these steps:

1. In the project directory, for the testbench example, you must edit the
rapidio_sopc_tb.v file. Open this file and search for the
SOPC_EXAMPLE_DESIGN parameter. When you find this parameter,
change the value from 0 to 1.

2. Start the ModelSim simulator and change the directory to the
rio_sys_sim directory under the project directory.

3. Type the following command at the simulator command prompt:

source setup_sim.do r

1 This simulation script will only work for RapidIO when the
Target HDL language is Verilog.

4. To compile all the files and load the design, type the following
command at the simulator prompt:

s r

5. To simulate the design, type the following command at the
simulator prompt:

vsim4> run –all r

The RapidIO sample testbench performs the following transactions:

■ Sends a sequence of read requests to the internal registers of the
MegaCore function

■ Sets up the address translation register within the MegaCore for
maintenance and I/O transactions

■ Programs the DMA transfer data between the test module and on-
chip memory

■ Verifies data integrity

When simulation finishes, exit ModelSim and return to the Quartus II
software to compile your system.

2–44 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Program a Device

Compile the System

The SOPC Builder generated HDL system files are ready to be compiled
in the Quartus II software to generate the programming file for your
system hardware. To compile your system in the Quartus II software,
follow these steps:

1. Open the Quartus II project created in the “Create a New Quartus II
Project” on page 2–29.

2. Source the generated Tcl script by typing:

source rapidio_constraints.tcl r

1 The rapidio_constraints.tcl script file sets the required
constraints for compilation. The Fmax constraint on the Avalon
domain defaults to 125MHz. Modify this constraint if the
Avalon clock domain of your system operates at a different
speed than the default setting.

3. From the Quartus II Processing menu, click Start Compilation to
compile your system.

Program a
Device

After you have compiled your design, program your targeted Altera
device, and verify your design in hardware.

With Altera's free OpenCore Plus evaluation feature, you can evaluate the
RapidIO MegaCore function before you purchase a license. OpenCore
Plus evaluation allows you to generate an IP functional simulation
model, and produce a time-limited programming file.

f For more information on IP functional simulation models, refer to the
Simulating Altera IP in Third-Party Simulation Tools chapter in Volume 3 of
the Quartus II Handbook.

You can simulate the RapidIO MegaCore function in your design, and
perform a time-limited evaluation of your design in hardware.

f For more information on OpenCore Plus hardware evaluation using the
RapidIO MegaCore function, see “OpenCore Plus Time-Out Behavior”
on page 4–53, and AN 320: OpenCore Plus Evaluation of Megafunctions.

You need to purchase a license for the MegaCore function only when you
are completely satisfied with its functionality and performance, and want
to take your design to production.

http://www.altera.com/literature/lit-qts.jsp

Altera Corporation MegaCore Version 7.1 2–45
May 2007 RapidIO MegaCore Function User Guide

Getting Started

Set Up Licensing After you purchase all licenses for the MegaCore function, you can
request a license file from the Altera website at
www.altera.com/licensing and install it on your computer. When you
request a license file, Altera emails you a license.dat file. If you do not
have Internet access, contact your local Altera representative.

1 If your system instantiates other MegaCore functions that
require licensing, you need to purchase appropriate licenses as
required.

http://www.altera.com/support/licensing/lic-index.html

2–46 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Set Up Licensing

Altera Corporation MegaCore Version 7.1 3–1
May 2007 RapidIO MegaCore Function User Guide

3. Physical Layer—Serial
Specifications

Functional
Description

This section describes the 1× or 4× serial Physical layer of the RapidIOTM
MegaCore® function. The Physical layer is divided into three sublayers.
The following sections describe these sublayers.

Features ■ Layer 1
● Port initialization
● Receiver

• One or four lane high-speed data deserialization (up to
3.125 Gbaud for 1× serial with 32-bit AtlanticTM interface;
up to 4× 3.125 Gbaud for 4× serial with 64-bit Atlantic
interface)

• Clock and data recovery
• 8B/10B decoding
• Lane synchronization
• Packet/control symbol delineation
• Cyclic redundancy code (CRC) checking on packets
• Control symbol CRC-5 checking
• Error detection
• Idle sequence removal

● Transmitter
• One or four lane high-speed data serialization (up to

3.125 Gbaud for 1× serial with 32-bit Atlantic interface; up
to 4× 3.125 Gbaud for 4× serial with 64-bit Atlantic
interface)

• 8B/10B encoding
• Packet/control symbol assembly
• CRC generation on packets
• Control symbol CRC-5 generation
• Pseudo-random idle sequence generation

■ Layer 2
● Processor access (registers)

• Status/control
● Flow control (AckID window tracking)

• Time-out on acknowledgements
● Order of retransmission maintenance, and acknowledgements
● AckID assignment
● Error management

3–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Features

■ Layer 3
● Atlantic interface with clock decoupling
● First-in first-out (FIFO) buffer with level output port
● Adjustable buffer sizes
● Transmitter

• Four transmission queues, and four retransmission queues
to handle packet prioritization

• Up to 32-Kbytes of buffering
● Receiver

• Up to 32-Kbytes of buffering

Figure 3–1 shows a high-level block diagram of the serial RapidIO
MegaCore function physical layer.

Figure 3–1. Serial RapidIO Block Diagram Parameters

Receive
Buffer

Transmit

Buffer
Control

Receive
Buffer
Control

td rd

Layer 1

Layer 2

Layer 3

Registers

clk

phy_mnt_s_clk

reset_n

Low Level Interface

Flow ControlSlave Interface

RapidIO InterfaceRapidIO Interface

ar
xs

op
ar

xe
op

ar
x e

rr
ar

xm
ty

ar
xd

at

ar
xc

lk
ar

xr
es

et
_n

ar
x e

na
ar

xd
av

ar
xv

al

at
xs

op
at

xe
op

at
xe

rr
at

xm
ty

at
xd

at

at
xc

lk
at

xr
es

et
_n

at
xe

na
at

xd
av

Transmit
Buffer

Atlantic Interface Atlantic Interface

buf_av0
port_initialized

at
xw

l e
ve

l

at
xw

l e
ve

l

packet_transmitted
packet_cancelled
packet_accepted

packet_retry
packet_not_accepted

packet_crc_error

symbol_error

buf_av1

ef_ptr[15:0]
port_response_timeout[23:0]

rxclk

at
xo

vf

buf_av2
buf_av3

phy_mnt_s_chipselect
phy_mnt_s_waitrequest

phy_mnt_s_read

phy_mnt_s_address[16:2]
phy_mnt_s_write

phy_mnt_s_readdata[31:0]
phy_mnt_s_writedata[31:0]

rx_errdetect
gxbpll_locked

char_err

cal_blk_clk
reconfig_clk
reconfig_togxb
reconfig_fromgxb

Avalon-MM

(1)

 These signals exist only for alt2gxb devices such as Arria GX and Stratix II GX

rx_multicast_event

Note:
1.

Altera Corporation MegaCore Version 7.1 3–3
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Interfaces The Altera RapidIO MegaCore function physical layer supports the
following interfaces:

■ RapidIO interface
■ Atlantic interface
■ Avalon-MM Slave Interface
■ XGMII interface

RapidIO Interface

The RapidIO interface is the serial interface described by the RapidIO
Trade Association. The protocol is divided into a three-layer hierarchy:
Physical layer, Transport layer, and Logical layer. This chapter focuses on
the Physical layer implementation. The serial RapidIO interface can be
used to communicate to another device that supports a RapidIO serial
interface. It can also be used to communicate to multiple devices through
a RapidIO switch. The communicating devices must operate in the same
mode, data rate, and lane configuration.

f More detailed information on the RapidIO interface is available from the
RapidIO Trade Association’s website at www.rapidio.org.

Atlantic Interface

The Atlantic interface, an Altera protocol, is the data plane that allows
access to the physical layer. A user implemented Transport layer function
uses the Atlantic interface to communicate with the Physical layer. For 1×
serial variations, the Atlantic interface is always 32 bits. For 4× serial
variations supporting up to 1.25 GBaud of throughput, the Atlantic
interface is 32 bits. For 4× serial variations, the Atlantic interface is 64 bits.

The Atlantic interface is a full-duplex synchronous protocol. The transmit
Atlantic interface supports 32- and 64-bit packet data transfers. It works
as a slave-sink interface. The receive Atlantic interface supports 32- and
64-bit packet data transfers. It works as a slave-source interface.

The arxdav signal is asserted when a full packet is available to be read
from the receive buffer.

If the arxena signal is asserted when the arxdav signal is not asserted,
the first word becomes available on the Atlantic interface, and the
arxval signal is asserted as soon as the first 64-byte block of a packet (or
the full packet if it is smaller than 64 bytes) is ready to be read out of the
receive buffer. Thus, the MegaCore function does not wait for the full
packet before reading out the first block.

3–4 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Interfaces

Atlantic Interface Error Management

For variations that do not implement the transport layer, to minimize
latency the MegaCore function can start transmitting a packet before it is
completely received on the transmit Atlantic interface. The MegaCore
function also can start outputting the packet on the receive Atlantic
interface before the packet is completely received from the link partner on
the RapidIO interface. In this case, if a packet error is detected after
transmission starts from the Atlantic link but before the entire packet has
been received, the arxerr and arxeop signals are asserted and the
packet is terminated. User logic should drop and ignore packets that have
the arxerr signal asserted during transmission because the content of
these packets is not reliable.

Similarly, if the user logic needs to abort the transmission of a packet that
it has started to transfer to the MegaCore function through the transmit
Atlantic interface, the user logic needs to assert the atxerr and atxeop
signals. If the packet transmission has already started on the RapidIO
port, the packet is aborted with a stomp control symbol.

The transmit Atlantic interface has an additional output signal, atxovf,
that indicates a transmit buffer overflow condition. The atxovf output
signal is asserted and the packet is dropped. If an attempt to start
transmitting a new packet is made by asserting atxena and atxsop
three clock cycles or more after atxdav is de-asserted, the packet will be
dropped and the atxovf is output.

Atlantic Interface Error Handling Signals

The arxerr signal can be asserted for a variety of reasons, listed below.
As an Atlantic signal, it is synchronous to arxclk and is only valid when
arxval is asserted. Once asserted, arxerr stays asserted until the end
of the packet when arxeop is asserted.

■ CRC error—When a CRC error is detected, the packet_crc_error
signal is asserted for one rxclk clock period. The
packet_not_accepted signal is asserted when the
packet_not_accepted symbol is transmitted. The arxerr signal
is also asserted when the packet is read out of the Atlantic interface.

■ Stomp—The arxerr signal is asserted if a stomp control symbol is
received in the midst of a packet, causing it to be prematurely
terminated. The arxerr signal is also asserted for any packet
received between the stomp symbol and the following
restart-from-retry symbol.

Altera Corporation MegaCore Version 7.1 3–5
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

■ Packet size—If a received packet exceeds the allowable size, it is cut
short to the maximum allowable size (276 bytes total), and arxerr
and arxeop are asserted on the last word.

■ Outgoing symbol buffer full—Under some congestion conditions,
there may be no space in the outgoing symbol buffer for the
packet_accepted symbol. If this happens, the packet cannot be
acknowledged and will have to be retried. Thus, arxerr is asserted
to indicate to the downstream circuit that the received packet should
be ignored because it will be retried.

■ Symbol error —If an embedded symbol is errored, arxerr is
asserted and the packet in which it is embedded is retried.

■ Character error—If an errored character (an invalid 10-bit code, or a
character of wrong disparity) or an invalid character (any control
character other than the non-delimiting SC control character inside a
packet) is received within a packet, the arxerr and arxeop signals
are asserted and the rest of the packet is dropped.

f For more information on these interfaces, refer to the FS13: Atlantic
Interface, and the Avalon Memory-Mapped Interface Specification available
at www.altera.com.

Avalon-MM Slave Interface

The 32-bit Avalon-MM slave interface is a control plane that allows access
to the RapidIO MegaCore's internal registers. The CARs and CSRs
defined in the RapidIO Physical Layer Specification are a subset of the
registers that this interface supports. The full register set that is accessible
through this interface is described in the section, “Software Interface” on
page 3–32. The Avalon transactions supported by this interface are single
reads and writes with variable latency.

XGMII External Transceiver Interface

The XGMII interface is the external transceiver interface that connects the
RapidIO MegaCore function to the external physical coding sublayer
(PCS) and physical media attachment (PMA) sublayer devices when an
internal serial transceiver is not used.

The external transceiver interface provides 8-bit transmit and receive data
paths per serial lane, plus the necessary control and clocking signals to
allow bidirectional data transfers. This interface is similar to the 10 gigabit
media independent interface (XGMII) for the 4× serial RapidIO protocol
and gigabit media independent interface (GMII) for the 1× serial RapidIO
protocol using either HSTL Class 1 or SSTL Class 2 IO drivers. The XGMII

3–6 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Interfaces

supports one control signal per 8 bits for the external transceiver encoder,
and one control and one error signal per 8 bits from the external
transceiver decoder.

On the transmit side, the 8-bit data (td) and 1-bit control (tc) signals per
lane are transmitted on the rising and falling edges of a center aligned
clock, tclk. The external transmitter can be disabled by asserting the
phy_dis signal high to force line errors. The external transmitter can be
disabled when the Initialization State Machine (described in paragraph
4.7.3 of Part 6: Physical Layer 1×/4× LP Serial Physical Layer Specification,
Revision 1.3) transitions to the SILENT state and drives the phy_dis
signal high to simulate turning off the output driver.

On the receive side, the 8-bit data (rd) and 1-bit control (rc) signals per
lane are received and sampled on the rising and falling edges of a center
aligned clock, rclk. Separate error (rerr) and rclk signals are
associated with each lane.

f See “Signals” on page 3–27 for further details. Additionally, Appendix C
describes the timing requirements for the XGMII interface.

Clock Domains

In addition to the high-speed clock domains inside the Arria GX,
Stratix GX or Stratix II GX transceiver, the 1× serial RapidIO MegaCore
function comprises six clock domains: two transceiver clocks, two
internal global clocks, and two Atlantic interface clocks. There is an
additional clock, the clock domain for the phy_mnt_s Avalon-MM
interface. See Figure 3–2 for the clock signals in a 1x serial RapidIO
MegaCore function.

Altera Corporation MegaCore Version 7.1 3–7
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Figure 3–2. 1× Serial Clock Domains

Notes to Figure 3–2
(1) Input clocks (user supplied)
(2) Clocks rclk and tclk exist only when using an external SerDes with XGMII

tclk(2)

atxclk(1)

arxclk(1)

clk(1)

Clock Domain
Boundary

txclk

txgxbclk (1x only)

phy_mnt_s_clk(1)

rxgxbclk (1x only)

rclk(1)(2)

Interface RIO core

rxclk

PHY
Layer 1

PHY
Layer 2

PHY
Layer 3

Serial (internal SerDes)

Transmit

Receive

Physical Layer Registers

Clock descriptions:
txgxbclk: Transmitter transceiver clock
rxgxbclk: Receiver transceiver clock
txclk: Transmitter internal global clock (same as clk)
rxclk: Receiver internal global clock
atxclk: Atlantic interface clock—greater than, or equal to txclk
arxclk: Atlantic interface clock—greater than, or equal to rxclk
phy_mnt_s_clk: Avalon-MM interface clock for register access
rclk: XGMII receive clock
tclk: XGMII transmit clock

3–8 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Interfaces

The 4x serial RapidIO MegaCore function has multiple clock domains: a
main system clock (txclk); a recovered clock, rxclk, two Atlantic
interface clocks (atxclk and arxclk), two high-speed transceiver
clocks, and the phy_mnt_s_clk Avalon-MM interface clock.

1 Stratix GX has multiple recovered clocks within the core for 4x
variants.

1 Stratix II GX uses 0ppm Quartus II settings as specified in the
constraints.tcl file

1 The txclk clock is the internal system clock of the Physical
layer. It is derived from the clk reference clock by division by
one, two, or four, depending on the configuration of the
MegaCore IP. Division is performed by a flip-flop-based circuit
and does not require a dedicated PLL.

Figure 3–3 shows a top-level view of the clock domains and how they
relate to each other.

The main system clock drives the transmit-side logic, and serves as a
reference clock for the Arria GX, Stratix GX, or Stratix II GX transceiver’s
PLL. The PLL generates the high-speed transmit clock and the reference
clocks for the receive-side high-speed deserializer clock and recovery unit
(CRU). The CRU generates the recovered clock (rxclk) that drives the
receive-side logic.

Altera Corporation MegaCore Version 7.1 3–9
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Figure 3–3. 4× Serial Clock Domains

Note to Figure 3–3:
(1) For 64-bit Atlantic interface.

Baud Rates

The serial RapidIO specification specifies baud rates of 1.25, 2.5, and
3.125 Gbaud. Table 3–1 shows the relationship between baud rates and
internal clock rates for 1× serial.

arxclk

rd arxdat

td atxclk

atxdat

Stratix GX Transceiver

S
e
ri

a
l I

n
te

rf
a
ce

s

4

4

Transmitter

PLL
x10

Receiver

RapidIO Core

txclk

To Transmitter Logic

32+4 TX Data

rxclk

To Receiver Logic

rxclkout[0]

32+4+4RX Data

A
tla

n
tic In

te
rfa

ce
s

txclk (Reference Clock)

x20 (1)

64+8 (1)

64+8 (1)

Table 3–1. Baud Rates and Internal Clock Rates for 1× Serial

Baud Rates
(Gbaud)

Transceiver Clocks (MHz)
(clk/txgxbclk/rxgxbclk)

Internal Clocks (MHz)
(txclk/rxclk)

3.125 (2) 156.25(2) 78.125(2)

2.5 125 62.5

1.25 62.5/125(1) 31.25

Note:
(1) 62.5 MHz for Arria GX or Stratix II GX devices; 125 MHz for Stratix GX devices.
(2) This rate is not supported for Arria GX devices.

3–10 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Interfaces

Table 3–2 shows the relationship between baud rates and internal clock
rates for 4× serial.

f For more information on using high-speed transceiver blocks, refer to
Volume 2, Section I, of the Arria GX Device Handbook, Stratix GX Device
Handbook or the Stratix II GX Device Handbook.

Resets

All reset signals can be asserted asynchronously to any clock. However,
most reset signals must be deasserted synchronously to a specific clock.
The Atlantic interface resets, for example, should be deasserted on the
rising edge of the corresponding clock.

f See “Signals” on page 3–27 for further details.

Variations of the serial RapidIO MegaCore function that use the internal
transceiver have a dedicated reset control module called riophy_reset to
handle the specific requirements of the internal transceiver module. This
reset control module is provided in the riophy_reset.v clear-text Verilog
HDL source file, and is instantiated inside the top-level module found in
the clear text <variation_name>_rio.v Verilog HDL source file.

Variations of the serial RapidIO MegaCore function that use an external
transceiver do not require this special reset control module.

The riophy_reset module controls all of the RapidIO MegaCore function's
internal reset signals. In particular, it generates the recommended reset
sequence for the altgxb or alt2gxb high-speed serial I/O
megafunction.

Table 3–2. Baud Rates and Internal Clock Rates for 4× Serial

Baud Rates
(Gbaud)

Internal Clocks (MHz)
(clk/txclk/rxclk)

64-Bit Atlantic Interface

3.125(1) 156.25 (1)

2.5 125

1.25 62.5

Note:
(1) This rate is not supported for Arria GX devices.

Altera Corporation MegaCore Version 7.1 3–11
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

The sequence of events when reset_n is asserted, and as the MegaCore
function comes out of reset after reset_n is deasserted, are described in
the following steps.

When reset_n is asserted:

1. The internal signals rxreset_n and txreset_n are asserted to
keep the riophy_dcore module in reset until the clocks it relies on
are stable.

2. The gxbpll_areset, txdigitalreset, rxdigitalreset
and rxanalogreset signals are asserted.

When reset_n is deasserted:

1. Wait at least 1 millisecond (ms); Stratix GX only.

2. Deassert gxbpll_areset; Stratix GX only.

3. Wait for gxbpll_locked to be asserted.

4. Deassert txdigitalreset and rxanalogreset.

5. Wait for rx_freqlocked to be asserted.

6. Wait for at least 2 ms.

7. Deassert rxdigitalreset.

8. Deassert rxreset_n and txreset_n.

The MegaCore function is now operating normally.

When, as part of its normal operation, the Initialization State Machine
(described in paragraph 4.7.3 of Part 6: Physical Layer 1×/4× LP Serial
Physical Layer Specification, Revision 1.3) transitions to the SILENT state
and drives the link_drvr_oe signal low, the txdigitalreset signal
of the altgxb or alt2gxb megafunction is asserted to simulate turning
off the output driver. This causes a steady stream of K28.5 idle characters
all of identical disparity to be transmitted. This, in turn, causes the
receiving end to detect several disparity errors and forces the state
machine to re-initialize, thus achieving the desired result of the SILENT
state.

If two adjacent MegaCore functions are reset one after the other, one of
the MegaCore functions may enter the Input Error Stopped state because
one of the MegaCore functions is in the SILENT state while the other is
already initialized. The initialized MegaCore function is the one to enter
the Input Error Stopped state, and subsequently recover.

f

3–12 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 1

Layer 1 The layer 1 sublayer is designed to be a full-duplex interface with serial
differential ports to a serial RapidIO device or MegaCore function. This
section gives a block-by-block description of the layer 1 functions.
Figure 3–4 shows a detailed block diagram of the layer 1.

Figure 3–4. Layer 1 Data Flow Block Diagram

Receiver

The layer 1 receiver sublayer receives and passes packets to the layer 3,
and passes control symbols to the layer 2.

CRC Check

S0 Symbol
Interface

16

TX RX

Serial RapidIO Interface

Multiplexer & Buffer

13

13

32

16

32

32

32

32

Transmitter Transceiver

Initialization
State Machine

Packet/Symbol Assembling
Idle Character Insertion

CRC
Generation/

Insertion

Idle Sequence
Generation

Atlantic Interface/
Packet Data Packing

32

From Packet
FIFO Buffer

From Symbol
FIFO Buffer

S1 Symbol
Interface

6

6

Serial RapidIO Interface

Receiver Transceiver

Demultiplexer & Buffer

Lane Synchronization
State Machine

Packet/Symbol Delineation
Idle Character Extraction

32

S0 Symbol
Interface

Atlantic Interface/
Packet Data Packing

S1 Symbol
Interface

3213 6

13

To Symbol
FIFO Buffer

6 32

To Packet
FIFO Buffer

txgxbclk rxgxbclk

txclk rxclk

Altera Corporation MegaCore Version 7.1 3–13
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Clock & Data

The layer 1 receiver requires two clock domains: an Arria GX, Stratix GX,
or Stratix II GX megafunction clock (rxgxbclk), and an internal global
clock (rxclk).

Receiver Transceiver

The receiver transceiver is an embedded megafunction within the
Arria GX, Stratix GX, or Stratix II GX FPGA. Serial data from differential
input pins is fed into the clock and recovery unit (CRU) to detect clock
and data. Recovered data is deserialized into 10-bit code groups and sent
to the pattern detector and word aligner block to detect word boundaries.
Properly aligned 10-bit code groups are then 8B/10B decoded into 8-bit
characters and converted to 16-bit data via the 8-to-16 demultiplexer.
Figure 3–5 shows the structure and the data flow of the receiver
transceiver.

Figure 3–5. Receiver Transceiver Structure

Lane Synchronization State Machine

The lane synchronization state machine monitors the lane
synchronization status. If the signal lane_sync is asserted, the lane is
synchronized and the valid data is presented at the input path.

Packet/Symbol Delineation & Idle Character Extraction

The packet/symbol delineation and idle character extraction block
delineates the input data into two data streams. One goes into the packet
FIFO buffer, and the other goes into the symbol FIFO buffer.

8 to 16
Demultiplexer

Serial to Parallel Pattern Detector/
Word Aligner

8B/10B
Decoder

Clock & Data
Recovery

8 10 1016

Input
Data

Differential Pins
Serial Input

Data

3–14 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 1

This block also extracts idle characters from the data stream. It detects
stomp symbol and packet size error, and asserts the corresponding error
signals to layer 2. This block checks the 5-bit CRC at the end of the 24-bit
symbol that covers the first 19 bits. The polynomial x5+x4+ x2+ 1 is used.
If the CRC is incorrect, the error signal symbol_error is asserted.

CRC Check

The RapidIO specification specifies that the Physical layer must add a
16-bit CRC to the end of all packets. The size of the packet determines
how many CRCs are required.

■ For packets of 80 bytes or fewer—header and payload data
included—a single 16-bit CRC is appended to the end of the packet.

■ For packets longer than 80 bytes—header and payload data
included—two 16-bit CRCs are inserted after the 80th transmitted
byte. Two null padding bytes are appended to the packet before
transmission if the resulting packet size is not an integer multiple of
4 bytes.

The middle CRC of a received packet is not removed in variations of the
MegaCore function that include only the Physical layer. The Physical
layer cannot determine whether the last bytes of a received packet are
CRC or padding without looking at the transport and logical fields of the
packet; the final CRC and padding bytes (if present) are not removed
from the received packet and remain on the output of the receive Atlantic
interface.

However, in variations of the MegaCore function that include Logical
layers, the Transport layer removes the middle CRC after the 80th byte (if
present), and the Logical layer modules remove the final CRC and
padding bytes (if present).

The CRC Check block uses the CCITT polynomial x16 + x12 + x5 + 1 to
check the 16-bit CRCs that cover all packet header bits (except the first six
bits) and all data payload, and flags CRC and packet size errors.

Atlantic Interface/Packet Data Packing

This block sends 32- or 64-bit data to the upper layer via a 32- or 64-bit
master-source Atlantic interface. It generates all required handshake
signals for the interface.

Altera Corporation MegaCore Version 7.1 3–15
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

S0 & S1 Symbol Interface

These blocks receive stype0 control symbols and stype1 control
symbols, respectively. These blocks send control symbols to the upper
layer via a simple dual-port FIFO interface.

Transmitter

The layer 1 transmitter sub-layer assembles packets and control symbols,
received over a slave-source Atlantic interface, into one message and
passes it to the serial RapidIO interface.

Clock and Data

For non-XGMII modes, the layer 1 transmitter uses two clocks: an
Arria GX, Stratix GX, or Stratix II GX megafunction clock (txgxbclk),
and an internal global clock (txclk).

Transmitter Transceiver (NonXGMII Mode)

The transmitter transceiver is an embedded megafunction within the
Arria GX, Stratix GX or Stratix II GX FPGA. The 16-bit parallel output
data is internally multiplexed to 8-bit data and 8B/10B encoded. The 10-
bit encoded data is then serialized and sent to differential output pins.
Figure 3–6 shows the transmitter transceiver structure and data flow
direction.

Figure 3–6. Transmitter Transceiver Structure

Initialization State Machine

The serial port must be initialized before it can receive valid data. This
state machine works closely with the lane synchronization state machine
to monitor the lane_sync signal. When the lane_sync signal is
asserted, the state machine enters the 1× or 4× mode state. The
port_initialized signal is also asserted.

16 to 8
Multiplexer

Parallel to Serial8B/10B
Encoder

8 1016

Output
Data

Differential Pins
Serial Output

Data

3–16 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 1

Packet/Symbol Assembling & Idle Character Insertion

The packet/symbol assembling and idle character insertion block
assembles packet data and control symbol into a proper output format,
with corresponding delimiting symbols and special characters. It
generates 5 bit CRCs to cover the 19-bit symbol and appends the CRC at
the end of the symbol. The polynomial x5+x4+ x2+ 1 is used. It inserts an
idle sequence if both the packet FIFO and symbol FIFO buffers are empty.
During port initialization, it continues to send idle characters until the
port is initialized. This module is also responsible for inserting status
control symbols at least once every 1,024 transmitted code groups and the
rate compensation sequence at least every 5,000 code groups or columns.

Idle Sequence Generation

When there is no data to transmit, layer 1 automatically inserts idle
characters to transmit. As stated in Part 6: Physical Layer 1×/4× LP Serial
Physical Layer Specification of the RapidIO Interconnect Specification,
Revision 1.3, February 2005:

“The 1x idle sequence consists of a sequence of the code-groups /K/, /A/, and /R/
(the idle code-groups) and shall be used by ports in operating is 1x mode. The 4x
idle sequence consists of a sequence of the columns ||K||, ||A||, ||R|| (the
idle columns) and shall be used by ports operating in 4x mode. Both sequences
shall comply with the following requirements:

1. The first code-group (column) of an idle sequence generated by a port
operating in 1x mode (4x mode) shall be a /K/ (||K||). The first code-
group (column) shall be transmitted immediately following the last code-
group (column) of a packet or delimited control symbol.

2. At least once every 5000 code-groups (columns) transmitted by operating
in 1x mode (4x mode), an idle sequence containing the /K/R/R/R/
code-group sequence (||K||R||R||R|| column sequence) shall be
transmitted by the port. This sequence is referred to as the “compensation
sequence”.

3. When not transmitting the compensation sequence, all code-groups
(columns) following the first code-group (column) of an idle sequence
generated by a port operating in 1x mode (4x mode) shall be a pseudo-
randomly selected sequence of /A/, /K/, and /R/ (||A||, ||K||, and
||R||) based on a pseudo-random sequence generator of 7th order or
greater and subject to the minimum and maximum /A/ (||A||) spacing
requirements.

Altera Corporation MegaCore Version 7.1 3–17
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

4. The number of non /A/ code-groups (non ||A|| columns) between /A/
code-groups (||A|| columns) in the idle sequence of a port operating in 1x
mode (4x mode) shall be no less than 16 and no more than 32. The number
shall be pseudo-randomly selected, uniformly distributed across the range
and based on a pseudo-random sequence generator of 7th order or greater.”

CRC Generation & Insertion

The RapidIO specification specifies that the Physical layer must add a
16-bit CRC to the end of all packets. The CCITT polynomial x16 + x12 + x5

+ 1 is used for CRC generation. This block generates a CRC that covers all
packet header bits, (except the first six bits) and all data payload. The size
of the packet determines how many CRCs are required.

■ For packets of 80 bytes or fewer—header and payload data
included—a single 16-bit CRC is appended to the end of the packet.

■ For packets longer than 80 bytes—header and payload data
included—two 16-bit CRCs are inserted after the 80th transmitted
byte. Two null padding bytes are appended to the packet before
transmission if the resulting packet size is not an integer multiple of
4 bytes.

Atlantic Interface/Packet Data Packing

The transmitter receives packet data from upper layers via a 32- or 64-bit
master-sink Atlantic interface. It generates all required handshake signals
for the interface.

S0 & S1 Symbol Interface

The transmitter receives control symbols from upper layers via 13-bit and
6-bit FIFO interfaces. The 13-bit interface is for stype0 control symbols,
and the 6-bit interface is for stype1 control symbols. It also decodes packet
termination symbols: stomp, restart from retry, and link request.

Layer 2 The layer 2 sublayer provides flow control for the serial RapidIO Physical
layer. This section gives a block-by-block description of the layer 2.
Figure 3–7 shows a detailed block diagram of the layer 2.

3–18 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 2

Figure 3–7. Layer 2 Data Flow Block Diagram

Receiver

The layer 2 receiver sublayer is responsible for processing incoming
control symbols. It also monitors incoming packet ackIDs to maintain
proper flow.

Clock and Data

The layer 2 receiver comprises one clock domain: an internal global clock
(rxclk).

Symbol FIFO Buffer

Incoming 13-bit stype0 control symbols and 6-bit stype1 control symbols
are stored in their respective symbol FIFO buffers by the layer 1. These
symbols are retrieved by the layer 2 for further processing.

Symbol Control

On the receive side, the layer 2 keeps track of the sequence of ackIDs and
tells the layer 3 which packets have been acknowledged, and which
packets to drop.

Symbol Control

TX RX

Symbol FIFO
Buffer

Error Recovery
Control

 32

32
13

Error Recovery
Control

Packet
Control

Layer 3
Buffer Control

Packet
Control

Layer 3
Buffer Control

13

13

Atlantic InterfaceAtlantic Interface

(Packet
Data)

(Packet
Data)

Symbol FIFO
Buffer

6

6

Symbol FIFO
Buffer

13

13

Symbol FIFO
Buffer

6

6

6 13 6

Altera Corporation MegaCore Version 7.1 3–19
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Packet Control

The packet control block uses a sliding window protocol to handle
incoming and outgoing packets. Each incoming and outgoing packet has
an attached 5-bit ackID in the header field. The value of ackID is zero at
reset. It increments after each packet is sent out, and rolls over to zero
after it has reached 31. All packets can only be accepted by the receiver in
the sequential order specified by the ackID. If a packet cannot be
accepted by the receiver due to buffer congestion, a packet retry request
control symbol with the lost ackID is sent to the transmitter. The sender
then retransmits all packets starting from the lost ackID.

Error Recovery Control

A packet or control symbol corrupted by an incorrect CRC, or by a CRC-5
error, must be recovered. During the error recovery process, two
interdependent state machines are required to operate the input and
output ports, respectively.

When an incoming packet or control symbol is corrupted, the receiver
sends a packet not accepted symbol to the sender. A link-request
link-response control symbol pair is then exchanged between the link
partners and the sender then retransmits all packets starting from the
ackID of the corrupted packet.

Transmitter

The layer 2 transmitter sublayer is responsible for creating and
transmitting outgoing control symbols. It also monitors outgoing packet
ackIDs to maintain proper flow.

Clock and Data

The layer 2 transmitter comprises one clock domain: an internal global
clock (txclk).

Symbol FIFO Buffer

The layer 2 provides these symbol FIFO buffers to store outgoing 13-bit
stype0 control symbols and 6-bit stype1 control symbols. These symbols
are retrieved by the layer 1, and sent out via the serial RapidIO interface.

3–20 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 3

Symbol Control

On the transmit side, the layer 2 keeps track of the sequence of ackIDs
and tells the layer 3 which packet to send with what ackID. The layer 2
also tells the layer 3 which packet has been acknowledged, and thus can
be discarded in the buffers.

Packet Control

The packet control block uses a sliding window mechanism to handle
incoming and outgoing packets. This block also sets the time-out counters
for each outgoing packet. When a time-out occurs for an outgoing packet,
the packet control block treats it as an unexpected acknowledge control
symbol, and starts the recovery process.

Error Recovery Control

Protocol violations or detection of a corrupted control symbol or packet
cause the error recovery process to be initiated. During the error recovery
process, two interdependent state machines are required to operate the
input and output ports, respectively.

For error recovery, transmitted packets are held by the output port for
possible retransmission in case an error is detected by the receiving
device. The packets are held until the sending device receives a packet-
accepted control symbol for that packet. If a packet is retransmitted, the
time-out counter is reset for that retransmitted packet.

Layer 3 The layer 3 sublayer provides buffers, and buffer management for packet
data. This section briefly describes the layer 3 functions.

Receiver

The layer 3 receiver sublayer accepts packet data from the layer 1
sublayer, and stores it in its buffers for the user. The receiver buffer is
partitioned in 64-byte blocks that are allocated from a free queue as
required, and returned to the free queue when no longer needed. Up to
five 64-byte blocks can be used to store a packet.

The RapidIO Specification requires that at least one packet, of higher
priority than all previously transmitted packets, always be able to pass
through.

To meet this requirement, the layer 3 receiver sublayer accepts or retries
received packets based on their priority and the receive buffer’s fill level.

Altera Corporation MegaCore Version 7.1 3–21
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

The receiver bases its decision to accept or retry packets on three
programmable threshold levels: Threshold_2, Threshold_1, and
Threshold_0.

■ Packets of priority 3 (highest priority) are retried only if the receiver
buffer is full.

■ Packets of priority 2 are retried only if the number of available free
64-byte blocks is less than Threshold_2.

■ Packets of priority 1 are retried only if the number of available free
64-byte blocks is less than Threshold_1.

■ Packets of priority 0 (lowest priority) are retried only if the number
of available free 64-byte blocks is less than Threshold_0.

The default threshold values are:

■ Threshold_2 = 10
■ Threshold_1 = 15
■ Threshold_0 = 20

The threshold values are programmed through the MegaWizard interface
by turning off Auto-configured from receiver buffer size on the Physical
layer page.

To comply with the RapidIO specification, the threshold values must
increase monotonically by at least the size of one packet (see Figure 3–8
on page 3–22). The MegaWizard Plug-In enforces the consistency checks.

■ threshold_2 > 9
■ threshold_1 > threshold_2 + 4
■ threshold_0 >threshold_1 + 4
■ threshold_0 < Number of available buffers

3–22 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 3

Figure 3–8. Receiver Threshold Levels

Clock & Data

The layer 3 receiver sublayer comprises two clock domains: an internal
global clock (rxclk), and an Atlantic interface clock (arxclk). The
buffer provides clock decoupling.

Receiver Buffers

The buffer size can be configured to 4, 8, 16, or 32 Kilobytes.

The following fatal errors cause the receiver buffer to be flushed, and any
stored packets to be lost:

Prio 0

Prio 1

Prio 2

Retry Prio 3

Altera Corporation MegaCore Version 7.1 3–23
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

■ Reception of a port-response control symbol with the port_status
set to Error.

■ Reception of a port-response control symbol with the port_status
set to OK but the ackid_status set to an ackid that is not pending
(transmitted but not acknowledged yet).

■ Transmitter times out while waiting for link-response.
■ Receiver times out while waiting for link-request.
■ Reception of four link-request control symbols with the cmd set to

reset-device in a row.

f See Table 1–3 on page 1–2 and Table 1–4 on page 1–3 for examples of
memory usage depending on buffer size.

Transmitter

The layer 3 transmitter sub-layer accepts packet data from the Atlantic
interface, and stores it into its buffer for the layer 1 sublayer.

The RapidIO Specification requires that newly arrived, higher priority
packets be transmitted ahead of the retransmission of previously
transmitted, but not acknowledged, (retried) lower priority packets. The
Specification also requires that at least one packet, of higher priority than
all previously transmitted packets, always be able to pass through. To
meet these requirements, the layer 3 transmitter sublayer includes four
transmit queues and four retransmit queues, one for each priority level.

Transmit & Retransmit Queues

As packets are written to the transmitter's Atlantic interface, they are
added to the tail end of the appropriate priority transmit queue. The
transmitter always transmits the packet at the head of the highest priority
non-empty queue. Once transmitted, the packet is moved to the
corresponding priority retransmit queue.

When a packet-accepted control symbol is received for a non-
acknowledged transmitted packet, the accepted packet is removed from
its retransmit queue.

If a packet-retry control symbol is received, all of the packets in the
re-transmit queues are returned to the head of the corresponding transmit
queues. The transmitter sends a restart-from-retry symbol, and the
transmission resumes with the highest priority packet available, possibly
not the same packet that was originally transmitted and retried. If higher
priority packets have been written to the Atlantic interface since the
retried packet was originally transmitted, they will automatically be
chosen to be transmitted before lower priority packets are retransmitted.

3–24 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Layer 3

The layer 2 ensures that no more than 31 unacknowledged packets are
transmitted, and that the AckIDs are used and acknowledged in
incrementing order.

Transmit Buffer

The transmit buffer is the main memory in which the packets are stored.
The buffer is partitioned into 64-byte blocks to be used on a first-come,
first-served basis by the transmit and retransmit queues.

The following fatal errors cause the transmit buffer to be flushed, and any
stored packets to be lost:

■ Reception of a port-response control symbol with the port_status
set to Error.

■ Reception of a port-response control symbol with the port_status
set to OK but the ackid_status set to an ackid that is not pending
(transmitted but not acknowledged yet).

■ Transmitter times out while waiting for link-response.
■ Receiver times out while waiting for link-request.
■ Reception of four link-request control symbols with the cmd set to

reset-device in a row.

Clock & Data

The layer 3 transmitter sublayer requires two clock domains: an internal
global clock (txclk), and an Atlantic interface clock (atxclk). The
buffer provides clock decoupling.

Forced Compensation Sequence Insertion

As packet data is written to the transmit Atlantic interface, it is stored in
64-byte blocks. To minimize the latency introduced by the RapidIO
MegaCore function, transmission of the packet starts as soon as the first
64-byte block is available (or the end of the packet is reached, for packets
shorter than 64 bytes). Should the next 64-byte block not be available by
the time the first one has been completely transmitted, status control
symbols are inserted in the middle of the packet in lieu of idles as the true
idle sequence can only be inserted between packets, and cannot be
embedded inside a packet. This, along with other embedded symbols,
such as packet-accepted symbols, causes the transmission of the packet to
be stretched in time.

Compensation sequences must be inserted every 5,000 code groups or
columns, and must be inserted between packets. The serial RapidIO
MegaCore function checks whether the 5,000 code group deadline is
approaching before the transmission of every packet, and inserts a

Altera Corporation MegaCore Version 7.1 3–25
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

compensation sequence when the number of code groups or columns, left
before the required compensation sequence insertion, falls below a
specified threshold.

That threshold is chosen to allow time for the transmission of a packet of
maximum legal size (276 bytes), even when it is stretched by the insertion
of a significant number of embedded symbols. (Up to 37 embedded
symbols, or 148 bytes, theoretically need to be embedded should the
traffic in the other direction consist of minimum-sized packets.)

In some cases, for example when using an extremely slow transmit
Atlantic clock, the transmission of a packet can be stretched beyond the
point where a compensation sequence must be inserted. When this
occurs, the packet transmission is aborted with a stomp control symbol,
the compensation sequence is inserted, and normal transmission
resumes.

When the receive side receives the stomped packet, it simply marks it as
errored by asserting arxerr.

No traffic is lost and no protocol violation occurs, but an unexpected
arxerr assertion occurs.

OpenCore Plus
Time-Out
Behavior

OpenCore Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the time-out behavior of the other megafunctions.

1 For MegaCore functions, the untethered timeout is 1 hour; the
tethered timeout value is indefinite.

Your design stops working after the hardware evaluation time expires.
After that time, the RapidIO MegaCore function behaves as if its Atlantic
interface signals atxena and arxena are tied low. All Tx and Rx packet
transfers through the physical layer are suppressed.

As a result, it is impossible for the RapidIO MegaCore function to
transmit new packets (it will only transmit idles and status control
symbols), or read packets out of the Atlantic interface. If the far end

3–26 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Parameters

continues to transmit packets, the RapidIO MegaCore function starts
refusing new packets by sending packet_retry control symbols as
soon as its receiver buffer fills up beyond the corresponding threshold.

f For more information on OpenCore Plus hardware evaluation using the
RapidIO MegaCore function, see AN 320: OpenCore Plus Evaluation of
Megafunctions.

Parameters Table 3–3 shows the RapidIO Physical layer function parameters, which
can only be set in the MegaWizard interface (see “Parameterize” on
page 2–7).

Table 3–3. Serial RapidIO Physical Layer Parameters (Part 1 of 2)

Parameter Value Description

Mode selection Serial 1× or 4× One or four lane high-speed data
serialization or deserialization (up to
3.125 Gbps)

PHY selection Arria GX PHY, Stratix GX PHY, Stratix II
GX PHY, or External transceiver

The Arria GX PHY, Stratix GX PHY, and
Stratix II GX PHY options enable serial
RapidIO variations using the built-in
transceiver blocks of the respective device
families. You can use the Configure
Transceiver... button in the Device panel of
the Physical layer page to set the analog
parameters for the transceiver block.
The External Transceiver mode enables
serial RapidIO variations with Stratix GX,
Stratix II GX, Arria GX, and any supported
device family.

Baud rate From 500 to 3.125 Mbaud (2) The baud rate is the external device’s serial
data rate. The serial RapidIO specification
specifies baud rates of 1.25 to 3.125 Mbaud.
Table 3–1 on page 3–9 shows the
relationship between baud rates and internal
clock rates.

Receive buffer 4, 8, 16, or 32 Kbytes (1) The Receive buffer parameter allows you to
select the receiver buffer size.

Transmit buffer 8, 16, or 32 Kbytes (1) The Transmit buffer parameter allows you to
select the transmitter buffer size.

Altera Corporation MegaCore Version 7.1 3–27
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Signals Tables 3–4 through 3–14 list the pins used by the serial RapidIO
MegaCore function, with the I/Os shown in Figure 3–1 on page 3–2. The
active-low signals are indicated by _n.

1 For signals and bus widths specific to your variation, refer
to the HTML file generated by the MegaWizard interface.

Tables 3–4 through 3–6 list the signals used in the serial layer 1.

Receive
priority 0/1/2
retry threshold

Threshold_2 > 9
Threshold_1 > Threshold_2 + 4
Threshold_0 > Threshold_1 + 4
Threshold_0 < (2 ** p_rxbuf_addr_width)

When the number of available free 64-byte
blocks in the receive buffer is less than one
of these thresholds, the receiver refuses
incoming packets of the corresponding
priority level by sending packet-retry
symbols. These priorities can be set
automatically by turning on the Auto-
configured from receiver buffer size:
option of the Receive Priority Retry
Threshold panel on the Physical layer page.

Notes to Table 3–3:
(1) Buffers are implemented in embedded RAM blocks. Depending on the size of the device used, the maximum

buffer size may be limited by the number of available RAM blocks.
(2) Arria GX does not support 3.125 Mbaud.

Table 3–3. Serial RapidIO Physical Layer Parameters (Part 2 of 2)

Parameter Value Description

Table 3–4. Serial RapidIO Interface Layer 1 Signals

Signal Direction Description

rd Input Receive data—a unidirectional data receiver. It is connected to
the td bus of the transmitting device.

td Output Transmit data—a unidirectional point-to-point driver to transmit
the packet information. The td bus of one device is connected to
the rd bus of the receiving device.

Table 3–5. External Transceiver Interface Signals (Part 1 of 2)

Signal Direction Description

td Output Transmit data. 8-bit (1×) or 32-bit (4×) parallel data interface.

tc Output Transmit control. 1 bit for 1×; 4 bits for 4×.

tclk Output Transmit DDR center aligned clock.

phy_dis Output Transmit external transceiver PHY disable.

3–28 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Signals

Table 3–7 lists the signals used in the layer 2.

rd Input Receive data. 8-bit (1×) or 32-bit (4×) parallel data interface.

rc Input Receive control. 1 bit for 1×; 4 bits for 4×.

rclk Input Recovered DDR center aligned clock. 1 bit for 1×; 4 bits for 4×.

rerr Input Receive error. 1 bit for 1×; 4 bits for 4×.

Table 3–6. Serial Layer 1 Global Signals

Signal Direction Description

clk Input Reference clock. See Table 3–1 and Table 3–2 for frequency
requirements.

reset_n Input Active-low reset. reset_n can be asserted asynchronously but
must be deasserted synchronously with clk.

rxclk Output Receive-side recovered clock.

txclk Output The internal system clock of the Physical layer. It is derived from
the clk reference by division of one, two, or four, depending on the
configuration of the MegaCore. Division is performed by a flip-
flop-based circuit and thus does not require a dedicated PLL.

port_initialized Output This signal indicates that the serial RapidIO initialization
sequence has completed successfully.
This is a level signal asserted high while the initialization state
machine is in the 1X_MODE or 4X_MODE state, as described in
paragraph 4.6 of Part VI of the RapidIO Specification.

Table 3–5. External Transceiver Interface Signals (Part 2 of 2)

Signal Direction Description

Table 3–7. Physical Layer Slave Avalon-MM Interface Signals

Signal Direction Description

phy_mnt_s_clk Input Clock

phy_mnt_s_chipselect Input Slave chip select

phy_mnt_s_waitrequest Output Wait request

phy_mnt_s_read Input Read enable

phy_mnt_s_write Input Write enable

phy_mnt_s_address[16:0] Input Address bus

phy_mnt_s_writedata[31:0] Input Write data bus

phy_mnt_s_readdata[31:0] Output Read data bus

Altera Corporation MegaCore Version 7.1 3–29
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Tables 3–8 and 3–9 list the signals used in the layer 3 Atlantic receive and
transmit interfaces.

Table 3–8. Serial Layer 3 Atlantic Receive Interface Signals

Signal Direction Description

arxclk Input Receive clock, which is greater than or equal to rx_clk.

arxreset_n Input Receive active-low reset. arxreset_n can be asserted asynchronously
but should be deasserted synchronously to arxclk.

arxena Input Receive enable.

arxdav Output Receive data available. The arxdav signal is asserted when at least one
complete packet is available to be read from the receive buffer. It is
deasserted when the receive buffer does not have at least one complete
packet available.

arxdat Output Receive data bus.

arxval Output Receive data valid.

arxsop Output Receive start of packet.

arxeop Output Receive end of packet.

arxmty Output Number of invalid bytes on arxdat.

arxerr Output Receive data error.

arxwlevel(1) Output Receive buffer write level (number of free 64-byte blocks in the receive
buffer).

Note to Table 3–8:
(1) The following equation: log2(size of the receive buffer in bytes/64)+1 determines the number

of bits. For example, a receive buffer size of 16 KBytes would give: log2(16×1024/64)+1= 9 bits (i.e.,
[8:0]).

Table 3–9. Serial Layer 3 Atlantic Transmit Interface Signals (Part 1 of 2)

Signal Direction Description

atxclk Input Transmit clock, which is greater than or equal to tx_clk.

atxreset_n Input Transmit active-low reset. atxreset_n can be asserted asynchronously
but should be deasserted on the rising edge of atxclk.

atxena Input Transmit enable.

atxdav Output Transmit data available. atxdav is asserted when the transmit buffer has
space to accept at least one maximum size packet (i.e., 276 bytes). It is
deasserted when it does not have space to accept at least one maximum
size packet.

atxdat Input Transmit data bus.

atxsop Input Transmit start of packet.

3–30 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Signals

Table 3–10 shows the packet and error monitoring signals for the serial
RapidIO MegaCore function.

atxeop Input Transmit end of packet.

atxmty Input Number of invalid bytes on atxdat.

atxerr Input Transmit data error.

atxwlevel(1) Output Transmit buffer write level (number of free 64-byte blocks in the transmit
buffer).

atxovf Output Transmit buffer overflow. If a new packet is started by asserting atxena
and atxsop three or more atxclk clock cycles after atxdav is
deasserted, atxovf is asserted and the packet is ignored.

Note to Table 3–9:
(1) The following equation: log2(size of the transmit buffer in bytes/64) determines the number of

bits. For example, a transmit buffer size of 16 KBytes would give: log2(16×1024/64)= 8 bits (i.e.,
[7:0]).

Table 3–9. Serial Layer 3 Atlantic Transmit Interface Signals (Part 2 of 2)

Signal Direction Description

Table 3–10. Packet and Error Monitoring Signals

Signal Direction Clock
Domain Description

packet_transmitted Output txclk Pulsed high for one clock cycle when a packet’s
transmission completes normally.

packet_cancelled Output txclk Pulsed high for one clock cycle when a packet’s
transmission is cancelled by sending a stomp, a restart-
from-retry, or a link-request symbol.

packet_accepted Output txclk Pulsed high for one clock cycle when a packet-accepted
symbol is being transmitted.

packet_retry Output txclk Pulsed high for one clock cycle when a packet-retry
symbol is being transmitted.

packet_not_accepted Output txclk Pulsed high for one clock cycle when a packet-not-
accepted symbol is being transmitted.

packet_crc_error Output rxclk Pulsed high for one clock cycle when a CRC error is
detected in a received packet.

symbol_error Output rxclk Pulsed high for one clock cycle when a corrupted symbol
is received.

char_err Output rxclk Pulsed for one clock cycle when an invalid character or
a valid but illegal character is detected.

Altera Corporation MegaCore Version 7.1 3–31
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Table 3–11 shows the multicast event signal which is toggled when it
receives a Multicast Event control symbol.

Table 3–12 shows the receive priority retry threshold-related signals for
the serial RapidIO MegaCore function.

Table 3–13 lists the transceiver signals, which exist when a device such as
Arria GX or Stratix II GX is used.

Table 3–11. Multicast Event Signal

Signal Direction Clock
Domain Description

multicast_event_rx Output rxclk A top-level output port that is toggled for one clock cycle
when a Multicast Event control symbol is received.

Table 3–12. Priority Retry Threshold-Related Signals

Signal Direction Description

buf_av0 Output Buffer available signal; relates to priority retry threshold 0.

buf_av1 Output Buffer available signal; relates to priority retry threshold 1.

buf_av2 Output Buffer available signal; relates to priority retry threshold 2.

buf_av3 Output Buffer available signal; relates to priority retry threshold 3.

Table 3–13. Transceiver Signals

Signal Direction Description

cal_blk_clk Input The Stratix II GX transceiver’s on-chip termination
resistors in the transceiver channels are calibrated by a
single calibration block. This circuitry requires a
calibration clock. The frequency range of the
cal_blk_clk is 10 Mhz to 125 Mhz. For more
information, refer to Chapter 2 of Stratix II GX Device
Handbook, Volume 2. If external termination is being
used, this signal can be tied low.

reconfig_clk Input Reference clock for the dynamic reconfiguration
controller. The frequency range for this clock is 2.5 Mhz
to 50 Mhz. If you choose to use a
ALT2GXB_RECONFIG block in your design to
dynamically control the ALT2GXB, then this clock is
required by the ALT2GXB_RECONFIG and the RapidIO
MegaCore function.

3–32 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 3–14 shows the register-related signals for the serial RapidIO
MegaCore function.

Software
Interface

All addresses access 32-bit registers and are shown as hexadecimal
values. The access addresses for each register increment by units of 4.
Table 3–15 shows the memory map for the serial RapidIO Physical layer
function.

reconfig_togxb Input Driven from an external ALT2GXB_RECONFIG block.
Supports the selection of multiple transceiver channels
for dynamic reconfiguration. If no external
ALT2GXB_RECONFIG block is used, then you can tie
this bus to ground.

reconfig_fromgxb Output Driven to an external ALT2GXB_RECONFIG block. The
bus identifies the transceiver channel whose settings are
being transmitted to the ALT2GXB_RECONFIG block. If
no external ALT2GXB_RECONFIG block is used, then
this bus can be left untied.

Table 3–13. Transceiver Signals

Signal Direction Description

Table 3–14. Register-Related Signals

Signal Direction Description

ef_ptr[15:0] Input Most significant bits [31:16] of the PHEAD0 register.

port_response_timeout[23:0] Output Most significant bits [31:8] of PRTCTRL register.

Table 3–15. Master Memory Map

 Address Name Description

'h100 PHEAD0 Port Maintenance Block Header 0

'h104 PHEAD1 Port Maintenance Block Header 1

'h120 PLTCTRL Port Link Time-out Control CSR

'h124 PRTCTRL Port Response Time-out Control CSR

'h13C PGCTRL Port General Control CSR

'h158 ERRSTAT Port 0 Error and Status CSR

'h15C PCTRL0 Port 0 Control CSR

Altera Corporation MegaCore Version 7.1 3–33
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Table 3–16 lists the access codes used to describe the type of register bits.

Physical Layer Registers

Tables 3–17 through 3–23 describe the registers for physical layer of the
serial RapidIO MegaCore function. The offset values are as defined by the
RapidIO standard.

Table 3–16. Register Access Codes

Code Description

RW Read/write
RO Read-only
RW1C Read/write 1 to clear
RW0S Read/write 0 to set
RTC Read to clear
RTS Read to set
RTCW Read to clear/write
RTSW Read to set/write
RWTC Read/write any value to clear
RWTS Read/write any value to set
RWSC Read/write self-clearing
RWSS Read/write self-setting
UR0 Unused bits/read as 0
UR1 Unused bits/read as 1

Table 3–17. PHEAD0—Port Maintenance Block Header 0—'h100

Field Bits Access Function Default

EF_PTR 31:16 RO Hard-wired pointer to the next block in the data structure,
if one exists. The value is set from the ef_ptr input port.

ef_ptr

EF_ID 15:0 RO Hard-wired extended features ID. 'h0004

Table 3–18. PHEAD1—Port Maintenance Block Header 1—'h104

Field Bits Access Function Default

RSRV 31:0 UR0 Reserved. 0

3–34 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 3–19. PLTCTRL—Port Link Time-Out Control CSR—'h120

Field Bits Access Function Default

VALUE 31:8 RW Time-out interval value. 'hffffff

RSRV 7:0 UR0 Reserved. 0

Table 3–20. PRTCTRL—Port Response Time-Out Control CSR—'h124

Field Bits Access Function Default

VALUE 31:8 RW Time-out internal value.
PHY layer-only variations: This value is not used by the RapidIO
MegaCore function. The contents of this register are brought out to the
port_response_timeout output signal.
Variations using logical layers: The duration of the port response
timeout is equal to the 24-bit number contained in this field, multiplied
by the sysclk_timeout_prescaler, multiplied by the period of the
sysclk.
Note: avoid timeouts less than 24’h00_0010 as they may not be
reliable. The sysclk_timeout_prescalar value is set by the
MegaWizard based on the clk clock’s period such that the maximum
time value 24’hFF_FFFF corresponds to approximately 4.5
seconds.

'hffffff

RSRV 7:0 UR0 Reserved. 0

Table 3–21. PGCTRL—Port General Control CSR—'h13C (Part 1 of 2)

Field Bits Access Function Default

HOST 31 RW A host device is a device that is responsible for
system exploration, initialization, and maintenance.
Agent or slave devices are typically initialized by
host devices.
'b0—agent or slave device.
'b1—host device.

0

ENA 30 RW The master enable bit controls whether or not a
device is allowed to issue requests into the system.
If the master enable is not set, the device may only
respond to requests.
'b0—processing element cannot issue requests.
'b1—processing element can issue requests.

0

Altera Corporation MegaCore Version 7.1 3–35
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

DISCOVERED 29 RW This device has been located by the processing
element responsible for system configuration.
'b0—The device has not been previously
discovered.
'b1—The device has been discovered by another
processing element.

0

RSRV 28:0 UR0 Reserved. 0

Table 3–22. ERRSTAT—Port 0 Error and Status CSR—'h158 (Part 1 of 2)

Field Bits Access Function Default

RSRV 31:21 UR0 Reserved. 0

OUT_RTY_ENC 20 RW1C Output port has encountered a retry condition. This
bit is set when bit 18 is set.

0

OUT_RETRIED 19 RO Output port has received a packet-retry control
symbol and cannot make forward progress. This bit
is set when bit 18 is set. This bit is cleared when a
packet-accepted or a packet-not-accepted control
symbol is received.

0

OUT_RTY_STOP 18 RO Output port has received a packet-retry control
symbol and is in the output retry-stopped state.

0

OUT_ERR_ENC 17 RW1C Output port has encountered (and possibly
recovered from) a transmission error. This bit is set
when bit 16 is set.

0

OUT_ERR_STOP 16 RO Output port is in the output error-stopped state. 0

RSRV1 15:11 UR0 Reserved. 0

IN_RTY_STOP 10 RO Input port is in the input retry-stopped state. 0

IN_ERR_ENC 9 RW1C Input port has encountered (and possibly recovered
from) a transmission error. This bit is set when bit 8
is set.

0

IN_ERR_STOP 8 RO Input port is in the input error-stopped state. 0

RSRV2 7:5 UR0 Reserved. 0

PWRITE_PEND 4 UR0 This register is not implemented and is reserved. It
is always set to zero.

0

RSRV3 3 UR0 Reserved. 0

PORT_ERR 2 RW1C Input or output port has encountered an error from
which hardware was unable to recover.

0

Table 3–21. PGCTRL—Port General Control CSR—'h13C (Part 2 of 2)

Field Bits Access Function Default

3–36 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

PORT_OK 1 RO Input and output ports are initialized and the port is
exchanging error-free control symbols with the
adjacent device.

0

PORT_UNINIT 0 RO Input and output ports are not initialized. This bit
and bit 1 are mutually exclusive.

'b1

Table 3–23. PCTRL0—Port 0 Control CSR—'h15C (Part 1 of 3)

Field Bits Access Function Default

PORT_WIDTH(1) 31:30 R0 Hardware width of the port:
'b00—Single-lane port.
'b01—Four-lane port.
'b10–'b11—Reserved.

0

INIT_WIDTH(1) 29:27 R0 Width of the ports after initialized:
'b000—Single lane port, lane 0.
'b001—Single lane port, lane 2.
'b010—Four lane port.
'b011–'b111—Reserved.

PWIDTH_OVRIDE(1) 26:24 R0 Soft port configuration to override the hardware size:
'b000—No override.
'b001—Reserved.
'b010—Force single lane, lane 0.
'b011—Force single lane, lane 2.
'b100–'b111—Reserved.

0

Table 3–22. ERRSTAT—Port 0 Error and Status CSR—'h158 (Part 2 of 2)

Field Bits Access Function Default

Altera Corporation MegaCore Version 7.1 3–37
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

PORT_DIS 23 RW Port disable:
‘b0—port receivers/drivers are enabled.
'b1—port receivers are disabled, causing the drivers to
send out idles.
● When this bit transitions from one to zero, the

initialization state machines’ force_reinit state
variable is asserted, as described in Part 6: Physical
Layer 1×/4× LP Serial Physical Layer Specification
Revision 1.3, paragraphs 4.7.3.5 and 4.7.3.6. In turn,
this assertion causes the port to enter the SILENT state
and to attempt to reinitialize the link.

● When reception is disabled, the input buffers are kept
empty until this bit is cleared.

● When PORT_DIS is asserted and the drivers are
disabled, the transmit buffer are reset and kept empty
until this bit is cleared, any previously stored packets are
lost and any attempt to write a packet to the atx Atlantic
interface is ignored by the Physical layer, new packets
are NOT stored for later transmission.The logical layers
are responsible for re-transmitting any lost packets that
require a response.

0

OUT_PENA 22 RW Output port transmit enable:
'b0—port is stopped and not enabled to issue any packets
except to route or respond to I/O logical maintenance
packets, depending upon the functionality of the processing
element. Control symbols are not affected and are sent
normally.
'b1—port is enabled to issue any packets.

1

IN_PENA 21 RW Input port receive enable:
'b0—port is stopped and only enabled to respond I/O
logical maintenance packets, depending upon the
functionality of the processing element. Other packets
generate packet-not-accepted control symbols to force an
error condition to be signalled by the sending device.
Control symbols are not affected and are received and
handled normally.
'b1—port is enabled to respond to any packet.

1

ERR_CHK_DIS 20 RW This bit disables all RapidIO transmission error checking:
'b0—Error checking and recovery is enabled.
'b1—Error checking and recovery is disabled.
Device behavior when error checking and recovery is
disabled and an error condition occurs is undefined.

0

MULTICAST 19 RW Send incoming multicast-event control to this port (multiple
port devices only) (Not currently implemented in the
core.)

0

Table 3–23. PCTRL0—Port 0 Control CSR—'h15C (Part 2 of 3)

Field Bits Access Function Default

3–38 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaCore Verification

MegaCore
Verification

Before releasing a version of the RapidIO MegaCore function, Altera runs
a comprehensive regression test, which executes the wizard to create the
instance files. These files are tested in simulation and hardware to
confirm functionality.

The RapidIO MegaCore function was also subjected to interoperability
testing. Interoperability tests verify the performance of the MegaCore
function in real-life applications, and ensure compliance with ASSP
devices.

Simulation Testing

The RapidIO core is verified using industry-standard simulators
ModelSim, and VCS in combination with Vera. The test suite contains
testbenches that use the RapidIO bus functional model (BFM) from the
RapidIO Trade Association to verify the functionality of the IP core.

The regression suite tests various functionalities, including:

● Link initialization
● Packet format
● Packet priority
● Error handling
● Throughput
● Flow control

Constrained random techniques are used to generate appropriate
stimulus for the functional verification of the IP core. Functional coverage
metrics are used to measure the quality of the random stimulus, and to
ensure that all important features have been verified.

RSRV2 18:1 UR0 Reserved. 0

PORT_TYPE 0 UR1 This indicates the port-type, parallel or serial.
'b0—Parallel port.
'b1—Serial port.

1

Notes to (3–23)
(1) The 4x Serial RapidIO variations of the RapidIO MegaCore IP function do not support falling back to 1x mode, so

PWIDTH_OVRIDE will always read back as 'b000.

Table 3–23. PCTRL0—Port 0 Control CSR—'h15C (Part 3 of 3)

Field Bits Access Function Default

Altera Corporation MegaCore Version 7.1 3–39
May 2007 RapidIO MegaCore Function User Guide

Physical Layer—Serial Specifications

Hardware Testing

The RapidIO MegaCore function is tested and verified in hardware for
different platforms and environments.

The hardware tests cover serial ×1 and ×4 variations running at 1.25 and
3.125 gigabits per second (Gbps), and processing the following traffic
types:

■ NReads of various size payloads—4 bytes to 256 bytes—millions of
packets

■ NWrites of various size payloads—4 bytes to 256 bytes—millions of
packets

■ NWrite_R of a few different size packets—hundreds of packets
■ PortWrites—hundreds of packets
■ Maintenance—hundreds to thousands of packets

The hardware tests also cover the following control symbol types: Packet
Accepted, Packet Retry, Packet Not Accepted, Packet Control Symbol,
and Link Maintenance Control Symbol.

Interoperability Testing

The interoperability tests performed on the RapidIO MegaCore function
certify that the serial RapidIO MegaCore function has been tested for the
following functionality:

■ Compatibility with commercial RapidIO devices
■ Device compatibility with the Stratix® GX/Stratix II GX family of

devices
■ Endurance
■ Operation at speed

The interoperability tests were conducted on a hardware interoperability
platform (HIP) provided by Tundra Semiconductor. Two variations of the
HIP were used: one was used to test the Altera RapidIO MegaCore
function against itself and the other was used to test the Altera RapidIO
MegaCore function’s interoperability with the Tsi568A switch. The
RapidIO MegaCore functions were implemented in Stratix devices; each
device on its own Altera Stratix RapidIO test board. The RapidIO
MegaCore functions were interconnected by the HIP motherboard,
connected through intervening RapidIO Tundra Tsi568A switches.
Figure 3–9 on page 3–40 shows a block diagram of the test environment.

3–40 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaCore Verification

Figure 3–9. Interoperability Test Block Diagram

The Serial Physical layer of the RapidIO MegaCore function was also
tested on the Stratix II GX device along with the Transport and Logical
layers. For more information, see “Interoperability Testing” on
page 4–118.

Stratix GX High-Speed
 Test Board B

PCI
Mezzanine Card

Processor

MPC8540
PowerQUICC IIIStratix GX Device

Altera

Stratix GX High-Speed
 Test Board B

PCI
Mezzanine Card

Processor

MPC8540
PowerQUICC IIIStratix GX Device

Altera

 Hardware Interoperability Platform (HIP2) Motherboard
Tundra Semiconductor

Tsi568A

Tsi500

Altera Corporation MegaCore Version 7.1 4–1
May 2007 RapidIO MegaCore Function User Guide

4. Variations with Physical,
Transport, and Logical Layers

Functional
Description

Information in this chapter is relevant only if your custom RapidIO®
MegaCore® function variation contains a Transport layer.

1 In the MegaWizard Plug-In Manager design flow, you add a
Transport layer by turning on the Transport Layer option on the
Transport and Maintenance page during parameterization. In
the SOPC Build Design flow, the Transport layer is
automatically enabled.

This chapter describes the features of the Transport and Logical layers,
and how they integrate and interact with the existing Physical layer to
create the three-layer RapidIO MegaCore function. Figure 4–1 shows an
example high-level block diagram, with the following modules and
layers:

■ A Concentrator module, used to consolidate register access.

■ Maintenance module used for initiating and terminating
maintenance transactions

■ Input/Output Master module, used for initiating and terminating
NREADs, NWRITEs, SWRITEs, NWRITEs_R

■ A doorbell module for transacting RapidIO doorbell messages.

■ An Avalon-ST pass-through port that provides direct access to the
Transport layer offering the user access to a complete or unparsed
RapidIO packet.

■ Transport layer module, with at least one Logical layer module or the
the Avalon-ST pass-through port. used for processing the TRansport
layer fields of a RapidIO packet.

■ A RapidIO Physical layer module which implements the complete
RapidIO to Physical layer specification 1.3. See Chapter 3, Physical
Layer—Serial Specifications for details.

4–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–1. RapidIO MegaCore Functional Block Diagram Note (1)

Note to Figure 4–1:
(1) The dashed lines represent internal Avalon-MM interfaces.

Interfaces

The user interface to the RapidIO MegaCore function is supported by the
following interfaces:

■ Avalon Memory-Mapped (Avalon-MM) Interface

■ Avalon Streaming (Avalon-ST) Interface

RapidIO

Transport Layer Module

Physical Layer Module

System
Maintenance

Maintenance

Avalon-MMAvalon-MM

M SS

IO Slave

Avalon-MM

RDWR

Avalon-MM

IRQ

Doorbell

S

Atlantic
Passthrough

IO Master

Avalon-MM

RDWR RD

Concentrator

CSRs
and
CARs

IO Slave

I/O Logical Layer Module

Altera Corporation MegaCore Version 7.1 4–3
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Avalon-MM Interface

The Avalon-MM interface provides user access to the modules in the
Logicial layer:

■ Concentrator

■ Maintenance

■ I/O Master

■ Input/Output Slave

■ Doorbell

Both slave and master variations are used. The interface supports a 32-or
64-bit datapath. width and 32-bit wide address. The interface can support
simple single read/write transactions as well as burst reads/writes.
Subsequent sections describe these modules and the details of how they
support the Avalon -MM interface.

f For more information on this interface, refer to the Avalon Memory-
Mapped Interface Specification.

Avalon- ST Interface

The Avalon-ST interface provides user access to the Transport layer. The
Avalon-ST pass-through port interface is a full-duplex synchronous
protocol that supports 32- or 64-bit datapath. RapidIO packets received
that specify an FTYPE not supported by this MegaCore function or that
have a DestinationID that does not match the Base Device ID of this core,
will be routed to the RX port of the Avalon-ST pass-through port, if it is
enabled.

You enable the Avalon-ST pass-through port in the MegaWizard Plug-In
Manager flow by turning on the Avalon-ST pass-through port on the
Transport and Maintenance page of the MegaWizard interface during
parameterization of the MegaCore function. For additional control, you
also can turn on the Source Operation and/or Destination Operation to
allow the local RapidIO endpoint to generate (Source Operation) or
transfer (Destination Operation) data messages through the Avalon-ST
pass-through port.

1 For more information, refer to the section, “Avalon-ST Pass-
Through Interface” on page 4–45.

1 The Avalon-ST pass-through port is not supported in the SOPC
Builder flow.

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–4 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

f For more information on this interface, refer to the Avalon Streaming
Interface Specification.

Clock & Reset

This section describes the clock and reset signals for variations with
Physical, Transport, and Logical layer modules.

Clock

Variations with Physical, Transport, and Logical layer modules have two
clock inputs. The clk clock is the reference clock for the Physical layer. Its
frequency is determined by the desired baud rate.

The sysck clock drives the transport and logical layer modules, its
frequency is nominally the same frequency as clk but can differ by up to
±50%.

Clock domain crossing between the sysclk clock domain and the physical
layer's clock domains is done in the physical layer's buffers.In the
Maintenance module, clock domain crossing for a local processor with a
different clock is handled by an external Avalon-MM system interconnect
fabric.

The system interconnect fabric manages clock domain crossing if some of
the components of the Avalon system run off of a different clock. For
optimal throughput, it is recommended to run all the Avalon components
in the datapath on the same clock.

All of the Avalon-MM clock inputs for the Logical layer modules must be
connected to the same clock source as sysclk for Non SOPC Builder
mode or clk for SOPC Builder mode. See Figure 4–2 for a block diagram
of the clock structure of variations with Physical, Transport and Logical
layer clock structure. See Table 4–1 for information on clock rates used.

http://www.altera.com/literature/fs/fs_avalon_streaming.pdf
http://www.altera.com/literature/fs/fs_avalon_streaming.pdf

Altera Corporation MegaCore Version 7.1 4–5
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–2. Clock Domains

Notes to Figure 4–2:
(1) Input clocks (user supplied)
(2) Clocks rclk and tclk exist only when using an external SerDes with XGMII
(3) clk exists for nonSOPC Builder mode. ref_clk exists for SOPC Builder mode.
(4) sysclk exists for nonSOPC Builder modes. clk exists for SOPC Builder mode.

tclk(1)(2)

arxclk

clk/ref_clk(1),(3)

sysclk/clk(1),(4) Clock Domain
Boundary

txclk

txgxbclk (1x only)

phy_mnt_s_clk

rxgxbclk (1x only)

rclk(1)(2)

Interface

Logical
Layer

RIO core (including Transport and Logical layers)

atxclk

rxclk

Physical Layer Registers

PHY
Layer 1

PHY
Layer 2

PHY
Layer 3

Serial (internal SerDes)

Transport
Layer

Clock descriptions:
txgxbclk: Transmitter transceiver clock
rxgxbclk: Receiver transceiver clock
txclk: Transmitter internal global clock (same as system clock)
rxclk: Receiver internal global clock
atxclk: Atlantic interface clock—greater than, or equal to txclk
arxclk: Atlantic interface clock—greater than, or equal to rxclk
phy_mnt_s_clk: Avalon-MM interface clock for register access
rclk: XGMII receive clock
tclk: XGMII transmit clock

4–6 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Reset

The transport and Logical layer modules use a single main system, active-
low reset input signal (reset_n).

The reset input signal can be asserted asynchronously, but must last at
least one sysclk clock period and be deasserted synchronously with the
rising edge of sysclk. The assertion of reset_n causes the whole
module to reset. While held in reset, all outputs are driven low. Upon
coming out of reset, all buffers are empty. See “Software Interface” on
page 4–86 for the reset value of the registers.

Transport Layer Module

The Transport layer module is an optional module of the RapidIO
MegaCore function, that is intended for use in an end-point processing
element with at least one Logical layer module or the Avalon-ST pass-
through port.

When you create your custom RapidIO MegaCore function variation in
the MegaWizard interface (see “Parameterize” on page 2–7), you can
select No Transport Layer or Transport Layer.

Table 4–1. Clock Frequencies Used With Serial Transport and Logical Layers

Baud
Rate

(GBaud)

1x Serial/32-bit x4 Serial/64-bit

Stratix GX transceiver Arria GX, Stratix IIGX, or XGMII Arria GX, Stratix GX,
Stratix IIGX, XGMII

clk (MHz) sysclk(3) (MHz) clk(4), tclk,(2)
rclk (MHz)

sysclk(3), txclk, rxclk
(MHz)

clk, txclk, sysclk(1),(3),
rclk, tclk(2) (MHz)

1.25 125 MHz 31.25 MHz 62.5 MHz 31.25 MHz 62.5 MHz

2.5 125 MHz 62.5 MHz 125 MHz 62.5 MHz 125 MHz

3.125 156.25 MHz 78.25 MHz 156.25 MHz(5) 78.25 MHz(5) 156.25 MHz(5)

Notes for Table 4–1:
(1) Nominal frequency shown for sysclock.
(2) tclk and rclk are for external transceivers with XGMII interfaces.
(3) sysclk exists in nonSOPC Builder mode; clk exists in SOPC Builder mode.
(4) clk exists in nonSOPC Builder mode; ref_clk exists in SOPC Builder mode
(5) Arria GX does not support 3.125 Gbaud.

Altera Corporation MegaCore Version 7.1 4–7
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

If you select No Transport Layer, you choose to use a Physical layer-only
variation. If you create a variation without a Transport layer, refer to
Chapter 3, Physical Layer—Serial Specifications for more information
instead of this chapter.

If you select Transport Layer, you also have the choice to turn on the
Avalon-ST pass-through port parameter. If you turn on this parameter,
the Transport layer routes all unrecognized packets to the Avalon-ST
pass-through port. Unrecognized packets contain ftypes for Logical
layers not enabled in this MegaCore function, or destination IDs not
assigned to this endpoint.

The Transport layer module is divided into receiver and transmitter
submodules. Figure 4–3 on page 4–7 shows a block diagram of the
Transport layer module.

Figure 4–3. Transport Layer Block Diagram

Receiver

On the receive side, the Transport layer module receives packets
from the Physical layer. The packet is sent to one of the Logical layer
modules or Avalon-ST pass-through port according to the packet
format type (ftype) and transaction type (ttype) header fields. The

Transport Layer

Physical Layer

RX
Buffer

scheduler

Logical Layer

Maintenance IO Master IO Slave DoorBell
Pass Through

Avalon-ST

4–8 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

receiver reads the ftype from the header of each packet and routes
packets to respective Logical layer modules. Packets with
unsupported ftype and invalid ttype fields or invalid destination
IDs are routed to the Avalon-ST pass-through port if it is present,
otherwise the packets are dropped. Packets that are marked as
errored by the Physical layer by the assertion of arxerr (for
example, packets with a CRC error or that were stomped) are filtered
and dropped from the stream being sent to the Logical layer
modules.

Transmitter

On the transmit side, the Transport layer module uses a scheduler to
select which Logical layer module is to transmit packets. The scheduler is
round-robin based by default. For the round-robin based scheduler, the
Transport layer polls the various Logical layer modules in turn to
determine whether a packet is available. When a packet is available, the
Transport layer transmits the whole packet, and then continues polling
the next logical modules.

Under normal conditions, all errored packets are dropped in the Logical
layer modules prior to the transfer to the Transport layer. However, the
Pass-through port’s gen_tx_error signal can be used to terminate any
errored packet that is missed. In that case, the gen_tx_endofpacket
signal should also be asserted.The gen_tx_error signal is useful when
a user-defined Logical layer module is present at the Avalon-ST pass-
through port because it can be used to abort the packet transmission.

f For more information on the Transport layer, refer to Part 3: Common
Transport Specification of the RapidIO Interconnect Specification, Revision
1.3.

Concentrator Register Module

The Concentrator module provides access to all of the configuration
registers in the RapidIO MegaCore function, including the CARs and
CSRs. The configuration registers are distributed among the
implemented Logical layer modules. Figure 4–4 shows how the
Concentrator module provides access to all the registers which are
implemented in different Logical layer modules. The Concentrator
module automatically is implemented when you include the Transport
layer.

Altera Corporation MegaCore Version 7.1 4–9
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–4. Concentrator Module Provides Configuration Register Access

The Concentrator module provides an Avalon-MM Slave interface, which
lets you access the RapidIO MegaCore function register set. The interface
supports simple reads and writes with variable latency. Accesses are to
32-bit words addressed by a 17-bit wide byte address. When accessed, the
lower 2 bits of the address are ignored, which aligns the transactions to
4-byte words. The interface supports an interrupt line, sys_mnt_s_irq.
When enabled, the following interrupts assert the sys_mnt_s_irq
signal.

■ Received Port-Write

■ IO Read Out of Bounds

■ IO Write Out of Bounds

■ Invalid Write

■ Invalid Write Burtscount

Maintenance

Transport Layer

System Maintenance
Avalon-MM Slave

IO Master IO Slave

CARs
&

CSRs

Concentrator

Avalon
Slave

Physical Layer

4–10 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

1 For details on these and other interrupts, see Table 4–75 and
Table 4–76

Figure 4–5 and Figure 4–6 show different ways to access the RapidIO
registers.

There are two ways to access registers by local host:

■ SOPC Builder system interconnect fabric

■ Custom logic

A local host can access the RapidIO registers from an SOPC Builder
system as illustrated in Figure 4–5. In this figure, NIOS II is part of the
SOPC System and is configured as an Avalon-MM Master that accesses
the RapidIO MegaCore function registers through the System
Maintenance Avalon-MM Slave.

1 See the SOPC Builder chapter in Volume 4 of the Quartus II
Handbook for implementation details.

http://www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Altera Corporation MegaCore Version 7.1 4–11
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–5. Local Host Accesses RapidIO Registers from an SOPC Builder System

Alternately, you can implement custom logic to access the RapidIO
registers as shown in Figure 4–6.

A remote host can access the RapidIO registers by sending Maintenance
transactions targeted to this local RapidIO MegaCore function. The
Maintenance transactions are processed by the Maintenance module. If
the transaction is a Read or Write, the operation is presented on the
Maintenance Avalon-MM Master interface. This interface must be routed
to the System Maintenance Avalon-MM Slave interface. This routing can
be done with an SOPC Builder System shown by the routing to the
Concentrator's system maintenance Avalon-MM Slave in Figure 4–5. If
you do not use an SOPC Builder System, you can create custom logic as
shown in Figure 4–6.

 SOPC Builder System

Maintenance

Transport Layer

IO Master IO Slave

CARs
&

CSRs

Concentrator

System
Maintenance
Avalon-MM

Slave

Physical Layer

System Interconnect Fabric

Nios
II

4–12 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–6. Custom Logic Accesses RapidIO MegaCore Function Registers

All of the registers described in the section “Software Interface” on
page 4–86, with the exception of the Doorbell Registers, can be accessed
by using the System Maintenance Avalon-MM Slave interface.

Maintenance Module

The Maintenance module is an optional component of the Input/Output
Logical layer. The Maintenance module processes Maintenance Type
transactions, including the following:

■ Type 8 – Maintenance Reads and Writes
■ Type 8 – Port Write Packets

Custom Logic

Maintenance

Transport Layer

IO Master IO Slave

CARs
&

CSRs

Concentrator

System
Maintenance
Avalon-MM

Slave

Physical Layer

local
processor
interface

Master

Altera Corporation MegaCore Version 7.1 4–13
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

When you create your custom RapidIO MegaCore function variation in
the MegaWizard® interface (see the section, “Parameterize” on page 2–7),
you have four choices for this module:

■ Avalon-MM Master and Slave
■ Avalon-MM Master
■ Avalon-MM Slave
■ None

Selecting the Avalon-MM Master and Slave option, allows your
MegaCore function to initiate and terminate Maintenance Type
transactions. Selecting only the Avalon-MM Master restricts your
MegaCore function to only terminate Maintenance Type transactions.
Selecting only the Avalon-MM Slave also restricts your MegaCore
function to initiate only Maintenance Type transactions. If you select
neither, then your MegaCore function can neither initiate nor terminate
Maintenance Type transactions.

If you add this module to your variation and select an Avalon-MM Slave
interface, you must also choose a number of transmit address translation
windows. A minimum of one window is required and a maximum of 16
windows are available.

Figure 4–7 shows a high level block diagram of the Maintenance module
and the interfaces to other supporting modules. The Maintenance module
can be segmented into four major submodules: maintenance_register,
maintenance_slave_processor, maintenance_master_processor, and
port_write_processor. The following interfaces are supported:

■ Avalon-MM Slave Interface – User exposed interface
■ Avalon-MM Master Interface – User exposed interface
■ TX Interface – Internal used to communicate with the Transport layer
■ RX Interface – Internal used to communicate with the Transport layer
■ Register Interface – Internal used to communicate with the

Concentrator Module

4–14 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–7. Maintenance Module Block Diagram

Maintenance Register

The maintenance register module implements all of the control and status
registers needed by this module to perform its functions. These include
registers described in Table 4–55 through Table 4–67 in the section
“Software Interface” on page 4–86. These registers are accessible to you
through the Concentrator module. A read or write request is presented
across the System Maintenance Avalon-MM interface. The request is
decoded by the Concentrator module and is sent to the maintenance
register submodule. For a write request, the maintenance register
submodule writes the addressed register and for a read request, the
register is read and the value returned to the Concentrator module. The
Concentrator module then sends the read value to the user across the
System Maintenance Avalon-MM interface.

Maintenance Slave Processor

The Maintenance Slave Processor module does the following.

maintenance

port_write
processor

slave
processor

Avalon
Slave

master
processor

Avalon
Master

TX
InterfaceInterface

RXRX
InterfaceInterface

Concentrator

Transport Layer

Avalon
Slave

TX

System Maintenance
Avalon-MM Slave Interface

a

Maintenance
Avalon-MM Slave

Interface

Maintenance
Avalon-MM Master

Interface

register

Altera Corporation MegaCore Version 7.1 4–15
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

■ For an Avalon Read, composes the RapidIO Logical Header Fields of
a Maintenance Read transaction.

■ For an Avalon Write, composes the RapidIO Logical Header Fields of
a Maintenance Write transaction.

■ Maintain status related to the composed Maintenance Packet.
■ Presents the composed Maintenance Packet to the Transport layer for

transmission.

The Avalon-MM Slave interface allows you to initiate a Maintenance
Read or Write operation. The Avalon-MM Slave interface supports the
following Avalon transfers.

■ Single Slave Write Transfer with Variable Wait-States
■ Pipelined Read Transfers with Variable Latency

1 At any time, there can be a maximum of 64 outstanding
maintenance requests, either maintenance reads, maintenance
writes, or port write requests.

f Refer to the Avalon Memory-Mapped Interface Specification for more details
on the supported transfers.

Figure 4–8 shows the signal relationships for 4 write transfers on the
Avalon-MM slave interface.

Figure 4–8. Write Transfers on the Avalon-MM Slave Interface

sysclk

mnt_s_chipselect

mnt_s_waitrequest

mnt_s_write

mnt_s_address

mnt_s_writedata

4 8 C 10

ACACACAC 5C5C5C5C BEEFBEEF FACEFACE

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

4–16 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–9 shows the signal relationships for 4 read transfers on the
Avalon-MM Slave interface.

Figure 4–9. Read Transfers on the Avalon-MM Slave Interface

Reads and Writes on the Avalon-MM Slave Interface are converted into
RapidIO Maintenance Reads and Writes as follows. The following are the
fields of a Maintenance Type packet that are assigned by the Maintenance
Module.

■ PRIO
■ FTYPE
■ DEST_ID
■ SRC_ID
■ TTYPE
■ RDSIZE/WRSIZE
■ SOURCE_TID
■ HOP_COUNT
■ CONFIG_OFFSET
■ WDPTR

The FTYPE field is assigned a value of 4'b1000. The TTYPE field is
assigned a value of 4'b0000 for Reads and a value of 4'b0001 for
Writes. The RDSIZE/WRSIZE field is fixed at 4'b1000, since only 4-byte
reads and writes are supported.

The CONFIG_OFFSET is generated by using the values programmed in
the TX Maintenance Address Translation Windows described in tables
Table 4–68 through Table 4–74. You determine the number of mapping
windows supported when you generate the MegaCore function using the
MegaWizard interface. Up to 16 maximum windows are allowed.

sysclk

mnt_s_chipselect

mnt_s_waitrequest

mnt_s_read

mnt_s_address

mnt_s_readdatavalid

mnt_s_readdata

mnt_s_readerror

14 4C

Altera Corporation MegaCore Version 7.1 4–17
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Each window is enabled if the window enable (WEN) bit of the Tx
Maintenance Window n Mask register is set. Each window is defined by
three registers:

■ A base register: Tx Maintenance Mapping Window n Base

■ A mask register: Tx Maintenance Mapping Window n Mask

■ A control register: Tx Maintenance Mapping Window n Control

■ Tx Maintenance Mapping Window n Offset

For each defined and enabled window, the Avalon-MM address's least
significant bits are masked out by the Window Mask and the resulting
address is compared to the Window Base. If the addresses match,
CONFIG_OFFSET is created based on the following equation:

If

(mnt_s_address & mask) = base),
config_offset = (offset[23:3] & mask[23:3])|
(mnt_s_address[23:3] & ~mask[23:3])

where:

■ mnt_s_address[31:0]: Avalon-MM Slave Interface Address

■ config_offset[20:0]: Outgoing RapidIO register double-word offset

■ base[31:0]: base address register

■ mask[31:0]: mask register

■ offset[23:0]: window offset register

If the address matches multiple windows, the lowest number window
register set is used.

The following fields are inserted from the control register of the Mapping
Window that matched.

■ PRIO
■ DEST_ID
■ HOP_COUNT

The SOURCE_TID is generated internally and the WDPTR is assigned the
negation of mnt_s_address[3].

For a Maintenance Avalon-MM Slave write, the value of the
mnt_s_wridata[31:0] bus is inserted in the PAYLOAD field of the
Maintenance Write packet.

4–18 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Maintenance Master Processor

This module does the following tasks:

■ For a Maintenance Read, converts the transaction into an Avalon
read and presents it across the Maintenance Avalon-MM Master
Interface.

■ For a Maintenance Write, converts the transaction into an Avalon
write and presents it across the Maintenance Avalon-MM Master
Interface.

■ Accounting related to the received RapidIO Maintenance
Read/Write operation.

■ For all received Maintenance request Packets, from remote ends,
generates a Type 8 Response Packet and presents it to the Transport
layer for transmission.

The Avalon-MM Master Interface supports the following Avalon
transfers.

■ Single Master Write Transfer
■ Pipelined Master Read Transfers

f Refer to Avalon Memory-Mapped Interface Specification for details on the
supported transfers.

Figure 4–10 shows the signal relationships for a sequence of 4 write
transfers on the Maintenance Avalon-MM Master interface.

Figure 4–10. Write Transfers on the Maintenance Avalon-MM Master Interface

Figure 4–11 shows the signal relationships for a sequence of three read
requests presented on the Maintenance Avalon-MM Master interface.

sysclk

mnt_m_waitrequest

mnt_m_write

mnt_m_address

mnt_m_writedata

4 8 C 10

ACACACAC 5C5C5C5C BEEFBEEF FACEFACE

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf
http://www.altera.com/literature/manual/mnl_avalon_spec.pdf

Altera Corporation MegaCore Version 7.1 4–19
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–11. Timing of a Read Request on the Maintenance Avalon-MM Master Interface

A Maintenance Type Packet source by a remote device is first received by
the Physical layer. After the Physical layer processes the packet, it is sent
to the Transport layer. The Transport layer checks the FTYPE and the
Destination_ID. If the FTYPE indicates that it is a Maintenance Type
packet, (4'b1000), and if the Destination_ID field matches the Base
Device ID programmed into register 'h60, the packet is sent to the
Maintenance Module. The Maintenance Modules receives the packet on
the RX Interface. The Maintenance module extracts the following fields of
the packet header and uses them to compose the read or write transfer on
the Maintenance Avalon-MM Master Interface.

■ TTYPE
■ RDSIZE/WRSIZE
■ WDPTR
■ CONFIG_OFFSET
■ PAYLOAD

The maintenance module only supports single 32-bit word transfers, that
is, RDSIZE and WRSIZE = 4’b1000; other values cause an error response
packet to be sent.

The WDPTR and CONFIG_OFFSET values are used to generate the Avalon
Address. It is composed as follows.

mnt_m_address = {rx_base, CONFIG_OFFSET, WDPTR, 2'b00}

where rx_base is the value programmed into register 'h10088,
Figure 4–57.

The PAYLOAD is presented on the mnt_m_writedata[31:0] bus.

mnt_m_address

mnt_m_readdata

mnt_m_read

00000010

mnt_m_readdatavalid

4–20 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Port Write Processor

The Port Write Processor does the following.

■ Composes the RapidIO Logical Header of a Maintenance Port Write
request packet

■ Presents the Port Write request packet to the Transport layer for
transmission.

■ Processes Port Write request packets received from a remote device.
■ Alerts the user of a received Port Write using the sys_mnt_s_irq

signal.

The port write processor is controlled through the use of registers
'h10200 through 'h1029C.

To send a Port Write to a remote device, you must program the
Tx Port Write data and control registers. These are located at addresses
'h10200 through 'h1024C. The registers are accessed by using the
System Maintenance Avalon-MM Slave interface. The following header
fields are supplied by the values stored at the TX Port Write Control
register at 'h10200.

■ DESTINATION_ID
■ PRIORITY
■ WRSIZE

The other fields of the Maintenance Port Write Packet are assigned as
follows. The FTYPE is assigned a value of 4'b1000 and the TTYPE field
is assigned a value of 4'b0100. The WDPTR and WRSIZE fields of the
transmitted packet are calculated from the size of the payload to be sent
as defined by the SIZE field of the TX_PORT_WRITE_CONTROL register.
The SOURCE_TID and CONFIG_OFFSET are reserved.

The payload is written into a TX Port Write Buffer starting at address
'h10210. This buffer can store a maximum of 64 bytes. The Port Write
Processor starts the packet composition and transmission process after
the PACKET_READY bit in register 'h10200 has been set. The composed
Maintenance Port Write packet is sent to the Transport layer for
transmission.

Altera Corporation MegaCore Version 7.1 4–21
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

The Maintenance Module receives a Maintenance Type packet on the RX
Atlantic interface from the Transport layer. The Port Write Processor
handles Maintenance Type Packets with a TTYPE value set to 4'b0100.
The Port Write Processor extracts the following fields from the packet
header and uses them to write the appropriate content to registers
'h10250 through 'h0129C.

■ WRSIZE
■ WDPTR
■ PAYLOAD

The WRSIZE and the WDPTR determine the value of PAYLOAD_SIZE field
in register 'h10254. The PAYLOAD is written to the RX Port Write
Buffer starting at address 'h10260. A maximum of 64 bytes can be
written. While the PAYLOAD is written into the buffer, the
PORT_WRITE_BUSY bit of register 'h10254 is kept set. After the
PAYLOAD is completely written into the buffer, the interrupt signal
sys_mnt_s_irq is asserted by the Concentrator on behalf of the Port
Write Processor. The interrupt is asserted only if RX_PACKET_STORED bit
of Maintenance Interrupt Enable register 'h10084 is set.

Maintenance Module Error Handling

See the Maintenance Interrupt 'h10080 and Maintenance
Interrupt Enable 'h10084 registers in Table 4–55 and Table 4–56.
These register describe the error handling and reporting for Maintenance
packets. Additionally, the following errors also apply to Maintenance
packets.

■ Maintenance read or Maintenance write request time out occurs and
an PKT_RSP_TIMEOUT interrupt (bit 24 of register Maintenance
Interrupt) is generated if a response packet is not received within the
time specified by the Port Response Time-out Control port
response timeout register.

■ The IO_ERROR_RSP (bit 31) of the Error Management register is set
when and ERROR response is received for a transmitted
maintenance packet.

1 See Table 4–77 for more details on these error management
registers.

Input/Output Logical Layer Modules

The Input/Output Logical layer module are optional components of the
RapidIO MegaCore function.

4–22 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

When you create your custom RapidIO MegaCore function variation in
the MegaWizard interface (see “Parameterize” on page 2–7), you have
four choices:

■ Avalon-MM Master and Slave

■ Avalon-MM Master

■ Avalon-MM Slave

■ None

If you choose None, no Input/Output Logical layer module is added to
your variation.

If you choose to add these modules to your variation, you must also
choose a number of receive and/or transmit address translation (or
mapping) windows. A minimum of one window is required per
direction, and a maximum of 16 windows are available for each direction.
For more information on address translation, see Table 4–68 through
Table 4–74. Table 4–2 summarizes the functions of these address
translation tables.

f For more information on the Input/Output Logical layer, refer to Part 1:
Input/Output Logical Specification of the RapidIO Interconnect Specification,
Revision 1.3.

Table 4–2. Address Translation Tables

Address
Translation Table

Number
Function

Table 4–68 Input/Output Master base address for address translation in
Input/Output Avalon-MM Master module.

Table 4–69 Input/Output Master address mask for address translation
in Input/Output Avalon-MM Master module.

Table 4–70 Input/Output Master address offsetv for address translation
in Input/Output Avalon-MM Master module.

Table 4–71 Input/Output Slave base address for address translation in
Input/Output Avalon-MM Slave module.

Table 4–72 Input/Output Slave address mask for address translation in
Input/Output Avalon-MM Slave module.

Table 4–73 Input/Output Slave address offset for address translation in
Input/Output Avalon-MM Slave module.

Table 4–74 Input/Output Slave packet control information (for RapidIO
packet header) for address translation in Input/Output
Avalon-MM Slave module.

Altera Corporation MegaCore Version 7.1 4–23
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

1 The control information is used by the Input/Output
Avalon-MM slave module to construct the outgoing request
packet's header. As the Input/Output Avalon-MM master
module does not construct packet headers, it does not have
control information registers.

Input/Output Avalon-MM Master Module

The Input/Output Avalon-MM Master Logical layer module receives
RapidIO read and write request packets from a remote end point through
the Transport layer module. The Input/Output Avalon-MM Master
module translates the request packets into Avalon-MM transactions, and
creates and returns RapidIO response packets to the source of the request
through the Transport layer. Figure 4–12 shows a block diagram of the
Input/Output Avalon-MM Master Logical module and its interfaces.

1 The Input/Output Avalon-MM Master module is referred to as
a master module because it is an Avalon-MM bus master.

To maintain full-duplex bandwidth, two independent Avalon-MM
interfaces are used in the I/O Master and Slave modules—one for read
transactions and one for write transactions.

4–24 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–12. I/O Master Logical Layer Block Diagram

Avalon-MM Interfaces Use Little Endian Byte Ordering

The Avalon-MM interfaces handle byte ordering differently than the
RapidIO protocol. As shown in Table 4–3, the RapidIO protocol uses big
endian byte ordering, whereas Avalon-MM interfaces use little endian
byte ordering.

No byte or bit order is changed between the Avalon-MM protocol and
RapidIO protocol, only the name is changed. For example, RapidIO Byte0
is Avalon-MM Byte7, and for all values of i from 0 to 63, bit i of the
RapidIO 64-bit double word[0:63] of payload is bit (63-i) of the Avalon-
MM 64-bit double word[63:0].

Transport Side
 TX
Interface

32 or 64 bits

Transport Side
 RX
Interface

32 or 64 bits

io_m_rx_ready

io_m_rx_start_packet
io_m_rx_empty
io_m_rx_valid
io_m_rx_data

io_m_rx_packet_size
io_m_rx_end_packet

sysclk
reset_n

device_id

io_m_tx_packet_available
io_m_tx_ready

io_m_tx_end_packet
io_m_tx_start_packet

io_m_tx_empty
io_m_tx_valid
io_m_tx_data

io_m_tx_error
io_m_tx_packet_size

W
rite M

aster

S
ource

S
lave

Maintenance
Avalon-MM Slave

Implementation-Defined

Registers

Address Mapping

Main Control

 RX Sink

Write Avalon-MM Master

Read Avalon-MM Master

 TX Source

Write & Error
Response

Buffer

Read Response
Buffer

S
ink

E
rror M

anagem
ent

R
ead M

aster

io_m_mnt_readdata

io_m_mnt_writedata

io_m_mnt_write

io_m_mnt_waitrequest

io_m_mnt_address

Maintenance
Avalon-MM Bus

32 bits

io_m_mnt_chipselect

io_m_mnt_read

io_m_err_unsupported_transaction

io_m_err_address
io_m_err_xamsbs
io_m_err_ttype
io_m_err_ftype
io_m_err_destination_id
io_m_err_source_id
io_m_err_illegal_transaction_decode

Data Path
Read

Avalon-MM Bus
32 or 64 bits

io_m_rd_readdata

io_m_rd_readdatavalid

io_m_rd_read

io_m_rd_waitrequest

io_m_rd_address

io_m_rd_burstcount

io_m_rd_readerror

Data Path
Write

Avalon-MM Bus
32 or 64 bits

io_m_wr_writedata
io_m_wr_write

io_m_wr_waitrequest

io_m_wr_address
io_m_wr_burstcount

io_m_wr_byteenable

Altera Corporation MegaCore Version 7.1 4–25
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Because the RapidIO 32-bit word at RapidIO address 0x0000 is the most
significant half of the 64-bit double word comprised of the two 32-words
at RapidIO addresses 0x0000 and 0x0004, it actually corresponds to the
Avalon-MM 32-bit word at address 0x0004 in the Avalon-MM address
space. Thus, when a burst of two or more 32-bit Avalon-MM words is
transported in RapidIO packets, the order of the pair of words is inverted
so that the most significant words of each pair is transmitted or received
first.

Input/Output Avalon-MM Master Address Mapping Windows

Address mapping, or translation windows, are used to map windows of
34-bit RapidIO addresses into windows of 32-bit Avalon-MM addresses.
They are defined by sets of three 32-bit registers. Each window is defined
by a base register and a mask register. The third register defines the offset
into local memory where the RapidIO transaction gets mapped.

Your variation must have at least one translation window. You can change
the values of the window defining registers at any time. You should
disable the window before changing its window defining registers.

The number of mapping windows is defined by the parameter Number
of receive address translation windows, for up to 16 sets of registers.
Each set of registers supports one address mapping window.

Table 4–3. Byte Ordering

 Byte
Lane

8'b1000_0000 8'b0100_0000 8'b0010_0000 8'b0001_0000 8'b0000_1000 8'b0000_0100 8'b0000_0010 8'b0000_0001

RapidIO
Protocol

(Big
Endian)

Byte0[0:7] Byte1[0:7] Byte2[0:7] Byte3[0:7] Byte4[0:7] Byte5[0:7] Byte6[0:7] Byte7[0:7]

32-Bit Word[0:31] 32-Bit Word[0:31]

wdptr=0 wdptr=1

Double Word[0:63]

RapidIO Address N = {29'hn, 3'b000}

Avalon-
MM

Protocol
(Little

Endian)

Byte7[7:0] Byte6[7:0] Byte5[7:0] Byte4[7:0] Byte3[7:0] Byte2[7:0] Byte1[7:0] Byte0[7:0]

Address=
N+7

Address=
N+6

Address=
N+5

Address=
N+4

Address=
N+3

Address=
N+2

Address=
N+1

Address=
N

32-Bit Word[31:0] 32-Bit Word[31:0]

Avalon-MM Address = N+4 Avalon-MM Address = N

64-bit Double Word0[63:0]

Avalon-MM Address = N

4–26 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

A window is enabled if the window enable (WEN) bit of the IO Master
Mapping Window n Mask register is set.

A window is defined by three 32-bit wide registers:

■ a base register: IO Master Mapping Window_n_Base

■ a mask register: IO Master Window n Mask

■ an offset register: IO Master Window n Offset

Where n is from 0 to the number of address translation windows.

For each window that is defined and enabled, the least significant bits of
the incoming RapidIO address are masked out by the Window Mask and
the resulting address is compared to the Window Base. If the addresses
match, the Avalon-MM address is made of the least significant bits of the
RapidIO address and the window offset using the following equation:

Let rio_addr[33:0] be the 34-bit RapidIO address, and
address[31:0] the local Avalon-MM address.

Let base[31:0], mask[31:0] and offset[31:0] be the three
window defining registers. The least significant three bits of these
registers are always 3’b000.

Starting from window 0, for the first window in which
((rio_addr & {xamm, mask}) == {xamb, base}),

where xamm and xamb are the Extended Address MSB fields of the
IO_MASTER_WINDOW_n_MASK and IO_MASTER_WINDOW_n_BASE
registers respectively, let address[31:3] = (offset[31:3] &
mask[31:3]) | (rio_addr[31:3] & ~mask[31:3]).

address[2] is zero for variants with 64-bit wide data path Avalon-MM
buses.

address[2] is determined by the values of wdptr and rdsize or
wrsize for variants with 32-bit wide data path Avalon-MM buses.

address[1:0] are always zero.

For each received NREAD or NWRITE_R request packet that does not
match any enabled window, an ERROR response packet is returned

Figure 4–13 shows a block diagram of the I/O Master Logical window
translation.

Altera Corporation MegaCore Version 7.1 4–27
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–13. I/O Master Window Translation

Input/Output Avalon-MM Slave Module

The Input/Output Avalon-MM Slave Logical layer module transforms
Avalon-MM transactions into RapidIO read and write request packets
that are sent through the Transport and Physical layer modules to a
remote RapidIO processing element where the actual read or write

0x000000000x000000000

Avalon-MM
Address Space

RapidIO
Address Space

Base

Offset

Window

0xFFFFFFF8

0x3FFFFFFF8

Initial
RapidIO Address

Window Base

Window Mask

Window Offset

Resulting
Avalon-MM Address

Don’t Care

ZerosOnes

Don’t Care

Window Size
3 2 1 033 32 31

3 2 1 031

M
us

t

M
at

ch

Mapping

XAMB

XAMM

4–28 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

transaction takes place and response packets are created and sent back
when required. Avalon-MM read transactions complete when the
corresponding response packet is received. This module is referred to as
a slave module because it is an Avalon-MM bus slave. Figure 4–14 shows
a block diagram of the Input/Output Slave Logical module and its
interfaces.

1 The maximum number of outstanding transactions (I/O
Requests) supported is 64 (read requests + write requests).

To maintain full-duplex bandwidth, two independent Avalon-MM
interfaces are used in the I/O Master and Slave modules—one for read
transactions and one for write transactions.

Altera Corporation MegaCore Version 7.1 4–29
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–14. Input/Output Avalon-MM Slave Logical Layer Block Diagram

W
rite S

lave
R

ead S
lave

M
aintenance S

lave

Maintenance
Avalon-MM Slave

Implementation-Defined

Registers

&

Address Mapping

S
ource TX Interface

Read Request

Buffer

Write Request

Buffer

S
ink

Write
Avalon-MM Slave

Pending Reads

Pending Writes

RX Interface

Error Management

Transport Side
 RX
Interface

32 or 64 bits

Transport Side
 TX
Interface

32 or 64 bits

io_m_rx_ready

io_s_rx_end_packet
io_s_rx_start_packet

io_s_rx_empty
io_s_rx_valid
io_s_rx_data

io_s_rx_packet_size

io_s_tx_packet_available
io_s_tx_ready

io_s_tx_end_packet
io_s_tx_start_packet

io_s_tx_empty
io_s_tx_valid
io_s_tx_data

io_s_tx_error
io_s_tx_packet_size

port_response_timeout[23:0]

device_id[15/7:0]

timeout_prescaler[5:0]

sysclk
reset_n

io_s_mnt_readdata

io_s_mnt_writedata

io_s_mnt_write

io_s_mnt_waitrequest

io_s_mnt_address

Maintenance
Avalon-MM Bus

32 bits

io_s_mnt_chipselect

io_s_mnt_read

io_s_mnt_irq

Data Path
Write

Avalon-MM Bus
32 or 64 bits

io_s_wr_writedata

io_s_wr_write

io_s_wr_waitrequest

io_s_wr_address

io_s_wr_burstcount

io_s_wr_byteenable

io_s_wr_chipselect

Data Path
Read

Avalon-MM Bus
32 or 64 bits

io_s_rd_readdata
io_s_rd_readdatavalid
io_s_rd_read

io_s_rd_waitrequest

io_s_rd_address
io_s_rd_burstcount
io_s_rd_readerror

io_s_rd_chipselect

io_s_err_unexpected_response

io_s_err_illegal_transaction_decode
io_s_err_timeout

io_s_err_error_response

io_s_err_address
io_s_err_xamsbs
io_s_err_ttype
io_s_err_ftype
io_s_err_destination_id
io_s_err_source_id

E
rror M

anagem
ent

Read
Avalon-MM Slave

4–30 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Input/Output Avalon-MM Slave Address Mapping Windows

Address mapping, or translation windows are used to map windows of
32-bit Avalon-MM addresses into windows of 34-bit RapidIO addresses,
and are defined by sets of four 32-bit registers.

Each window is defined by a base register, a mask register, and an offset
register. The fourth register stores information used to prepare the packet
header on the RapidIO side of the transaction, including the target
device's DestinationID, the request packet's priority, and selects between
the three available write request packet types: NWRITE, NWRITE_R and
SWRITE.

Your variation must have at least one translation window.

You can change the values of the window defining registers at any time,
even after sending a request packet and before receiving its response
packet. You should disable the window before changing its window
defining registers.

The number of mapping windows is defined by the parameter Number
of transmit address translation Windows, for up to 16 sets of registers.
Each set of registers supports one external host or entity at a time. A
window is enabled if the window enable (WEN) bit of the IO Slave
Mapping Window n Mask register is set, where n is the number of
transmit address translation windows.

A window is defined by four registers:

■ A base register: Input/Output Slave Mapping Window n Base

■ A mask register: Input/Output Slave Mapping Window n Mask

■ An offset register: Input/Output Slave Mapping Window n Offset

■ A control register: Input/Output Slave Mapping Window n Control

For each window that is defined and enabled, the least significant bits of
the Avalon-MM address are masked out by the Window Mask and the
resulting address is compared to the Window Base. If the addresses
match, the RapidIO address in the outgoing request packet is made of the
least significant bits of the Avalon-MM address and the window offset
using the following equation:

Let avalon_address [31:0] be the 32-bit Avalon-MM address, and
rio_addr [33:0] the RapidIO address, where rio_addr [33:32] is
the 2-bit wide xamsbs field and rio_addr [31:3] is the 29-bit wide
address field in the packet and rio_addr [2:0] is implicitly defined
by wdptr and rdsize or wrsize.

Altera Corporation MegaCore Version 7.1 4–31
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Let base[31:0], mask[31:0] and offset[31:0] be the values
defined by the three corresponding window defining registers. The least
significant three bits of base, mask and offset are fixed at 3’b000
regardless of the content of the window defining registers.

Let xamo be the Extended Address MSB Offset field in the
IO_SLAVE_WINDOW_n_OFFSET register (the two least significant bits of
the register).

Starting with window 0, for the first window where ((address &
mask) == base),

Let rio_addr [33:3] = {xamo, (offset [31:3] & mask [31:3]) |
(avalon_address [31:3]}.

The Avalon-MM slave interfaces' burstcount and byteenable signals are
used to determine the values of wdptr and rdsize or wrsize.

The bits mask[2:0] are always considered to be zero regardless of the
contents of the IO_SLAVE_WINDOW_n_MASK register.

If the address matches multiple windows, the lowest number window
register set is used. The following fields are inserted from the control
register: PRIORITY and DESTINATION_ID. If the address does not
match any window, an interrupt bit, either WRITE_OUT_OF_BOUNDS or
READ_OUT_OF_BOUNDS in the Input/Output Slave Interrupt register, is
set and the interrupt signal sys_mnt_s_irq is asserted if enabled by the
corresponding bit in the Input/Output Slave Interrupt Enable register.
An interrupt is cleared by writing one to the interrupt register.

Figure 4–15 shows a block diagram of the Input/Output Slave Logical
window translation.

4–32 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–15. Input/Output Slave Window Translation

Input/Output Slave Translation Window Example
The following example shows the use of the Input/Output Slave
Translation Windows. The system used in this example is shown in
Figure 4–16. There are four RapidIO processing endpoints in the system.
One of those processing endpoints is an Altera FPGA with a RapidIO
MegaCore function. The processing endpoints can communicate with

0x00000000 0x000000000

Avalon-MM

Address Space

RapidIO

Address Space

Base

Offset

Window

0xFFFFFFF8

0x3FFFFFFF8

Initial
Avalon Address

Window Base

Window Mask

Window Offset

Resulting
RapidIO Address

Don’t Care

ZerosOnes

Don’t Care

3 2 1 0

33 32 31 3 2 1 0

31

M
us

t

M
at

ch

Mapping

Window Size

XAMO

Altera Corporation MegaCore Version 7.1 4–33
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

each other through the RapidIO Switch. The Altera RapidIO has a local
address mapping as shown in Figure 4–16. The mapping is based on the
32-bit Avalon-MM Address Space.

Figure 4–16. Using Input/Output Slave Translation Windows

The upper two bits of the Avalon-MM Address are used to differentiate
between the other three Processing endpoints and are the only bits set to
1 in the mask registers. Figures Figure 4–17 through Figure 4–19 show the
values programmed into three address translation windows.

RapidIO
Processing Endpont

2
DestinationID 0xCC

RapidIO
Processing Endpont

1
DestinationID 0xAA

RapidIO
Processing Endpont

0
DestinationID 0x55

RapidIO
Switch

Altera
RapidIO

MegaFunction

Endpoint
2

space

Endpoint
1

space

Endpoint
0

space

other
space

32'hC000_0000

32'hFFFF_FFFC

32'h8000_0000

32'hBFFF_FFFC

32'h4000_0000

32'h7FFF_FFFC

32'h0000_0000

32'h3FFF_FFFC

Altera FPGA

4–34 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–17. Translation Window 0

31 30 0
Avalon
Address

30'h3aaa_cccc00

mask * -> register 0x1040427'h000_00001 1

base -> register 0x1040027'hxxx_xxxx0 0

Window 0

if (mask[31:30] &
Avalon_Addrress[31:30] ==
base[31:30]) then use
Window 0.
The following is the resulting
34-bit RapidIO Address

offset -> register 0x1040829'h0000_0000 xamo

1

control -> register 0x1040C8'h55
23 --- 16

30'h3aaa_ccccxamo

Any packet initiated using
Window 0 will have a
Destination ID of 8'h55.

Altera Corporation MegaCore Version 7.1 4–35
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–18. Translation Window 1

31 30 0
Avalon
Address

30'h3aaa_cccc10

mask * -> register 0x1041427'h000_00001 1

base -> register 0x1041027'hxxx_xxxx0 1

Window 1

if (mask[31:30] &
Avalon_Addrress[31:30] ==
base[31:30]) then use
Window 1.
The following is the resulting
34-bit RapidIO Address

offset -> register 0x1041829'h0000_0000 xamo

1

control -> register 0x1041C8'haa
23 --- 16

30'h3aaa_ccccxamo

Any packet initiated using
Window 1 will have a
Destination ID of 8'haa.

4–36 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Figure 4–19. Translation Window 2

Avalon-MM Slave Address Mapping

The Avalon-MM interface and RapidIO protocol use different address
spaces, so Avalon-MM burst count, byte enable, and (in 32 bit variations)
address values are translated into RapidIO packet fields read size, write
size, and word pointer.

Slave Request Packet Size Encoding
The Avalon-MM interface and RapidIO protocol use different address
spaces. The RapidIO core converts packets between Avalon-MM and
RapidIO formats. The Avalon-MM burst count, byte enable, and, in 32 bit
variations, address bit 2, values are translated into the RapidIO packets'
read size, write size, and word pointer fields. For more information see
Figure 4–15 and Table 4–4 for packet size encoding used in the conversion

31 30 0
Avalon
Address

30'h3aaa_cccc01

mask * -> register 0x1042427'h000_00001 1

base -> register 0x1042027'hxxx_xxxx1 0

Window 2

if (mask[31:30] &
Avalon_Addrress[31:30] ==
base[31:30]) then use
Window 2.
The following is the resulting
34-bit RapidIO Address

offset -> register 0x1042829'h0000_0000 xamo

1

control -> register 0x1042C8'hcc
23 --- 16

30'h3aaa_ccccxamo

Any packet initiated using
Window 2 will have a
Destination ID of 8'hcc.

Altera Corporation MegaCore Version 7.1 4–37
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

process for 32-bit datapath read requests, Table 4–5 for 32- bit datapath
write requests, and Figure 4–15 and Table 4–6 for information on 64-bit
datapath conversions.

Table 4–4. Slave Read Request Size Encoding (32-bit datapath)

Avalon-MM Values RapidIO Values

burstcount(2) Address(1)
(1'bx)

wdptr
(1'bx)

rdsize(2)
(4'bxxxx)

1 1 0 1000

1 0 1 1000

2 0 0 1011

3–4 0 1 1011

5–8 0 0 1100

9–16 0 1 1100

17–24 0 0 1101

25–32 0 1 1101

33–40 0 0 1110

41–48 0 1 1110

49–56 0 0 1111

57–64 0 1 1111

Notes for Table 4–4
(1) Burst transfers of more than one Avalon-MM word must start on a double-word

aligned Avalon-MM address. If the Slave Read Burst Count is larger than one and
io_s_rd_address[2] is not zero, the transfer completes in the same manner as a
failed mapping: the READ_OUT_OF_BOUNDS bit in the
IO_SLAVE_INTERRUPT register is set and sys_mnt_s_irq is asserted if
enabled. In the case of a read transfer, the transfer is marked as errored by
asserting io_s_rd_readerror for the duration of the burst.

(2) For read transfers, the read size of the request packet is rounded up to the next
supported size, but only the number of words corresponding to the requested
read burst size are returned.

4–38 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Table 4–5. Slave Write Request Size Encoding (32 bit datapath) (Part 1 of 2)

Avalon-MM Values RapidIO Values

burstcount(3) byteenable
(4'bxxxx)

Address(1)
(1'bx)

wdptr
(1'bx)

wrsize
(4b'bxxxx)

1 1000 1 0 0000

1 0100 1 0 0001

1 0010 1 0 0010

1 0001 1 0 0011

1 1000 0 1 0000

1 0100 0 1 0001

1 0010 0 1 0010

1 0001 0 1 0011

1 1100 1 0 0100

1 1110 1 0 0101

1 0011 1 0 0110

1 1100 0 1 0100

1 0111 0 1 0101

1 0011 0 1 0110

1 1111 1 0 1000

1 1111 0 1 1000

Altera Corporation MegaCore Version 7.1 4–39
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

2 1111(2) 0 0 1011

4 1 1011

6 or 8 0 1100

10, 12, 14, 16 1 1100

18, 20, 22, 24 1 1101

26, 28, 30, 32 1 1101

34, 36, 38, 40 0 1110

42, 44, 46, 48 1 1110

50, 52, 54, 56 0 1111

58, 60, 62, 64 1 1111

Notes for Table 4–5:
(1) Burst transfers of more than one Avalon-MM word must start on a double-word aligned Avalon-MM address. If

io_s_wr_burstcount is larger than one and io_s_wr_address is not zero, the transfer completes in the same manner
as a failed mapping: the WRITE_OUT_BOUNDS bit in the IO_SLAVE_INTERRUPT register is set and
sys_mnt_s_irq is asserted if enabled.

(2) For all Avalon-MM write transfers with burstcount larger than 1, io_s_wr_byteenable must be set to 4’b1111. It it is
not, the transfer fails: the INVALID_WRITE_BYTEENABLE bit in the IO_SLAVE_INTERRUPT register is set and
io_s_mnt_irq is asserted if enabled.

(3) For write transfers, odd burst sizes other than 1 are not supported. If one occurs the
INVALID_WRITE_BURSTCOUNT bit in the IO_SLAVE_INTERRUPT register is set, causing sys_mnt_s_irq to
be asserted if enabled.

Table 4–5. Slave Write Request Size Encoding (32 bit datapath) (Part 2 of 2)

Avalon-MM Values RapidIO Values

burstcount(3) byteenable
(4'bxxxx)

Address(1)
(1'bx)

wdptr
(1'bx)

wrsize
(4b'bxxxx)

Table 4–6. Slave Read Request Size Encoding (64 bit datapath) (Part 1 of 2)

Avalon-MM Values RapidIO
Values

burstcount(1) wdptr
(1'bx)

rdsize(1)
(4'bxxxx)

1 1'b0 4'b1011

2 1'b1 4'b1011

3–4 1'b0 4'b1100

5–8 1'b1 4'b1100

9–12 1'b0 4'b1101

13–16 1'b1

4–40 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

17–20 1'b0 4'b1111

21–24 1'b1

25–28 1'b0

29–32 1'b1

Notes for Table 4–6
(1) For read transfers, the read size of the request packet is rounded up to the next

supported size, but only the number of words corresponding to the requested
read burst size are returned.

Table 4–7. Slave Write Request Size Encoding (64 bit datapath) (Part 1 of 2)

Avalon-MM Values RapidIO Values

burstcount byteenable
(8'bxxxx_xxxx)

wdptr
(1'bx)

wrsize
(4'bx)

1 1000_0000 0 0000

1 0100_0000 0 0001

1 0010_0000 0 0010

1 0001_0000 0 0011

1 0000_1000 1 0000

1 0000_0100 1 0001

1 0000_0010 1 0010

1 0000_0001 1 0011

1 1100_0000 0 0101

1 1110_0000 0 0110

1 0011_0000 0 0111

1 1111_1000 0 1000

1 0000_1100 1 1000

1 0000_0111 1 1001

1 0000_0011 1 1001

1 0001_1111 1 1010

1 1111_0000 0 1000

1 0000_1111 1 1000

Table 4–6. Slave Read Request Size Encoding (64 bit datapath) (Part 2 of 2)

Avalon-MM Values RapidIO
Values

burstcount(1) wdptr
(1'bx)

rdsize(1)
(4'bxxxx)

Altera Corporation MegaCore Version 7.1 4–41
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Doorbell Module

The doorbell module provides support for Type 10 packet format
(doorbell class) transactions, allowing users to send and receive short
software-defined messages to and from other processing elements
connected to the RapidIO interface.

As shown in Figure 4–1 on page 2, the Doorbell module is connected to
the Transport layer Module. In a typical application the Doorbell Module
Avalon-MM slave interface is connected to Avalon-MM system
interconnect fabric, allowing an Avalon-MM master to communicate with
RapidIO devices by sending and receiving doorbell messages.

When you configure the RapidIO MegaCore function, you can enable or
disable the doorbell operation feature, depending on your application
requirements (if you do not need the doorbell feature, disabling it will
reduce device resource usage). If you enable the feature, a 32–bit
Avalon-MM slave port is created that allows the RapidIO MegaCore to
receive and/or generate RapidIO doorbell messages.

1 1111_1100(1) 0 1001

1 0011_1111 1 1001

1 1111_1110 0 1010

1 1111_1111 1 1010

1 1111_1111 0 1011

2 1111_1111 1 1011

3-4 0 1100

5-8 1 1100

9-12 1 1101

13-16

17-20 1 1111

21-24

25-28

29-32

Notes for Table 4–7:
(1) For all Avalon-MM write transfers with burstcount larger than 1,

io_s_wr_byteenable must be set to 8’b1111_1111. If it is not, the transfer fails:
the INVALID_WRITE_BYTEENABLE bit in the IO_SLAVE_INTERRUPT register
is set and io_s_mnt_irq is asserted if enabled.

Table 4–7. Slave Write Request Size Encoding (64 bit datapath) (Part 2 of 2)

Avalon-MM Values RapidIO Values

burstcount byteenable
(8'bxxxx_xxxx)

wdptr
(1'bx)

wrsize
(4'bx)

4–42 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Doorbell Module Block Diagram

Figure shows a block diagram of the Doorbell Module logic. This module
includes a 32–bit Avalon-MM slave interface to the user interface. The
Doorbell Module contains the following logic blocks:

■ Register and FIFO Interface, for allowing an external Avalon-MM
master to access the Doorbell Module internal registers and FIFO
buffers

■ Tx Output FIFO that stores the outbound doorbell and response
packets waiting for transmission to the Transport layer module.

■ Acknowledge RAM, used to temporarily store the transmitted
doorbell packets pending responses to the packets from the target
RapidIO device.

■ Tx Timeout logic that checks the expiration time for each outbound
Tx doorbell packet that is sent.

■ Rx Control manages the Atlantic Sink protocol by fetching and
processing available doorbell packets from the Transport layer
module. Received packet types include:

● Rx doorbell request
● Rx response DONE to a successfully transmitted doorbell

packet.
● Rx response RETRY to a transmitted doorbell message
● Rx response ERROR to a transmitted doorbell message

■ Rx FIFO that stores the received doorbell messages and passes them
to the external Avalon-MM master device.

■ Tx FIFO that stores doorbell messages that were generated for the
external Avalon-MM master device and are waiting to be
transmitted.

■ Tx Completion FIFO that stores the transmitted doorbell messages
that have received responses. This FIFO also stores timed out TX
doorbell requests.

■ Error Management module that reports detected errors, including

● Unexpected response (a response packet was received, but its
TransactionID does not match any pending request that is
waiting for a response.

● Request timeout (an outbound doorbell request did not receive
a response from the target device).

Altera Corporation MegaCore Version 7.1 4–43
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–20. Doorbell Module Block Diagram

Sink

Acknolwledge
RAM

Tx
Timeout

Rx Control

Rx
FIFO

IRQ

Tx
Completion

FIFO

Tx
FIFO

Tx Output FIFO

Register
and

FIFO
Interface

Transport
Layer

Module

System
Interconnect

Fabric

Avalon-MM
SlaveDoorbell Logical Module

To Maintenance Register Module

Error
Management

Source

4–44 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Doorbell Message Generation

To generate a doorbell request packet on the RapidIO serial interface, you
perform the following steps, using a set of registers described in
“Doorbell Message Registers” on page 4–112:

1. Optionally enable interrupt by writing ‘1’ to the appropriate bit of
the Tx Doorbell Interrupt Enable register.

2. Optionally enable confirmation of successful outbound messages by
writing 1 to the COMPLETED bit of the Tx Completion
Control register

3. Set up the PRIORITY field of the Tx Doorbell Control register.

4. Write the Tx Doorbell register to set up the DESTINATION_ID
and INFORMATION fields of the generated doorbell packet format.

1 Before writing to the Tx Doorbell register you must be certain
that the FIFO has available space to accept the write data. This is
to avoid a wait request signal assertion due to a full FIFO. When
wait request is asserted you can not perform other transactions
on the doorbell Avalon-MM slave port until the current
transaction is completed. You can determine the level of the Tx
FIFO by reading the Tx Doorbell Status Register (the FIFO is 16
words deep).

Once a write to the Tx Doorbell register is detected, internal control
logic generates and sends a Type 10 packet based on the information in
the Tx Doorbell and Tx Doorbell Control registers. A copy of the
outbound doorbell packet is stored in the Acknowledge RAM.

When the response to an outbound doorbell message is received, the
corresponding copy of the outbound message is written into the Tx
Doorbell Completion buffer (if enabled), and an interrupt is generated (if
enabled) on the Avalon-MM slave interface by asserting the drbell_s_irq
signal of the doorbell. The ERROR_CODE field in the Tx Doorbell
Completion Status register indicates successful or error completion.

The corresponding interrupt status bit is set each time a valid response
packet is received, and resets itself when the Tx Completion FIFO is
empty. Software can optionally clear the interrupt status bit by writing a
1 to this specific bit location of the Doorbell Interrupt Status
register.

Upon detecting the interrupt, software can fetch the completed message
and find out its status by reading the Tx Doorbell Completion register
and Tx Doorbell Completion Status register respectively.

Altera Corporation MegaCore Version 7.1 4–45
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

An outbound message that times out before its response is received is
treated in the same manner as an outbound message that receives error
response: if enabled, an interrupt is generated by the Error Management
module by asserting the sys_mnt_s_irq signal, and the ERROR_CODE
field in the Tx Doorbell Completion Status register is set to indicate
the error.

If interrupt is not enabled, the Avalon-MM master must periodically poll
the Tx Doorbell Completion Status register to check for available
completed messages before retrieving them from the Tx Completion
FIFO.

Doorbell request packets for which RETRY responses are received are
automatically resent by hardware. No retry limit is imposed on outbound
doorbell messages.

Doorbell Message Reception

Doorbell request packets received from the Transport layer module are
stored in an internal buffer, and an interrupt is generated on the doorbell
Avalon-MM slave interface, if the interrupt is enabled.

The corresponding interrupt status bit is set every time a doorbell request
packet is received and resets itself when the Rx FIFO is empty. Software
can clear the interrupt status bit by writing a 1 to this specific bit location
of the Doorbell Interrupt Status register.

If interrupt is not enabled, the external Avalon-MM master must
periodically poll the Rx Doorbell Status register to check the number
of available messages before retrieving them from the Rx Doorbell buffer.

Appropriate Type 13 response packets are generated internally and sent
for all the received doorbell messages. A response with DONE status is
generated when the received doorbell packet can be processed
immediately. A response with RETRY status is generated to defer
processing the received message when the internal hardware is busy, for
example when the RX Doorbell buffer is full.

Avalon-ST Pass-Through Interface

The Avalon-ST pass-through interface is an optional interface that is
generated when you select the Avalon-ST pass-through port in the
Transport and Maintenance panel of the MegaWizard interface (see
Figure 2–6 on page 2–11). All packets received by the Transport layer that
do not match this MegaCore Base device_ID or which have FTYPEs that
are not supported by this MegaCore function are routed to the Pass-

4–46 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Through RX Avalon-ST interface. The packets can then be further
examined by a local processor or parsed and processed by a custom user
function.

Applications for using the Avalon-ST pass-through port include the
following:

■ User implementation of a RapidIO function not supported by this
MegaCore function (for example, Message Passing SAR logic)

■ User implementation of a custom function not specified by the
RapidIO protocol, but which may be useful for the system
application.

Table 4–8 provides a description of signals of the Avalon-ST pass-through
interface in the transmit (TX) direction.

Table 4–8. Avalon-ST Pass-Through Port Transmission Signals

Signal Type Function

gen_tx_ready Output Indicates that the core is ready to receive data on the next clock
cycle

gen_tx_valid Input Used to qualify all the other transmit side pass-through port input
signals. On every rising edge of the clock where gen_tx_valid is
high, data is sampled by the core.

gen_tx_startofpacket Input Marks the start of a packet transfer. This is qualified with
gen_tx_valid.

gen_tx_endofpacket Input Marks the end of a packet transfer. This is qualified with
gen_tx_valid.

gen_tx_data Input A 32 or 64-bit wide data bus; 1x or 4x respectively.

Altera Corporation MegaCore Version 7.1 4–47
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Table 4–9 describes the Avalon-ST pass-through signals in the receive
(RX) direction.

gen_tx_empty Input This bus identifies the number of empty bytes on the last data
transfer of the gen_tx_endofpacket. For a 32-bit wide data
bus, this bus is 2 bits wide. For a 64-bit wide data bus, this bus is 3
bits wide. The following values are supported.

gen_tx_empty empty bits
2'b00 none
2'b01 [7:0]
2'b10 [15:0]
2'b11 [23:0]

gen_tx_empty empty bits
3'b000 none
3'b001 [7:0]
3'b010 [15:0]
3'b011 [23:0]
3'b100 [31:0]
3'b101 [39:0]
3'b110 [47:0]
3'b111 [56:0]

gen_tx_error Input Indicates that the corresponding data has an error. Assertion of this
signal any time during the packet transfer will cause the packet to be
dropped by the core. Qualified with gen_tx_valid

Table 4–8. Avalon-ST Pass-Through Port Transmission Signals

Signal Type Function

Table 4–9. Avalon-ST Pass-Through Port Receiver Signals

Signal Type Function

gen_rx_ready Input Indicates to the core that the user is ready to receive data on the
next clock cycle

gen_rx_valid Output Used to qualify all the other output signals of the receive side
pass-through port. On every rising edge of the clock where
gen_rx_valid is high, gen_rx_data can be sampled.

gen_rx_startofpacket Output Marks the start of a packet transfer. (2)

gen_rx_endofpacket Output Marks the end of a packet transfer. (2)

gen_rx_data Output A 32 or 64-bit wide data bus; 1x or 4x mode respectively.

4–48 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

Pass-Through Port Examples

This section contains two examples, one receiving and the other
transmitting a packet through the Avalon-ST pass-through port.

Packet Routed Through RX Port on Avalon-ST Pass-Through Port
The following example of a packet routed to the receiver Avalon-ST pass-
through port is for a variation that only has the Maintenance module and
the Avalon-ST pass-through port enabled. The interface does not have an
Input/Output Logical layer interface. A packet received by the RapidIO
MegaCore on the RapidIO interface whose FTYPE does not indicate a

gen_rx_empty Output This bus identifies the number of empty bytes on the last data
transfer of the gen_rx_endofpacket. For a 32-bit wide data
bus, this bus is 4 bits wide. For a 64-bit wide data bus, this bus is
8 bits wide. The following values are supported.

gen_rx_empty empty bits
2'b00 none
2'b01 [7:0]
2'b10 [15:0]
2'b11 [23:0]

gen_rx_empty empty bits
3'b000 none
3'b001 [7:0]
3'b010 [15:0]
3'b011 [23:0]
3'b100 [31:0]
3'b101 [39:0]
3'b110 [47:0]
3'b111 [56:0]

gen_rx_error Output Indicates that the corresponding data has an error. This signal is
never asserted by the RapidIO MegaCore function.

gen_rx_size (1) Output Identifies the number of cycles the current packet transfer will
require. This signal is only valid on the start of packet cycle
(gen_rx_startofpacket).

Note:
(1) This is not an Avalon-ST signal and will be exported when the RapidIO MegaCore function is used as part of an

SOPC Builder system.
(2) gen_rx_valid is used to qualify all the other output signals of the receive side pass-through port.

Table 4–9. Avalon-ST Pass-Through Port Receiver Signals

Signal Type Function

Altera Corporation MegaCore Version 7.1 4–49
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Maintenance Type transaction is routed to the receiver port of the Avalon-
ST pass-through interface. The timing diagram in Figure 4–21 shows a
packet received on this interface.

Figure 4–21. Packet Received on the Avalon-ST Pass-Through Interface

In cycle 0, the user logic indicates to the MegaCore function that it is ready
to receive a packet transfer by asserting gen_rx_ready. In cycle 1, the
MegaCore function asserts gen_rx_valid and
gen_rx_startofpacket. During this cycle, gen_rx_size is valid
and indicates that it will take 5 cycles to transfer the packet. Table 4–10
shows the RapidIO header fields and the payload carried on the
gen_rx_data bus and the corresponding cycle.

sysclk

gen_rx_ready

gen_rx_valid

gen_rx_startofpacket

gen_rx_endofpacket

gen_rx_data[63:32]

gen_rx_data[31:0]

gen_rx_size[5:0]

gen_rx_empty[2:0]

gen_rx_error

0005AACC CAC80001 06070809 0E0F1011 D37C0000

4C00CACA 02030405 0A0B0C0D 12131415 XXXXXXXX

05

4

Table 4–10. RapidIO Header Fields and gen_rx_data Bus Payload (Part 1 of 2)

Cycle Field gen_rx_data bus Value Comment

1 ackID [63:59] 5'h00

rsvd [58:57] 2'h0

CRF [56] 1'b0

prio [55:54] 2'h0

tt [53:52] 2'h0

ftype [51:48] 4'h5 A value of 5 indicates a Write Class packet

destinationID [47:40] 8'haa

sourceID [39:32] 8'hcc

ttype [31:28] 4'h4 The value of 4 indicates a NWRITE transaction.

4–50 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

NREAD Example Using TX Port on Avalon-ST Pass-Through Port
The next example shows the response to an NREAD transaction. The
response is presented on the TX port of the Avalon-ST pass-through
interface. The timing diagram in Figure 4–22 shows the packet presented
on this interface.

1 wrsize [27:24] 4'hc The wrsize and wdptr values encode the
maximum size of the payload.In this example it
decodes to a value of 32 bytes. Refer to Table 4-
4 of the RapidIO Part 1: Input/Output Logical
Specification Rev. 1.3

srcTID [23:16] 8'h00

address[28:13] [15:0] 16'hcaca The 29 bit address composed is
29'h19595959. This becomes 32'hcacacac8, the
double-word physical address.

2 address[12:0] [63:51] 13'h1959

wdptr [50] 1'b0 See description for the size field.

xamsbs [49:48] 2'h0

Payload Byte0,1 [47:32] 16'h0001

Payload Byte2,3 [31:16] 16'h0203

Payload Byte4,5 [15:0] 16'h0405

3 Payload Byte6,7 [63:48] 16'h0607

Payload Byte8,9 [47:32] 16'h0809

Payload Byte10,11 [31:16] 16'h0a0b

Payload Byte12,13 [15:0] 16'h0c0d

Payload Byte14,15 [63:48] 16'h0e0f

4 Payload Byte16,17 [47:32] 16'h1011

Payload Byte18,19 [31:16] 16'h1213

Payload Byte20,21 [15:0] 16'h1415

5 CRC[15:0] [63:48] 16'hd37c For packets with a payload greater than 80 bytes,
the middle crc is stripped but the last crc is not
stripped. For packets smaller than 80 bytes, the
crc is not stripped.

Pad bytes [47:32] 16'h0000 The RapidIO allows an implementation to add
Pad bytes for the payload to adhere to 32-bit
alignment

Table 4–10. RapidIO Header Fields and gen_rx_data Bus Payload (Part 2 of 2)

Cycle Field gen_rx_data bus Value Comment

Altera Corporation MegaCore Version 7.1 4–51
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–22. Packet Transmitted on the Avalon ST Pass-Through Port Interface

sysclk

gen_tx_ready

gen_tx_valid

gen_tx_startofpacket

gen_tx_endofpacket

gen_tx_data[63:32]

gen_tx_data[31:0]

gen_tx_empty[2:0]

gen_tx_error

200DCCAA 03040506 0B0C0D0E 13141516 1B1C1D1E

80000102 0708090A 0F101112 1718191A 1F20XXXX

2

4–52 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Functional Description

The timing diagram shows a response to a 32-byte NREAD request. The
Xs indicate a don't care value. Table 4–11 shows the composition of the
fields in the RapidIO packet header and the payload as they correspond
to each clock cycle. The gen_tx_empty bits indicate a value of 2, which
means that there are 2 empty bytes in the last data word.

Table 4–11. RapidIO Header Fields on the gen_rx_data Bus (Part 1 of 2)

Cycle Field gen_rx_data bus Value Comment

1 ackID [63:59] 5'h04

rsvd [58:57] 2'h0

CRF [56] 1'b0

prio [55:54] 2'h0

tt [53:52] 2'h0

ftype [51:48] 4'hd A value of 4'hd (13 decimal) indicates a
Response Class packet

destinationId [47:40] 8'hcc

sourceId [39:32] 8'haa

ttype [31:28] 4'h8 The value of 8 indicates a RESPONSE
transaction with data payload.

status [27:24] 4'h0 A value of 0 indicates DONE. Requested
transaction has been successfully
completed.

targetTID [23:16] 8'h00

Payload
Byte0,1

[15:0] 16'h0102 payload word 0

2 Payload
Byte2,3

[63:48] 16'h0304 payload word 1

Payload
Byte4,5

[47:32] 16'h0506

Payload
Byte6,7

[31:16] 16'h0708

Payload
Byte8,9

[15:0] 16'h090a

Altera Corporation MegaCore Version 7.1 4–53
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

OpenCore Plus Time-Out Behavior

OpenCore Plus hardware evaluation can support the following two
modes of operation:

■ Untethered—the design runs for a limited time
■ Tethered—requires a connection between your board and the host

computer. If tethered mode is supported by all megafunctions in a
design, the device can operate for a longer time or indefinitely

All megafunctions in a device time out simultaneously when the most
restrictive evaluation time is reached. If there is more than one
megafunction in a design, a specific megafunction’s time-out behavior
may be masked by the timeout behavior of the other megafunctions.

1 For MegaCore functions, the untethered timeout is 1 hour; the
tethered timeout value is indefinite.

3 Payload
Byte10,11

[63:48] 16'h0b0c

Payload
Byte12,13

[47:32] 16'h0d0e

Payload
Byte14,15

[31:16] 16'h0f10

Payload
Byte16,17

[15:0] 16'h1112

4 Payload
Byte18,19

[63:48] 16'h1314

Payload
Byte20,21

[47:32] 16'h1516

Payload
Byte22,23

[31:16] 16'h1718

Payload
Byte24,25

[15:0] 16'h191a

5 Payload
Byte26,27

[63:48] 16'h1b1c

Payload
Byte28,29

[47:32] 16'h1d1e

Payload
Byte30,31

[31:16] 16'h1f10 Payload word 15

Table 4–11. RapidIO Header Fields on the gen_rx_data Bus (Part 2 of 2)

Cycle Field gen_rx_data bus Value Comment

4–54 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

Your design stops working after the hardware evaluation time expires.

After that time, the RapidIO MegaCore function behaves as though the
Physical layer’s Atlantic interface signals atxena and arxena are tied
low.

As a result, it is impossible for the RapidIO MegaCore function to
transmit new packets (it will only transmit idles and status control
symbols), or read packets out of the Atlantic interface. If the far end
continues to transmit packets, the RapidIO MegaCore function starts
refusing new packets by sending packet_retry control symbols once
its receiver buffer fills up beyond the corresponding threshold.

f For more information on OpenCore Plus hardware evaluation using the
RapidIO MegaCore function, see AN 320: OpenCore Plus Evaluation of
Megafunctions.

Error Detection
and
Management

The error detection and management mechanisms in the RapidIO
specification and built into the RapidIO MegaCore function provide a
high degree of reliability. In addition to error detection, management, and
recovery features, the RapidIO MegaCore function also implements a few
debugging and diagnostic tools.

This section outlines the errors, error detection, and management features
in the RapidIO MegaCore function.

Physical Layer Error Management

At the physical layer there are mainly two types of possible errors:

■ Protocol violations

■ Transmission errors

Protocol violations can be caused by a link partner that is not fully
compliant to the specification, or can be a side effect of the link partner
being reset.

Transmission errors can be caused by noise on the line and consist of one
or more bit errors. The following mechanisms exist for checking and
detecting errors:

■ The receiver checks the validity of the received 8B10B encoded
characters, including the running disparity.

Altera Corporation MegaCore Version 7.1 4–55
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

■ The receiver detects control characters changed into data characters
or data characters changed into control characters, based on the
context in which the character is received.

■ The receiver checks the CRC of the received control symbols and
packets.

The RapidIO MegaCore function physical layer transparently manages
these errors for the user. The RapidIO specification defines both input and
output error detection and recovery state machines that include
handshaking protocols in which the receiving end signals that an error is
detected by sending a packet-not-accepted control symbol; the
transmitter then sends an input-status link-request control
symbol that the receiver responds to with a link-response control
symbol to indicate which packet needs to be retransmitted. The input and
output error detection and recovery state machines can be monitored by
software you create to read the status of the Port 0 Error and Status
CSR.

In addition to the registers defined by the specification, the RapidIO
MegaCore function provides several output signals outlined in
Table 4–12 that enable user logic to monitor the error detection and
recovery process.

Table 4–12. Signals for Detecting and Managing Errors

Output Signal Comments

char_err Invalid or illegal character or disparity error detected. See Table 3–10 on
page 3–30, Packet and Error Monitoring Signals, for a more detailed
description of these signals.

symbol_error CRC error detected in received packet. See Table 3–10 on page 3–30,
Packet and Error Monitoring Signals, for a more detailed description of these
signals.

packet_crc_error transmission error occurred

packet_not_accepted marks the beginning of the error recovery process

packet_transmitted allows user logic to monitor traffic exchange under error-free conditions

packet_accepted allows user logic to monitor traffic exchange under error-free conditions

packet_retry when asserted, this state can be symptomatic of buffer congestion

packet_cancelled when asserted, this state can be symptomatic of buffer congestion

Input Signal

rerr This input signal is used by external logic to indicate 8B10B decoding errors
for variations that use an external transceiver

4–56 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

Protocol Violations

Some protocol violations, such as a packet with an unexpected AckID or
a timeout on a packet acknowledgment, can use the same error recovery
mechanisms as the transmission errors described above, but other
protocol violations such as a timeout on a link-request or the RapidIO
MegaCore function receiving a link-response with an ackID outside the
range of transmitted AckIDs, can lead to unrecoverable – or fatal errors.

Fatal Errors

Fatal errors cause a soft reset of the physical layer module, which clears
all the transmit buffers and resets the transmission and expected AckID
to 0. This effect also can be triggered by software that writes a one and
then a zero to the PORT_DIS bit of the Port 0 Control CSR.

Fatal Error When Resetting the Link Partner

If the link partner is reset when its expected AckID is not zero, a fatal error
occurs when it receives the next transmitted packet because the link
partner’s expected AckID is reset to zero, which causes a mismatch
between the transmitted AckID and the expected AckID. The fatal error
causes a soft reset of the MegaCore function. After the soft reset
completes, transmitted and expected AckIDs are synchronized and
normal operation resumes. Only the packets that were queued at the time
of the fatal error are lost.

Altera Corporation MegaCore Version 7.1 4–57
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Logical Layer Error Management

The Logical layer manages only Logical layer errors because errors
detected by the Physical layer are masked from the Logical layer module.
Any packet that has the arxerr signal asserted is dropped in the
Transport layer before it reaches the logical layer modules.

The RapidIO specification defines the following common errors and the
protocols for managing them:

■ malformed request or response packets

■ unexpected Transaction ID

■ missing response (timeout)

■ response with ERROR status

The RapidIO MegaCore function implements part of the optional Error
Management Extensions as defined in Part 8 of the RapidIO Interconnect
Specification Rev. 1.3 However, because not all of the registers defined in
the Error Management Extension are implemented in the RapidIO
MegaCore function, the error management registers are mapped into the
Implementation Defined Space rather than in the Extended Features
Space.

The Error Management registers providing the most useful information
for error management are implemented in the RapidIO MegaCore
function; see their description in “Error Management Registers” on
page 4–110 for more information.

■ Logical/Transport Layer Error Detect CSR

■ Logical/Transport Layer Error Enable CSR

■ Logical/Transport Layer Address Capture CSR

■ Logical/Transport Layer device ID Capture CSR

■ Logical/Transport Layer Control Capture CSR

When enabled, each error defined in the Error Management Extensions
triggers the assertion of an interrupt on the sys_mnt_s_irq output
signal of the System maintenance Avalon-MM slave interface and causes
the capture of various packet header fields in the appropriate capture
CSRs.

In addition to the errors defined by the RapidIO specification, each
Logical layer module has its own set of error conditions that can be
detected and managed.

4–58 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

Maintenance Avalon-MM Slave

The Maintenance Avalon-MM slave module creates request packets for
the Avalon-MM transaction on its slave interface and processes the
response packets that it receives. Anomalies are reported through one or
more of the following three channels:

■ Standard Error Management Registers

■ Registers in the Implementation Defined Space

■ Standard Error Management Registers

The following sections describe these channels.

Standard Error Management Registers

The following standard defined error types can be declared by the
Input/Output Avalon-MM slave module. The corresponding error bits
are then set and the required packet information is captured in the
appropriate Error Management registers.

IO Error Response
This error is declared when a response with ERROR status is received for
a pending maintenance read or write request.

Unsolicited Response
This error is declared when a response is received that does not
correspond to any pending maintenance read or write request.

Packet response Time-out
This error is declared when a response is not received within the time
specified by the Port Response Timeout CSR for a pending maintenance
read or write request.

Illegal Transaction Decode
This error is declared for malformed received response packets.

■ Response packet to pending maintenance read or write request with
Status not DONE nor ERROR.

■ Response packet with payload with a Transaction Type different
from maintenance read response.

■ Response packet without payload, with a Transaction Type different
from maintenance write response.

■ Response to a pending maintenance read request with more than 32-
bit of payload. (The MegaCore only issues 32-bit read requests.)

Altera Corporation MegaCore Version 7.1 4–59
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Registers in the Implementation Defined Space

The Maintenance register module defines the Maintenance Interrupt
register in which the following two bits report Maintenance Avalon-MM
slave related error conditions.

■ WRITE_OUT_OF_BOUNDS

■ READ_OUT_OF_BOUNDS

These bits are set when the address of a write or read transfer on the
Maintenance Avalon-MM slave interface falls outside of all the enabled
address mapping windows. When these bits are set, the system interrupt
signal sys_mnt_s_irq is also asserted if the corresponding bit in the
Maintenance Interrupt Enable register is set.

Avalon-MM Slave Interface's Error Indication Signal

The io_s_rd_readerror output is asserted when a response with
ERROR status is received for a maintenance read request packet when a
maintenance read times out or when the Avalon-MM read address falls
outside of all the enabled address mapping window.

Maintenance Avalon-MM Master

The Maintenance Avalon-MM master module processes the maintenance
read and write request packets that it receives and generates response
packets. Anomalies are reported by generating ERROR response packets.
A response packet with ERROR status is generated in the following cases:

■ Received a maintenance write request packet without payload or
with more than 64 bytes of payload.

■ Received a maintenance read request packet of the wrong size (too
large or too small).

■ Received a maintenance read or write request packet with an invalid
rdsize or wrsize value.

1 These errors do not cause any of the standard defined errors to
be declared and recorded in the Error Management registers.

Port-Write Reception Module

The Port-Write reception module processes received port-write request
maintenance packets. The following bits in the Maintenance Interrupt
register in the Implementation defined space are used to report any

4–60 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

detected anomaly. The System Maintenance Avalon-MM slave port
interrupt signal sys_mnt_s_irq is asserted if the corresponding bit in
the Maintenance Interrupt Enable register is set.

■ The PORT_WRITE_ERROR bit is set when the packet is either too
small (no payload) or too large (more than 64 bytes of payload), or if
the actual size or the packet is larger than indicated by the wrsize
field. These errors do not cause any of the standard defined errors to
be declared and recorded in the Error Management registers.

■ The PACKET_DROPPED bit is set when a port-write request packet
is received but port-write reception is not enabled (by setting bit
PORT_WRITE_ENA in the Rx PORT_WRITE_CONTROL register) or if
a previously received port-write has not been read out from the Rx
PORT_WRITE register.

Port-Write Transmission Module

There are no response packets to Port-Write requests, therefore the Port-
Write transmission module does not detect or report any errors.

Input/Output Avalon-MM Slave

The Input/Output Avalon-MM slave module creates request packets for
the Avalon-MM transaction on its read and write slave interfaces and
processes the response packets that it receives. Anomalies are reported
through one or more of the following three channels:

■ Standard Error Management Registers

■ Registers in the Implementation Defined Space

■ The Avalon-MM slave interface's error indication signal.

Standard Error Management Registers

The following standard defined error types can be declared by the
Input/Output Avalon-MM master. The corresponding bits then get set
and the required packet information gets captured in the appropriate
Error Management registers.

IO Error Response
This error is declared when a response with ERROR status is received for
a pending NREAD or NWRITE_R request.

Unsolicited Response
This error is declared when a response is received that does not
correspond to any pending NREAD or NWRITE_R request.

Altera Corporation MegaCore Version 7.1 4–61
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Packet Response Time-Out
This error is declared when a response is not received within the time
specified by the Port Response Timeout CSR for an NREAD or
NWRITE_R request.

Illegal Transaction Decode
This error is declared for malformed received response packets like those
outlined below:

■ NREAD or NWRITE_R response packet with Status not DONE nor
ERROR.

■ NWRITE_R response packet with payload or with a Transaction
Type indicating the presence of a payload.

■ NREAD response packet without payload, with incorrect payload
size, or with a Transaction Type indicating absence of payload.

Registers in the Implementation-Defined Space

The Input/Output Avalon-MM slave module defines the Input/Output
Slave Interrupt registers with the following bits. See these register
descriptions in the “Input/Output Slave Mapping Registers” on
page 4–107 for details on when these bits get set.

■ INVALID_WRITE_BYTEENABLE

■ INVALID_WRITE_BURSTCOUNT

■ WRITE_OUT_OF_BOUNDS

■ READ_OUT_OF_BOUNDS

When any of these bits are set, the system interrupt signal
sys_mnt_s_irq is also asserted if the corresponding bit in the
Input/Output Slave Interrupt Enable register is set.

The Avalon-MM slave interface's error indication signal

The io_s_rd_readerror output is asserted when a response with
ERROR status is received for a NREAD request packet, when an NREAD
request times out or when the Avalon-MM address falls outside of all the
enabled address mapping window.

4–62 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

Input/Output Avalon-MM Master

The Input/Output Avalon-MM master module processes the request
packets that it receives and generates response packets when required.
Anomalies are reported through one or both of the following two
channels:

■ Standard Error Management Registers

■ Response Packets with ERROR Status

Standard Error Management Registers

The following two standard-defined error types can be declared by the
Input/Output Avalon-MM master. The corresponding bits are then set
and the required packet information is captured in the appropriate error
management registers.

Unsupported Transaction
This error is declared when a request packet carrying a transaction type
that is not supported in the Destination Operations CAR: ATOMIC
transaction types and reserved and implementation defined transaction
types.

Illegal Transaction Decode
This error is declared when a request packet for a supported transaction
is too short or if it contains illegal values in some of its fields:

■ Request packet with priority = 3

■ NWRITE or NWRITE_R request packets without payload

■ NWRITE or NWRITE_R request packets with reserved wrsize and
wdptr combination

■ NWRITE, NWRITE_R, SWRITE, or NREAD request packets for
which the address does not match any enabled address mapping
window.

■ NREAD request packet with payload

■ NREAD request with rdsize that correspond to non-all-ones Byte
Lanes. (Avalon-MM does not allow non-all-ones byteenable on read
transfers so the Read Avalon-MM master does not have a byteenable
signal.)

■ Payload size does not match what is indicated by the rdsize or wrsize
and wdptr fields

Altera Corporation MegaCore Version 7.1 4–63
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Response Packets with ERROR Status

An ERROR response packet is sent for NREAD and NWRITE_R and Type
5 ATOMIC request packets that cause an Illegal Transaction Decode error
to be declared. It also is sent for NREAD requests for which the Avalon-
MM read transfers completes with the assertion of the
io_m_rd_readerror input signal.

Avalon-ST Pass-Through Port

Packets with valid CRCs that are not recognized as being destined to one
of the implemented logical layer modules are passed to the Avalon-ST
Pass-Through port for processing by user logic. In variations where the
Avalon-ST Pass-Through port is not implemented, an Unsupported
Transaction error is declared, if enabled, and the packet's information is
captured in the error management registers.

The RapidIO MegaCore function also provides hooks for user logic to
report any error detected by a user-implemented logical layer module
attached to the Avalon-ST pass-through port.

The transmit side of the Avalon-ST Pass-Through port provides the
gen_tx_error input signal that behaves essentially the same way as the
atxerr input signal described in the Physical layer section above.

If the Avalon-ST pass-through port is enabled and at least one of the Data
Messages Source or Destination operations is turned on in the
MegaWizard Plug-In Manager interface, the ports in Table 4–13 are
added to the MegaCore function to enable integrated error management.

Table 4–13. Message Passing Error Management Input Ports

Port Bit Description

Message Passing Error Management Inputs

error_detect_message_error_response Sets the Message error response
bit in the Logical/Transport
Layer Error Detect CSR and
triggers capture into the Error
Management registers of the captured
fields below.

4–64 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Error Detection and Management

error_detect_message_format_error Sets the Message Format Error bit
in the Logical/Transport Layer Error
Detect CSR and triggers capture into the
Error Management registers of the
captured fields below.

error_detect_message_request_timeout Sets the Message Request Time-
out bit in the Logical/Transport Layer
Error Detect CSR and triggers capture
into the Error Management registers of
the captured fields below.

error_detect_packet_response_timeout Sets the Message Request Time-
out bit in the Logical/Transport Layer
Error Detect CSR and triggers capture
into the Error Management registers of
the captured fields below.

error_capture_letter [1:0] Field captured into the Logical/Transport
Layer Control Capture CSR

error_capture_mbox [1:0] Field captured into the Logical/Transport
Layer Control Capture CSR

error_capture_msgseg_or_xmbox [3:0] Field captured into the Logical/Transport
Layer Control Capture CSR.

Common Error Management Inputs

error_detect_illegal_transaction_decode Sets the Illegal transaction
decode bit in the Logical/Transport
Layer Error Detect CSR and triggers
capture into the Error Management
registers of the captured fields below.

error_detect_illegal_transaction_target Sets the Illegal transaction
target error bit in the
Logical/Transport Layer Error Detect
CSR and triggers capture into the Error
Management registers of the captured
fields below.

error_detect_packet_response_timeout Sets the Packet response Time-
out bit in the Logical/Transport Layer
Error Detect CSR and triggers capture
into the Error Management registers of
the captured fields below.

error_detect_unsolicited_response Sets the Unsolicited Response
bit in the Logical/Transport Layer Error
Detect CSR and triggers capture into the
Error Management registers of the
captured fields below.

Table 4–13. Message Passing Error Management Input Ports

Port Bit Description

Altera Corporation MegaCore Version 7.1 4–65
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

error_detect_unsupported_transaction Sets the Unsupported
Transaction bit in the
Logical/Transport Layer Error Detect
CSR and triggers capture into the Error
Management registers of the captured
fields below.

error_capture_ftype [3:0] Field captured into Control Error
Management register.

error_capture_ttype [3:0] Field captured into Control Error
Management register.

error_capture_destination_id [15:0] Field captured into deviceID Error
Management register.

error_capture_source_id [15:0] Field captured into deviceID Error
Management register.

Table 4–13. Message Passing Error Management Input Ports

Port Bit Description

4–66 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

Demonstration
Testbench
Description

This generated testbench instantiates two symmetrical versions of a
RapidIO MegaCore generated by the MegaWizard interface. One
instance is the Device Under Test (DUT), referred to as rio. The other
instance is the sister_rio. The sister_rio responds to transactions initiated
by the rio DUT, and generates transactions to which the DUT responds.
Both the sister_rio and the rio DUT have bus functional models (BFMs)
that generate and monitor traffic from all the variations of Avalon-MM
interfaces and generate transactions to which the DUT responds.

See Figure 4–23 for a block diagram of the testbench in which all of the
available Avalon-MM interfaces are enabled. The two cores communicate
with each other using the Serial RapidIO interface. The testbench initiates
the following transactions at the rio DUT and targets them at the
sister_rio:

■ Maintenance Writes and Reads

■ SWRITE

■ NWRITE_R

■ NWRITE

■ NREAD

■ Doorbell Messages

■ Maintenance Port Writes and Reads

1 Your specific variant may not have all of the interfaces enabled.
In variations with an Avalon-ST pass-through port, Type 9 (data
streaming) packet traffic is generated and monitored on the
DUT and the sister_rio's Avalon-ST pass-through interfaces
respectively.

Altera Corporation MegaCore Version 7.1 4–67
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Figure 4–23. Transport IO Logical Layer Testbench

bfm_io_read_slave

bfm_mnt_slave

bfm_cnt_master

bfm_mnt_master

bfm_io_write_slave

bfm_io_read_master

bfm_io_write_master

Avalon-MM

Device Under Test

rio

sister_
bfm_io_read_slave

sister_
bfm_io_write_slave

sister_
bfm_io_read_master

sister_
bfm_io_write_master

Avalon-MM

sister_rio
PHY

PHY

Maint.
Master

Maint.
Slave

I/O
Master

I/O
Slave

I/O
Master

I/O
Slave

Maint.
Slave

Maint.
Master

System
Maint.
Slave

System
Maint.
Slave

Drbell.
Slave

Drbell.
Slave

RapidIO
Serial Interface

bfm_drbell_master

sister_
bfm_drbell_master

sister_
bfm_mnt_master

sister_
bfm_mnt_slave

sister_
bfm_cnt_master

4–68 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

The diagram represents the HDL written in the file
<design_name>_hookup.iv. Activity across the Avalon-MM interfaces is
generated and checked by invoking tasks that are defined in the supplied
BFMs. These models are implemented in files
<design_name>_avalon_bfm_master.v and
<design_name>_avalon_bfm_slave.v.

The file <design_name>_tb.v implements the code that performs the
above mentioned transactions. The code performs a reset and
initialization sequence necessary for the rio and sister_rio
MegaCores to establish a link and exchange packets.

Reset, Initialization, and Configuration

The clocks that are used to drive the testbench are defined and generated
in the <design_name>_hookup.iv file.

1 Refer to <design_name>_hookup.iv for the exact frequencies
used for each of the clocks. The frequencies used depend on the
configuration of the variant, for example, 1x or 4x mode, data
rate selection, and width of internal datapath.

The reset sequence is simple – the main reset for the DUT and the sister
core is driven low at the beginning of the simulation and kept low for a
duration of 100 ns and is then deasserted.

After the reset is deasserted, the testbench waits until both the rio and
the sister_rio have driven their port_initialized output signals
high. This indicates that both cores have completed their initialization
sequence.

The next step is to perform some basic programming of internal registers
in the rio and the sister_rio. Table 4–14 shows the registers that are
programmed in both rio and sister_rio cores. For a full description
of each register see “Software Interface” on page 4–86.

Altera Corporation MegaCore Version 7.1 4–69
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Programming of the device under test RapidIO MegaCore function
variation registers, in this case, rio registers, is performed by invoking
read and write tasks that are defined in the BFM instance,
bfm_cnt_master. Programming of the device under test RapidIO
MegaCore function variation, in this case, sister rio, is performed by
invoking the read and write tasks that are defined in the BFM instance,
sister_bfm_cnt_master. For the exact parameters passed on to these
tasks, please see the file <design_name>_tb.v. The tasks will drive either
a write or read transaction across the System Maintenance Slave Avalon-
MM Interface.

With the above configuration the cores can exchange basic packets across
the serial link.

Table 4–14. Testbench Registers

 Module Register
Address Register Name Value Description

rio 0x00060 Base device ID
CSR

0x00AA_0000 Program the rio to have a base device ID of 0xAA

rio 0x0013C General Control
CSR

0x6000_0000 Enable Request packet generation.

sister_rio 0x00060 Base device ID
CSR

0x0055_0000 Program the sister rio to have a base device ID of
0x55

sister_rio 0x0013C General Control
CSR

0x6000_0000 Enable Request packet generation for the
sister_rio.

rio 0x1040C I/O Slave Window
0 Control

0x0055_0000 Set the destinationID for outgoing
transactions to a value 0x55. This matches the base
device ID set for the sister rio.

rio 0x10404 I/O Slave Window
0 Mask

0x0000_0004 Define the Input/Output Avalon-MM Slave Window
0 to cover the whole address space (mask set to all
zeros) and enable it.

sister_rio 0x10504 I/O Slave Interrupt 0x0000_000F Enable the Input/Output Slave interrupts

sister_rio 0x10304 I/O Master window 0x0000_0004 Enable the sister_rio I/O master window 0. This will
allow the sister_rio to receive I/O transactions.

rio 0x1010C TX Maintenance
Window 0 Control

0x0055_FF00 Set the destinationID for outgoing
Maintenance Packets to 0x55. This matches the
base device id set for the sister_rio. Set the hop
count to 0xFF.

rio 0x10104 TX Maintenance
Window 0 Mask

0x0000_0004 Enable the rio TX Maintenance window 0

4–70 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

Maintenance Write and Read Transactions

The first set of tests performed are maintenance write and read requests.
The the device under test RapidIO MegaCore function variation (the rio
module) sends two maintenance write requests to the device under test
RapidIO MegaCore function variation (sister _rio module). The
writes are performed by invoking the rw_addr_data task defined
inside the BFM instance, bfm_mnt_master. The bfm_mnt_master is an
instance of the module avalon_bfm_master which is defined in the file
<design_name>_avalon_bfm_master.v

The following parameters are passed to the task:

■ WRITE – transaction type to be executed

■ wr_address – address to be driven on the Avalon-MM address bus

■ wr_data – write data to be driven on the Avalon-MM Write Data bus

The task performs the write transaction across the Maintenance Write
Avalon-MM Slave Interface.

The device under test RapidIO MegaCore function variation then sends
two maintenance read requests to the sister RapidIO MegaCore function
variation. The reads are performed by invoking the rw_data task
defined inside the BFM instance, bfm_mnt_master. The following
parameters are passed to the task:

■ READ – transaction type to be executed

■ rd_address – address to be driven on the Avalon-MM address bus

■ rd_data – parameter which will store the data read across the
Avalon-MM Read Data bus

The task performs the read transaction across the Maintenance Read
Avalon-MM Slave Interface.

The write transaction across the Avalon-MM interface will be translated
into a RapidIO Maintenance Write request packet. Likewise, the read
transaction across the Avalon-MM Interface will be translated into a
RapidIO Maintenance Read request packet.

The Maintenance write and read request packets are received by the sister
RapidIO MegaCore function variation and translated into Avalon-MM
transactions that are presented across the sister RapidIO MegaCore
function variation Maintenance Master Avalon-MM Interface. An
instance of avalon_bfm_slave, the BFM for an Avalon-MM Slave, is
driven by this interface. In the testbench, the write and read transactions
are checked and data is returned for the read operation. The write

Altera Corporation MegaCore Version 7.1 4–71
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

operation is checked by invoking the read_writedata task of the BFM.
The tasks returns the write address and the write data. This information
is then sent to expect functions which check for data integrity. The read
operation is checked by invoking the write_read data task. This task
returns the write address and drives the return data and read control
signals on the Avalon-MM master read port of the sister RapidIO
MegaCore function variation. The write address is checked again for
expected values by calling an expect function.

SWRITE Transactions

The next set of operations performed are Streaming Writes. In order to
perform SWRITE operations, one register in the core must be
reconfigured, as shown in Table 4–15.

With the above setting, any write operation presented across the
Input/Output Slave Avalon-MM Interface on the rio will be translated
into a RapidIO Streaming Write transaction.

1 The Avalon-MM write address must map into the
Input/Output Slave Window 0. However, in this example
the window is set to cover the whole Avalon-MM address
space by setting the mask to all zeros.

The testbench generates a predetermined series of burst writes across the
Avalon-MM Slave I/O interface on the device under test RapidIO
MegaCore function variation. These write bursts are each converted into
an SWRITE request packet sent on the RapidIO serial interface. Because
Streaming Writes only support bursts that are a multiple of double words
long, (multiple of 8-bytes), the testbench cycles from 8 to
MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks are invoked to carry
out the burst writes, rw_addr_data and rw_data. The rw_addr_data
initiates the burst by providing the address, burstcount and the content of
the first data word, while the rw_data executes the remaining of the
burst.

Table 4–15. SWRITE Register

Module Register
Address Name Value Description

rio 0x1040C IO Slave Window 0 Control 0x0055_0002 Sets the Destination ID for outgoing
transactions to a value 0x55. This
matches the base device id set for the
sister_rio. Enables SWRITE operations.

4–72 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

At the sister RapidIO MegaCore function variation, the SWRITE request
packets are received and translated into Avalon-MM transactions that are
presented across the Input/Output Master Avalon-MM interface. The
testbench calls the task read_writedata of the
sister_bfm_io_write_slave. The task captures the written data.

The written data is then checked again the expected value by invoking an
expect task. After completing the SWRITE tests, the testbench performs
NWRITE_R operations.

NWRITE_R Transactions

In order to perform NWRITE_R operations, one register in the core must
be reconfigured, as shown in Table 4–16.

With the above setting, any write operation presented across the
Input/Output Avalon-MM Slave module's Avalon-MM write interface
will be translated into a RapidIO NWRITE_R transaction. The Avalon-
MM write address must map into the II/O Slave Window 0.

Initially, the testbench performs two single word bursts; writing to an
even word address first and then to an odd word address. The testbench
then generates a predetermined series of burst writes across the
Input/Output Avalon-MM Slave module's Avalon-MM write interface
on the device under test RapidIO MegaCore function variation. These
write bursts are each converted into a NWRITE_R request packets sent
over the RapidIO Serial Interface. The testbench cycles from 8 to
MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks are invoked to
carry out the burst writes, rw_addr_data and rw_data. The file
rw_addr_data initiates the burst while the rw_data executes the
remaining of the burst.

At the sister RapidIO MegaCore function variation, the NWRITE_R
request packets are received and presented across the I/O Master Avalon-
MM interface as write transactions. The testbench calls the task

Table 4–16. NWRITE_R Transactions

Core Register
Address Name Value Description

rio 0x1040C Input/Output Slave Window
0 control

0x0055_0001 Sets the Destination Id for outgoing
transactions to a value 0x55. This
matches the base device id set for
the sister rio. Enables NWRITE_R
operations.

Altera Corporation MegaCore Version 7.1 4–73
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

read_writedata of the sister_bfm_io_write_slave. The task
captures the written data. The written data is checked again the expected
value by invoking an expect task.

NWRITE Transactions

In order to perform NWRITE operations, one register in the core must be
reconfigured, as shown in Table . With these settings, any write operation
presented across the Input/Output Slave Avalon-MM Interface will be
translated into a RapidIO NWRITE transaction.

1 The Avalon-MM write address must map into the
Input/Output Slave Window 0.

Initially, the testbench performs two single word bursts; writing to an
even word address first and then to an odd word address. The testbench
then generates a predetermined series of burst writes across the
Input/Output Avalon-MM Slave module's Avalon-MM write interface
on the device under test RapidIO MegaCore function variation. These
write bursts are each converted into a NWRITE request packet that is
send over the RapidIO Serial Interface. The testbench cycles from 8 to
MAX_WRITTEN_BYTES in steps of 8 bytes. Two tasks are invoked to
carry out the burst writes, rw_addr_data and rw_data. The
rw_addr_data initiates the burst while rw_data executes the
remaining of the burst.

At the sister RapidIO MegaCore function variation, the NWRITE
operations are received and presented across the I/O Master Avalon-MM
slave interface as write transactions. The testbench calls the task
read_writedata of the sister_bfm_io_write_slave. The task
captures the written data. The written data is checked again the expected
value by invoking an expect task.

Table 4–17. NWRITE Transactions

Module Register
Address Name Value Description

rio 0x1040C I/O Slave Window 0 Control 0x0055_0000 Sets the destinationID for
outgoing transactions to a value 0x55.
This matches the base deviceID
set for the device under test RapidIO
MegaCore function variation. Sets the
write request type back to NWRITE.

4–74 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

NREAD Transactions

The next set of transactions tested are NREADs. The device under test
RapidIO MegaCore function variation sends a group of NREADs to the
the sister RapidIO MegaCore function variation by cycling the read burst
size from 8 to MAX_READ_BYTES in increments of 8 bytes. For each
iteration, the rw_addr_data task is called. This task is defined in the
bfm_io_read_master instance of the Avalon-MM Master BFM. The
task performs the read request packets across the I/O Avalon-MM Slave
Read Interface. The read transaction across the Avalon-MM Interface will
be translated into a RapidIO NREAD request packets. The values of the
rd_address, rd_byteenable, and rd_burstcount parameters
determine the values for the rdsize, wdptr and xamsbs fields in the
header of the RapidIO packet.

The NREAD request packets are received by the device under test
RapidIO MegaCore function variation and translated into Avalon-MM
read transaction that are presented across the sister RapidIO MegaCore
function variation‘s I/O Master Avalon-MM Interface. An instance of
avalon_bfm_slave, the BFM for an Avalon-MM Slave, is driven by this
interface. The read operations are checked and data is returned by calling
the task, write_readdata. This task drives the data and read
datavalid control signals on the Avalon-MM master read port of the
device under test RapidIO MegaCore function variation.

The returned data is expected at the device under test RapidIO MegaCore
function variation I/O Avalon-MM Slave Interface. The task rw_data is
called and it captures the read data. This task is defined inside the
instance of bfm_io_read_master. The read data and an expected value
is then sent to the expect task where it is checked for equality.

Doorbell Transactions

The first step in testing doorbell messages is to enable the doorbell
interrupts. You do this by setting the lower three bits in the Doorbell
Interrupt Enable register located at address 0x0000_0020. The
testbench invokes the task rw_addr_data which is defined in the
instance of bfm_drbell_s_master. The test also programs the core to
store all of the successful and unsuccessful doorbell messages in the TX
Completion FIFO. For more information, see the register“Tx Doorbell
Status Control– Offset: 'h1C” on page 4–116.

Next, the test proceeds to push eight doorbell messages into the Transmit
Doorbell Message FIFO of the device under test. The test increments the
message payload for each transaction. To achieve this, the task
rw_addr_data is invoked with a WRITE operation, and is passed the

Altera Corporation MegaCore Version 7.1 4–75
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

TX doorbell register address, 0x0000_000C. This programs the 16-bit
message, an incrementing payload in this example, as well as the
destinationID, 0x55, to be used in the doorbell transaction packet.

To verify that the doorbell request packets have been sent, the test waits
for the drbell_s_irq signal to be asserted. The test then reads the “Tx
Doorbell Completion– Offset: 'h14” on page 4–115. This register provides
the doorbell messages that have been added to the TX Completion FIFO.
There should be eight successfully completed doorbell messages in that
FIFO and each one should be accessible by reading the TX Doorbell
Completion Control register eight times in succession. To perform this
verification, the test invokes the task rw_data defined in the instance
bfm_drbell_s_master.

The last part of the doorbell test programs the device under test RapidIO
MegaCore function variation to send eight doorbell messages to the
device under test RapidIO MegaCore function variation. The test verifies
that all eight doorbell messages were received by the device under test
RapidIO MegaCore function variation. The test calls the task
rw_addr_data defined under the instance
sister_bfm_drbell_s_master. The task performs a write to the
register “Tx Doorbell – Offset: 'h0C”. It programs the payload to be
incrementing, starting at 0c01, and the destinationID to be 0xAA,
matching the deviceID of the device under test RapidIO MegaCore
function variation.

The test waits for the device under test RapidIO MegaCore function
variation to assert the drbell_s_irq signal which indicates that a
doorbell message has been received. The test then proceeds to read the
eight received doorbell messages. To accomplish this, the task rw_data
is called with a READ operation and an address of 0x0000_0000 which
addresses the RX Doorbell register. The task is called eight times, once
for each message. It returns the received doorbell message and the
message is checked for an incrementing payload starting at 0x0c01 and
for the sourceId to have a value of 0x55, which is the deviceID of the
sister RapidIO MegaCore function variation.

Port Write Transactions

To test Port Writes, the test performs some basic configuration of the Port
Write registers in the device under test RapidIO MegaCore function
variation and the sister RapidIO MegaCore function variation. It then
programs the device under test RapidIO MegaCore function variation to
transmit Port Write request packets to the sister RapidIO MegaCore
function variation. The Port Writes are received by the sister RapidIO
MegaCore function variation and retrieved by the test program.

4–76 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Demonstration Testbench Description

The configuration involves enabling the RX Packet Stored Interrupt in the
sister RapidIO MegaCore function variation. This enables the sister
RapidIO MegaCore function variation to assert the
sister_sys_mnt_s_irq signal, which indicates that an interrupt has
been set in either the Maintenance Interrupt Register or the Input/Output
Slave Interrupt Register. Because this is testing Port Writes, the assertion
of sister_sys_mnt_s_irq means that a Port Write has been received
and that the payload can be retrieved. Enabling the interrupt is
accomplished by calling the task rw_addr_data defined in the instance,
sister_bfm_cnt_master.

A WRITE operation is performed by the task with the following address
and data passed as parameters:17'h10084, 32'h10. In addition, the
sister RapidIO MegaCore function variation has to be enabled to receive
Port Write transactions from the rio. Again, the task is called and the
following address and data are passed: 17'h10250, 32'h1.

After the configuration is complete, the test performs the operations
listed in Table 4–18.

Table 4–18. Port Write Test

Operation Action

Places data into the TX_PORT_WRITE_BUFFER write incrementing payload to registers at
addresses 'h10210 to 'h1024C

Indicates to the device under test RapidIO MegaCore
function variation that Port Write Data is ready

write Destination_ID = 0x55 and
PACKET_READY = 0x1 to 'h10200

Waits for the sister RapidIO MegaCore function variation to
receive the Port Write

monitor sister_sys_mnt_s_irq

Verifies that the sister RapidIO MegaCore function variation
has the interrupt bit PACKET_STORED set

read register at address 'h10080

Retrieves the Port Write payload from the sister RapidIO
MegaCore function variation and checks for data integrity

read registers at addresses 'h10260 to
'h1029C

Checks the sister RapidIO MegaCore function variation
PORT_WRITE status for correct payload size

 read register at address 'h10254

Clears the PACKET_STORED interrupt in the sister RapidIO
MegaCore function variation

write1 to bit 4 of register at address
'h10080

Waits for the next interrupt at the sister RapidIO MegaCore
function variation

 monitor sister_sys_mnt_s_irq

Altera Corporation MegaCore Version 7.1 4–77
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

The test iterates through these operations, each time incrementing the
payload of the Port Write. The loop exits when the max payload for a Port
Write has been transmitted, 64 Bytes.

All of the operations in the loop are executed by invoking the task
rw_addr_data either in the bfm_cnt_master or the
sister_bfm_cnt_master instances.

Transactions Across the Avalon-ST Pass-Through Interface

The IO Logical Layer Testbench tests the Avalon-ST pass-through
interface by exchanging Type 9 (Data Streaming) traffic between the rio
device under test and the sister_rio MegaCore function.

The supplied testbench is not used to perform a complete verification of
the RapidIO MegaCore function. The full verification is performed by the
Altera IP Verification Team using both directed and random verification
methodologies. The purpose of the supplied testbench is to provide
examples of how to program the MegaCore function and how to drive the
Avalon-MM interfaces to generate RapidIO Transactions.

4–78 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Parameters

Parameters Table 4–19 shows the RapidIO MegaCore function Transport,
Maintenance, I/O, and Doorbell parameters, which can only be set in the
MegaWizard interface (see “Parameterize” on page 2–7).

Table 4–19. Transport & I/O Logical Layer Parameters

Parameter Values Description

Transport Layer No Transport layer
or
Transport layer

The Transport layer is required for the Maintenance,
Input/Output, and Doorbell Logical layers, or the Avalon-
ST pass-through port to be enabled. If you select No
Transport Layer, you choose to use a Physical layer-only
variation.

Pass-through Avalon-ST
port

On or Off The Transport layer routes all unrecognized packets to the
Avalon-ST pass-through port. Unrecognized packets are
those that contain ftypes for Logical layers not enabled in
this MegaCore function, or destination IDs not assigned to
this endpoint.

Maintenance logical layer
interface(s)

Avalon-MM Master
and Slave,
Avalon-MM Master,
Avalon-MM Slave,
or None

Selects which parts of the Maintenance logical layer to
implement.

Number of transmit address
translation windows

1 to 16 Only applicable if an Avalon-MM Slave is chosen as the
Maintenance logical layer interface.

I/O logical layer interface(s) Avalon-MM Master
and Slave,
Avalon-MM Master,
Avalon-MM Slave,
or None

Selects whether or not to add a master/slave Avalon-MM
interface.

Input/Output Slave address
width

25 to 32 Specifies the Input/Output Slave address width. The
default is 25.

Number of RX address
translation windows
(for the Avalon-MM Master
interface)

1 to 16 Only applicable if I/O Avalon-MM Master is chosen as the
I/O logical layer interface.

Number of TX address
translation windows
(for the Avalon-MM Slave
interface)

1 to 16 Only applicable if I/O Avalon-MM Slave is chosen as the
I/O logical layer interface.

Doorbell TX enable On or Off Enables generation of outbound doorbell message
transmission

Doorbell RX enable On or Off Enables processing of inbound doorbell messages. If not
enabled, received doorbell messages are routed to the
Avalon-ST pass-through port if it is enabled, or silently
dropped if it is not.

Altera Corporation MegaCore Version 7.1 4–79
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Signals Tables 4–20 through 4–31 list the pins used by the transport, maintenance,
Input/Output, and Doorbell Logical layer modules of the RapidIO
MegaCore function. For a list of descriptions of signals used and
generated by the Physical Layer, see “Signals” on page 3–27. The active-
low signals are indicated by the suffix underscore n (_n).

1 For signals and bus widths specific to your variation, refer
to the HTML file generated by the MegaWizard interface
(see Table 2–2 on page 2–18).

Table 4–20 lists the clock and reset signals used by all modules.

Tables 4–21 through 4–28 list the Avalon-MM interface signals.

Table 4–20. Clock & Reset Signals

Signal Direction Description

sysclk Input System clock.

reset_n Input Active-low system reset.

Table 4–21. Maintenance Master Avalon-MM Interface Signals

Signal Direction Description

mnt_m_clk Input This signal is not used, therefore it can be left open. The
sysclk signal is used internally to sample this interface.

mnt_m_waitrequest Input Wait request

mnt_m_read Output Read enable

mnt_m_write Output Write enable

mnt_m_address[31:0] Output Address bus

mnt_m_writedata[31:0] Output Write data bus

mnt_m_readdata[31:0] Input Read data bus

mnt_m_readdatavalid Input Read data valid

Table 4–22. Maintenance Slave Avalon-MM Interface Signals (Part 1 of 2)

Signal Direction Description

mnt_s_clk Input This signal is not used, therefore it can be left open. The
sysclk signal is used internally as the clock reference
for this interface.

mnt_s_chipselect Input Maintenance slave chip select

4–80 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Signals

mnt_s_waitrequest Output Maintenance slave Wait request

mnt_s_read Input Maintenance slave Read enable

mnt_s_write Input Maintenance slave Write enable

mnt_s_address[25:0] Input Maintenance slave Address bus

mnt_s_writedata[31:0] Input Maintenance slave Write data bus

mnt_s_readdata[31:0] Output Maintenance slave Read data bus

mnt_s_readdatavalid Output Maintenance slave Read data valid

mnt_s_readerror Output Maintenance slave Read error. Indicates that the read
transfer did not complete successfully.

Table 4–23. System Maintenance Slave Avalon-MM Interface Signals

Signal Direction Description

sys_mnt_s_clk Input System clock

sys_mnt_s_chipselect Input System maintenance slave chip select

sys_mnt_s_waitrequest Output System maintenance slave wait request

sys_mnt_s_read Input System maintenance slave read enable

sys_mnt_s_write Input System maintenance slave write enable

sys_mnt_s_address[16:0] Input System maintenance slave address bus

sys_mnt_s_writedata[31:0] Input System maintenance slave write data bus

sys_mnt_s_readdata[31:0] Output System maintenance slave read data bus

sys_mnt_s_irq Output System maintenance slave interrupt request

Table 4–24. Input/Output Master Data Path Write Avalon-MM Interface Signals

Signal Direction Description

io_m_wr_clk Input This signal is not used, therefore it can be left open. The
sysclk signal is used internally as the clock reference
for this interface.

io_m_wr_waitrequest Input Input/Output master Wait request

io_m_wr_write Output Input/Output master Write enable

io_m_wr_address[31:0] Output Input/Output master Address bus

io_m_wr_writedata[n:0] Output Input/Output master Write data bus

io_m_wr_byteenable[m:0] Output Input/Output master Byte enable

io_m_wr_burstcount[k:0] Output Input/Output master Burst count

Table 4–22. Maintenance Slave Avalon-MM Interface Signals (Part 2 of 2)

Signal Direction Description

Altera Corporation MegaCore Version 7.1 4–81
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

1 Parameters n, m, and k are used in some of the following tables,
as follows:
n = (Internal data path width -1)
m = (Internal data path width/8)
k = 6 for 32 bit Internal data path width, and 5 for 64 bit Internal
data path width

Table 4–25. Input/Output Master Data Path Read Avalon-MM Interface Signals

Signal Direction Description

io_m_rd_waitrequest Input Input/Output master Wait request

io_m_rd_read Output Input/Output master Read enable

io_m_rd_address[31:0] Output Input/Output master Address bus

io_m_rd_readdata[n:0] Input Input/Output master Read data bus

io_m_rd_readdatavalid Input Input/Output master Read data valid

io_m_rd_burstcount[k:0] Output Input/Output master Burst count

io_m_rd_readerror Input Input/Output master Indicates that the burst read
transfer did not complete successfully

Table 4–26. Input/Output Slave Data Path Write Avalon-MM Interface Signals

Signal Direction Description

io_s_wr_clk Input This signal is not used, therefore it can be left open.
The sysclk signal is used internally as the clock
reference for this interface.

io_s_wr_chipselect Input Input/Output slave Chip select

io_s_wr_waitrequest Output Input/Output slave Wait request

io_s_wr_write Input Input/Output slave Wrtie enable

io_s_wr_address[31:0] Input Input/Output slave Address bus

io_s_wr_writedata[n:0] Input Input/Output slave Write data bus

io_s_wr_byteenable[m:0] Input Input/Output slave Byte enable

io_s_wr_burstcount[k:0] Input Input/Output slave Burst count

4–82 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Signals

Table 4–27. Input/Output Slave Data Path Read Avalon-MM Interface Signals

Signal Direction Description

io_s_rd_clk Input This signal is not used, therefore it can be left open.
The sysclk signal is used internally as the clock
reference for this interface

io_s_rd_chipselect Input Input/Output slave Chip select

io_s_rd_waitrequest Output Input/Output slave Wait request

io_s_rd_read Output Input/Output slave Read enable

io_s_rd_address[31:0] Input Input/Output slave Address bus

io_s_rd_readdata[n:0] Output Input/Output slave Read data bus

io_s_rd_readdatavalid Output Input/Output slave Read data valid

io_s_rd_burstcount[k:0] Input Input/Output slave Burst count

io_s_rd_readerror Output Input/Output slave read error indicates that the burst
read transfer did not complete successfully

Table 4–28. Input/Output Slave Data Path Read Avalon-MM Interface Signals

Signal Direction Description

io_s_rd_clk Input This signal is not used, therefore it can be left open.
The sysclk signal is used internally as the clock
reference for this interface

io_s_rd_chipselect Input Input/Output slave Chip select

io_s_rd_waitrequest Output Input/Output slave Wait request

io_s_rd_read Output Input/Output slave Read enable

io_s_rd_address[31:0] Input Input/Output slave Address bus

io_s_rd_readdata[n:0] Output Input/Output slave Read data bus

io_s_rd_readdatavalid Output Input/Output slave Read data valid

io_s_rd_burstcount[k:0] Input Input/Output slave Burst count

io_s_rd_readerror Output Input/Output slave read error indicates that the burst
read transfer did not complete successfully

Altera Corporation MegaCore Version 7.1 4–83
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Tables 4–30 and 4–31 list the Avalon-ST pass-through interface signals..

Table 4–29. Doorbell Message Avalon-MM Slave Interface Signals

Signal Direction Description

drbell_s_clk Input Doorbell Avalon-MM clock. This signal is not used,
therefore it can be left open. The sysclk signal is
used internally as the clock reference for this interface

drbell_s_chipselect Input Doorbell chip select

drbell_s_write Input Doorbell write

drbell_s_read Input Doorbell read

drbell_s_address[2:0] Input Doorbell address

drbell_s_writedata Input Doorbell write data

drbell_s_readdata Output Doorbell read data

drbell_s_waitrequest Output Doorbell wait request

drbell_s_irq Output Doorbell interrupt

Table 4–30. Avalon-ST Pass-Through Port Tx Signals (Part 1 of 2)

Signal Direction Description

gen_tx_ready Output
Sink to
Source

This ready signal is asserted by the Avalon-ST sink to
mark ready cycles, which are the cycles in which transfers
may take place. If ready is asserted on cycle, the cycle N
(N+READY_LATENCY) is a ready cycle.
In the RapidIO MegaCore function, READY_LATENCY is
equal to 1 so the cycle immediately following the cycle on
which gen_tx_ready is asserted is the ready cycle.

gen_tx_valid Input
Source to
Sink

The valid signal qualifies valid data on any cycle in which
data is being transferred from the source to the sink. On
each ready cycle for which gen_tx_valid is asserted
the data signal and other source to sink signals are
sampled by the sink. Ready cycles for which the valid
signal is asserted are called active cycles.

gen_tx_startofpacket Input
Source to
Sink

The gen_tx_startofpacket signal marks the active
cycle containing the start of the packet.

gen_tx_endofpacket Input
Source to
Sink

The gen_tx_endofpacket signal marks the active
cycle containing the end of the packet.

gen_tx_data Input
Source to
Sink

This data signal carries the bulk of the information
being transferred from the source to the sink.

4–84 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Signals

gen_tx_empty Input
Source to
Sink

The empty signal indicates the number of symbols that
are empty during the cycles that mark the end of a packet.
The sink only checks the value of the empty signal during
active cycles that have gen_tx_endofpacket
asserted. The empty symbols are always the last symbols
in data, those carried by the low-order bits. The empty
signal is required on all packet interfaces whose data
signal carries more than one symbol of data and has a
variable length packet format. The size of the empty
signal is log2(Symbols_Per_Beat).

gen_tx_error Input
Source to
Sink

Errors are signaled with this error signal. A value of zero
on any beat indicates the data on that beat is error-free. If
gen_tx_error is asserted at any point in a packet, the
whole packet is dropped.

Table 4–31. Avalon-ST Pass-Through Port Rx Signals (Part 1 of 2)

Signal Direction Description

gen_rx_ready Input
Source to
Sink

This ready signal is asserted by the sink to mark ready cycles,
which are cycles in which transfers can take place. If ready is
asserted on cycle, the cycle (N+READY_LATENCY) is a ready
cycle. The RapidIO MegaCore function is designed for a
READY_LATENCY equal to 1.

gen_rx_valid Output
Source to
Sink

The valid signal qualifies valid data on any cycle in which data is
being transferred from the source to the sink. On each ready cycle
for which the valid signal is asserted, the data signal and other
source-to-sink signals are sampled by the sink. Ready cycles for
which the valid signal is asserted are called active cycles.

gen_rx_startofpacket Output
Source to
Sink

The gen_rx_startofpacket signal marks the active cycle
containing the start of the packet.

gen_rx_endofpacket Output
Source to
Sink

The gen_rx_endofpacket signal marks the active cycle
containing the end of the packet.

gen_rx_data Output
Source to
Sink

The data bus carries the bulk of the information being transferred
from the source to the sink.

Table 4–30. Avalon-ST Pass-Through Port Tx Signals (Part 2 of 2)

Signal Direction Description

Altera Corporation MegaCore Version 7.1 4–85
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

1 Table 4–32 shows a packet and error monitoring signal used
only if you use the Transport and I/O Logical layer in your
design. For additional packet and error monitoring signals, see
Table 3–10 (serial interface application).

gen_rx_empty Output
Source to
Sink

This bus indicates the number of symbols that are empty during
the cycles that mark the end of a packet. The sink only checks the
value of the empty signal during active cycles that have
gen_rx_endofpacket asserted. The empty symbols are
always the last symbols in data; those carried by the low-order
bits. The empty signal is required on all packet interfaces in which
the data signal carries more than one symbol of data and has a
variable length packet format. The size of the empty signal is
log2(SYMBOLS_PER_BEAT).

gen_rx_error Output
Source to
Sink

Errors are signaled with this signal. A value of zero on any beat
indicates the data on that beat is error-free. This signal is never
asserted by the RapidIO MegaCore function.

gen_rx_size Output This signal indicates the number of beats that will be required to
transfer the packet. This signal is only valid on the start of packet
beat.

Table 4–31. Avalon-ST Pass-Through Port Rx Signals (Part 2 of 2)

Signal Direction Description

Table 4–32. Packet and Error Monitoring Signals

Signal Direction Description

rx_packet_dropped Output Pulsed high one sysclk clock cycle when a received packet is
dropped by the Transport layer. Received packets are only
dropped if the Avalon-ST pass-through port is not enabled in
the variation. Examples of packets that will be dropped
include: packets that have an incorrect DestinationID, are of a
type not supported by the selected Logical layers, or have a
transaction ID outside the range used by the selected Logical
layers.

multicast_event_rx output Output The multicast_event_rx output port is toggled for a
single clock cycle when a Multicast Event control symbol is
detected on the Physical layer. Being toggled rather pulsed
allows the logic using this signal to reside in a different clock
domain than the logic that generates it (rxclk).

4–86 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Software
Interface

The RapidIO MegaCore function provides several sets of registers. The
registers can be programmed to control the different functions of the
RapidIO MegaCore function. The following sets of registers are
supported.

■ Standard RapidIO Capability Registers - CARs

■ Standard RapidIO Command and Status Registers - CSRs

■ Extended Features Registers

■ Implementation Defined Registers

■ Doorbell Specific Registers

All of the registers are 32-bits wide and are shown as hexadecimal values.
The registers can only be accessed on a 32-bit (4 byte basis). The
addressing for the registers therefore increment by units of 4.

The following sets of registers are accessible through the System
Maintenance MM Slave Interface.

■ CARs - Capability Registers

■ CSRs - Command and Status Registers

■ Extended Features Registers

■ Implementation Defined Registers

A remote device can only access these registers by issuing read/write
Maintenance Operations destined to the local device. Furthermore, the
local device must route these transactions, if they are addressing these
registers, from the Maintenance Master interface to the System
Maintenance Slave interface. Routing can be done by an SOPC Builder
system or by a user provided design. Refer to “Concentrator Register
Module” on page 4–8 for more details.

The Doorbell specific registers can be accessed only with the Doorbell
Avalon-MM slave interface. These registers are not implemented if you
do not select the TX Doorbell function nor the RX Doorbell function in the
MegaWizard interface. If you use only the RX Doorbell function, then
only the RX related doorbell registers are implemented. If the you use
only the TX Doorbell function, then only the TX related doorbell registers
are implemented.

Altera Corporation MegaCore Version 7.1 4–87
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

The following sections describe the address map and the function of each
register set. Table 4–33 lists the access codes used to describe the type of
register bits.

CARs, CSRs, Extended Features, and Implementation-Defined
Registers

Table 4–33 shows a summary of the memory map for the CARs, CSRs,
Extended Features and Implementation-Defined Registers. A more
detailed description of these registers can be found in the follow-on
tables, Table 4–35 throughTable 4–92.

This address space is accessible to the user through the System
Maintenance MM Slave Interface.

Table 4–33. Register Access Codes

Code Description

RW Read/write

RO Read-only

RW1C Read/write 1 to clear

RW0S Read/write 0 to set

RTC Read to clear

RTS Read to set

RTCW Read to clear/write

RTSW Read to set/write

RWTC Read/write any value to clear

RWTS Read/write any value to set

RWSC Read/write self-clearing

RWSS Read/write self-setting

UR0 Unused bits/read as 0

UR1 Unused bits/read as 1

4–88 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–34. Memory Map (Part 1 of 3)

Address Name Used by

Capability Registers (CARs)

'h0 Device Identity The CARs are not used by
any of the internal
modules. They do not
affect the functionality of
the RapidIO MegaCore
function. These registers
are all Read Only. The
values are programmed;
many are set using the
MegaWizard interface
when generating the core.
These are used to inform
either a local processor or
a processor on a remote
end what this core's
capabilities are.

'h4 Device Information

'h8 Assembly Identity

'hC Assembly Information

'h10 Processing Element Features

'h14 Switch Port Information

'h18 Source Operations

'h1C Destination Operation

Command and Status Registers (CSRs)

'h4C Processing Element Logical layer
Control

Input/Output Slave Logical
layer

'h58 Local Configuration Space Base
Address 0

I/O Master Logical layer

'h5C Local Configuration Space Base
Address 1

I/O Master Logical layer

'h60 Base Device ID Transport layer for routing
or filtering. Input/Output
Slave Logical layer

'h68 Host Base Device ID Lock Accessed via the
Maintenance module

'h6C Component Tag Accessed via the
Maintenance module

Extended Features Space

'h100 Register Block Header Physical layer

'h104-
'h11C

Reserved

'h120 Port Link Time-out Control Physical layer

'h124 Port Response Time-out Control Logical layer modules

'h13C Port General Control Physical layer

Altera Corporation MegaCore Version 7.1 4–89
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

'h158 Port 0 Error and Status Physical layer

'h15C Port 0 Control Physical layer

Implementation-Defined Space

'h10000 Reserved

'h10004

'h10008

'h1000C-
'h1001C

'h10020

'h10024

'h10028

'h1002C-
'h1007C

'h10080 Maintenance Interrupt Maintenance module

'h10084 Maintenance Interrupt Enable Maintenance module

'h10088 Rx Maintenance Mapping Maintenance module

'h1008C-
'h100FC

Reserved

'h10100 Tx Maintenance Window 0 Base Maintenance module

'h10104 Tx Maintenance Window 0 Mask Maintenance module

'h10108 Tx Maintenance Window 0 Offset Maintenance module

'h1010C Tx Maintenance Window 0 Control Maintenance module

'h10110-
'h101FC

Tx Maintenance Windows 1 to 15 Maintenance module

'h10200 Tx Port Write Control Maintenance module

'h10204 Tx Port Write Status Maintenance module

'h10210-
1024C

Tx Port Write Buffer Maintenance module

'h10250 Rx Port Write Control Maintenance module

'h1010254 Rx Port Write Status Maintenance module

'h10260-
10290

Rx Port Write Buffer Maintenance module

'h102A0-
'h102FC

Reserved

'h10300 I/O Master Window 0 Base I/O Master Logical

Table 4–34. Memory Map (Part 2 of 3)

Address Name Used by

4–90 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

'h10304 I/O Master Window 0 Mask I/O Master Logical

'h10308 I/O Master Window 0 Offset I/O Master Logical

'h1030C Reserved

'h10310-
'h103FC

I/O Master Windows 1 to 15 I/O Master Logical

'h10400 I/O Slave Window 0 Base I/O Slave Logical

'h10404 I/O Slave Window 0 Mask I/O Slave Logical

'h10408 I/O Slave Window 0 Offset I/O Slave Logical

'h1040C I/O Slave Window 0 Control II/O Slave Logical

'h10410-
'h104FC

I/O Slave Windows 1 to 15 I/O Slave Logical

'h10500 I/O Slave Interrupt I/O Slave Logical

'h10504 I/O Slave Interrupt Enable I/O Slave Logical

'h10508-
'h107FC

Reserved

'h10800 Logical/Transport Layer Error
Detect

Logical/Transport layer

'h10804 Logical/Transport Layer Error
Enable

Logical/Transport layer

'h10808 Logical/Transport Layer Address Logical/Transport layer

'h1080C Logical/Transport Layer Device ID
Capture

Logical/Transport layer

'h10810 Logical/Transport Layer Control
Capture

Logical/Transport layer

Table 4–34. Memory Map (Part 3 of 3)

Address Name Used by

Altera Corporation MegaCore Version 7.1 4–91
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Capability Registers (CARs)

Tables 4–35 through 4–42 describe the capability registers.

Table 4–35. Device Identity CAR—Offset: 'h00

Field Bit Access Function Default

DEVICE_ID 31:16 RO Hard-wired device identifier (1)

VENDOR_ID 15:0 RO Hard-wired device vendor identifier (1)

Note:
(1) The default value is set in the MegaWizard interface.

Table 4–36. Device Information CAR—Offset: 'h04

Field Bit Access Function Default

DEVICE_REV 31:0 RO Hard-wired device revision level (1)

Note:
(1) The default value is set in the MegaWizard interface.

Table 4–37. Assembly Identity CAR—Offset: 'h08

Field Bit Access Function Default

ASSY_ID 31:16 RO Hard-wired assembly identifier (1)

ASSY_VENDOR_ID 15:0 RO Hard-wired assembly vendor identifier (1)

Note:
(1) The default value is set in the MegaWizard interface.

Table 4–38. Assembly Information CAR—Offset: 'h0C

Field Bit Access Function Default

ASSY_REV 31:16 RO Hard-wired assembly revision level (1)

EXT_FEATURE_PTR 15:0 RO Hard-wired pointer to the first entry in the extended
feature list. This pointer must be in the range of
16'H100 and 16'HFFFC.

(1)

Note:
(1) The default value is set in the MegaWizard interface.

4–92 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–39. Processing Element Features CAR—Offset: 'h10

Field Bit Access Function Default

BRIDGE 31 RO Processing element can bridge to another interface. (1)

MEMORY 30 RO Processing element has physically addressable local
address space and can be accessed as an end point
through non-maintenance operations. This local
address space may be limited to local configuration
registers, or could be on-chip SRAM, etc.

(1)

PROCESSOR 29 RO Processing element physically contains a local
processor or similar device that executes code. A
device that bridges to an interface that connects to a
processor does not count.

1'b0

SWITCH 28 RO Processing element can bridge to another external
RapidIO interface – an internal port to a local end point
does not count as a switch port.

1'b0

RSRV 27:7 RO Reserved 21'h0

RE_TRAN_SUP 6 RO Processing element supports suppression of error
recovery on packet CRC errors
1'b0 - The error recovery suppression option is not
supported
1'b1 - The error recovery suppression option is
supported

1'b0

CRF_SUPPORT 5 RO Processing element supports the Critical Request
Flow (CRF) indicator
1'b0 - Critical Request Flow is not supported
1'b1 - Critical Request Flow is supported

1'b0

LARGE_TRANSPORT 4 RO 'b0 - Processing element does not support common
transport large systems.
'b1 - Processing element supports common transport
large systems.

1'b0

EXT_FEATURES 3 RO Processing element has extended features list; the
extended features pointer is valid

1'b1

EXT_ADDR_SPRT 2:0 RO Indicates the number of address bits supported by the
Processing element both as a source and target of an
operation. All processing elements shall at minimum
support 34-bit addresses.
'b111 – Processing element supports 66, 50, and 34-
bit addresses
'b101 – Processing element supports 66 and 34-bit
addresses
'b011 – Processing element supports 50 and 34-bit
addresses
'b001 – Processing element supports 34-bit addresses

3'b001

Note:
(1) The default value is set in the MegaWizard interface.

Altera Corporation MegaCore Version 7.1 4–93
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Table 4–40. Switch Port Information CAR—Offset: 'h14

Field Bit Access Function Default

RSRV 31:16 RO Reserved 16'h0

PORT_TOTAL 15:8 RO The total number of RapidIO ports on the processing
element.
'h0 - Reserved
'h1 - 1 port
'h2 - 2 ports

'hff - 255 ports

(1)

PORT_NUMBER 7:0 RO This is the port number from which the maintenance
read operation accessed this register. Port are
numbered starting with 'h0

(1)

Note:
(1) The default value is set in the MegaWizard interface.

Table 4–41. Source Operations CAR—Offset: 'h18 (Part 1 of 2)(1)

Field Bit Access Function Default

RSRV 31:16 RO Reserved 16'h0

READ 15 RO Processing element can support a read operation 1'b0

WRITE 14 RO Processing element can support a write operation (2)

SWRITE 13 RO Processing element can support a streaming-write
operation

(2)

NWRITE_R 12 RO Processing element can support a write-with-response
operation

(2)

Data Message 11 RO Processing element can support data message
operation

(3)

Doorbell 10 RO Processing element can support a doorbell operation (4)

ATM_COMP_SWP 9 RO Processing element can support an atomic compare-
and-swap operation

1'b0

ATM_TEST_SWP 8 RO Processing element can support an atomic test-and-
swap operation

1'b0

ATM_INC 7 RO Processing element can support an atomic increment
operation

1'b0

ATM_DEC 6 RO Processing element can support an atomic decrement
operation

1'b0

ATM_SET 5 RO Processing element can support an atomic set
operation

1'b0

ATM_CLEAR 4 RO Processing element can support an atomic clear
operation

1'b0

4–94 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

ATM_SWAP 3 RO Processing element can support an atomic swap
operation

1'b0

PORT_WRITE 2 RO Processing element can support a port-write operation (5)

RSRV 1:0 RO Reserved 2'b00

Note:
(1) If one of the Logical layers supported by the RapidIO MegaCore is not selected, the corresponding bits in the

Source and Destination Operations CAR are forced to zero. These bits cannot be set to one, even if the
corresponding operations are supported by user logic attached to the Pass-Through port.

(2) The value of the processing element is 1'b1 if the I/O Slave was selected in the MegaWizard interface. The value is
1'b0 if the I/O Slave was not selected in the MegaWizard interface.

(3) The default value is set in the MegaWizard interface.
(4) The value of the processing element is 1'b1 if Doorbell RX enable is turned on in the MegaWizard interface. If

Doorbell RX enable is turned off, the value is 1'b0.
(5) The value of the processing element is 1'b1 if the Maintenance slave is selected in MegaWizard interface. If the

Maintenance slave is not selected, the value is 1'b0.

Table 4–42. Destination Operations CAR—Offset: 'h1C (Part 1 of 2)(1)

Field Bit Access Comment Default

RSRV 31:16 RO Reserved 16'h0

READ 15 RO Processing element can support a read operation (2)

WRITE 14 RO Processing element can support a write operation (2)

SWRITE 13 RO Processing element can support a streaming-write
operation

(2)

NWRITE_R 12 RO Processing element can support a write-with-response
operation

(2)

Data Message 11 RO Processing element can support data message
operation.

(3)

Doorbell 10 RO Processing element can support a doorbell operation.
The value of the processing element is 1'b1 if Doorbell
TX enable is turned on in the MegaWizard interface.
The value of the processing element is1'b if Doorbell
TX enable is turned off in the MegaWizard interface.

(4)

ATM_COMP_SWP 9 RO Processing element can support an atomic compare-
and-swap operation

1'b0

ATM_TEST_SWP 8 RO Processing element can support an atomic test-and-
swap operation

1'b0

ATM_INC 7 RO Processing element can support an atomic increment
operation

1'b0

ATM_DEC 6 RO Processing element can support an atomic decrement
operation

1'b0

Table 4–41. Source Operations CAR—Offset: 'h18 (Part 2 of 2)(1)

Field Bit Access Function Default

Altera Corporation MegaCore Version 7.1 4–95
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Command and Status Registers (CSRs)

Tables 4–43 through 4–48 describe the command and status registers.

ATM_SET 5 RO Processing element can support an atomic set
operation

1'b0

ATM_CLEAR 4 RO Processing element can support an atomic clear
operation

1'b0

ATM_SWAP 3 RO Processing element can support an atomic swap
operation

1'b0

PORT_WRITE 2 RO Processing element can support a port-write operation (2)

RSRV 1:0 RO Reserved 2'b00

Note:
(1) If one of the Logical layers supported by the RapidIO MegaCore is not selected, the corresponding bits in the

Source and Destination Operations CAR are forced to zero. These bits cannot be set to one, even if the
corresponding operations are supported by user logic attached to the Pass-Through port.

(2) The value of the processing element is 1'b1 if the Maintenance master is selected in MegaWizard interface. If the
maintenance master is not selected, the value is 1'b0.

(3) The default value is set in the MegaWizard interface.
(4) Value varies based on MegaWizard interface option selection.

Table 4–42. Destination Operations CAR—Offset: 'h1C (Part 2 of 2)(1)

Field Bit Access Comment Default

Table 4–43. Processing Element Logical Layer Control CSR—Offset: 'h4C

Field Bit Access Function Default

RSRV 31:3 RO Reserved 29'h0

EXT_ADDR_CTRL 2:0 RO Controls the number of address bits generated by the
Processing element as a source and processed by the
Processing element as the target of an operation.
'b100 – Processing element supports 66 bit addresses
'b010 – Processing element supports 50 bit addresses
'b001 – Processing element supports 34 bit addresses
All other encodings reserved

3'b001

Table 4–44. Local Configuration Space Base Address 0 CSR—Offset: 'h58

Field Bit Access Function Default

RSRV 31 RO Reserved 1'b0

LCSBA 30:15 RO Reserved for a 34-bit local physical address 16'h0

LCSBA 14:0 RO Reserved for a 34-bit local physical address 15'h0

4–96 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–45. Local Configuration Space Base Address 1 CSR—Offset: 'h5C (1)

Field Bit Access Function Default

LCSBA 31 RO Reserved for a 34-bit local physical address 1'b0

LCSBA 30:0 RW Bits 34:4 of a 34-bit physical address 31'h0

Notes for Table 4–45:
(1) The Local Configuration Space Base Address registers are hard coded to zero. If the Input/Output Avalon-MM

master interface is connected to the System Maintenance Avalon-MM slave interface, regular read and write
operations rather than maintenance operations, can be used to access the processing element's registers for
configuration and maintenance.

Table 4–46. Base Device ID CSR—Offset: 'h60

Field Bit Access Function Default

RSRV 31:24 RO Reserved 8'h0

DEVICE_ID 23:16 RW This is the base ID of the device in a small common
transport system.

8'hFF

LARGE_DEVICE_ID 15:0 RO This is the base ID of the device in a large common
transport system.

16'hFFFF

Table 4–47. Host Base Device ID Lock CSR—Offset: 'h68

Field Bit Access Function Default

RSRV 31:16 RO Reserved 16'h0

HOST_BASE_DEVICE_ID 15:0 RW
Write once;
can be reset

This is the base device ID for the Processing
element that is initializing this processing
element.

16'hFFFF

Table 4–48. Component Tag CSR—Offset: 'h6C

Field Bit Access Function Default

COMPONENT_TAG 31:0 RW This is a component tag for the processing element. 32'h0

Altera Corporation MegaCore Version 7.1 4–97
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Extended Feature Registers

Tables 4–49 through 6–50 describe the 1x/4x LP-Serial extended feature
register block.

Table 4–49. 1x/4x LP-Serial Register Block Header—Offset: 'h100

Field Bit Access Function Default

EF_PTR 31:16 RO Hard wired pointer to the next block in the data
structure, if one exists

16'h0

EF_ID 15:0 RO Hard wired Extended Features ID 16'h001

Table 4–50. Port Link Time-out Control CSR—Offset: 'h120

Field Bit Access Function Default

VALUE 31:8 RW Time-out interval value 'hff_ffff

RSRV 7:0 RO Reserved 8'h0

Table 4–51. Port Response Time-out Control—Offset: 'h124

Field Bit Access Function Default

VALUE 31:8 RW Time-out interval value 'hff_ffff

RSRV 7:0 RO Reserved 8'h0

Table 4–52. Port General Control—Offset: 'h13C (Part 1 of 2)

Field Bit Access Function Default

HOST 31 RW A Host device is a device that is responsible for system
exploration, initialization, and maintenance. Agent or
slave devices are typically initialized by Host devices.
'b0 - agent or slave device
'b1 - host device

1'b0

ENA 30 RW The Master Enable bit controls whether or not a device
is allowed to issue requests into the system. If the
Master Enable is not set, the device may only respond
to requests.
'b0 - processing element cannot issue requests
'b1 - processing element can issue requests
Variations that use only the Physical layer ignore this
bit.

1'b0

4–98 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

DISCOVER 29 RW This device has been located by the processing
element responsible for system configuration
'b0 - The device has not been previously discovered
'b1 - The device has been discovered by another
processing element

1'b0

RSRV 28:0 RO Reserved 29'h0

Table 4–53. Port0 Error and Status CSRs—Offset: 'h158 (1)

Field Bit Access Function Default

RSRV 31:21 RO Reserved 11'h0

OUT_RTY_ENC 20 RW1C Output port has encountered a retry condition 1'b0

OUT_RETRIED 19 RO Output port has received a packet-retry control symbol
and cannot make forward progress.

1'b0

OUT_RTY_STOP 18 RO Output port has been stopped due to a retry and is
trying to recover.

1'b0

OUT_ERR_ENC 17 RW1C Output port has encountered (and possibly recovered
from) a transmission error.

1'b0

OUT_ERR_STOP 16 RO Output port has been stopped due to a transmission
error and is trying to recover.

1'b0

RSRV 15:11 RO Reserved 5'h0

IN_RTY_STOP 10 RO Input port has been stopped due to a retry. 1'b0

IN_ERR_ENC 9 RW1C Input port has encountered (and possibly recovered
from) a transmission error.

1'b0

IN_ERR_STOP 8 RO Input port has been stopped due to a transmission
error.

1'b0

RSRV 7:5 RO Reserved 3'h0

PWRITE_PEND 4 RO This register is not implemented and is reserved. It
is always set to zero.

1'b0

RSRV 3 RO Reserved 1'b0

PORT_ERR 2 RW1C Input or output port has encountered an unrecoverable
error and has shut down (turned off both port enables).

1'b0

PORT_OK 1 RO Input and output ports a initialized and can
communicate with the adjacent device.

1'b0

PORT_UNINIT 0 RO Input and output ports are not initialized and is in
training mode.

1'b1

Notes for Table 4–53:
(1) Refer to “Error Detection and Management” on page 4–54 for details.

Table 4–52. Port General Control—Offset: 'h13C (Part 2 of 2)

Field Bit Access Function Default

Altera Corporation MegaCore Version 7.1 4–99
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Table 4–54. Serial Port Control CSR—Offset: 'h15C (Part 1 of 2)

Field Bit Access Function Default

PORT_WIDTH 31:30 R0 Hardware width of the port:
'b00—Single-lane port.
'b01—Four-lane port.
'b10–'b11—Reserved.

2'b00 (for 1x
variations),
2'b01 (for 4x
variations)(2)

INIT_WIDTH 29:27 R0 Width of the ports after initialized:
'b000—Single lane port, lane 0.
'b001—Single lane port, lane 2.
'b010—Four lane port.
'b011–'b111—Reserved.

3'b000 (for 1x
variations),
3'b010 (for 4x
variations)

PWIDTH_OVRIDE 26:24 UR0 Soft port configuration to override the hardware size:
'b000—No override.
'b001—Reserved.
'b010—Force single lane, lane 0.
'b011—Force single lane, lane 2.
'b100–'b111—Reserved.

3'h0

PORT_DIS 23 RW Port disable:
‘b0—port receivers/drivers are enabled.
'b1—port receivers are disabled, causing the drivers to
send out idles.
● When this bit transitions from one to zero, the

initialization state machines’ force_reinit
state variable is asserted, as described in Part 6:
Physical Layer 1×/4× LP Serial Physical Layer
Specification Revision 1.3, paragraphs 4.7.3.5 and
4.7.3.6. In turn, this assertion causes the port to
enter the SILENT state and to attempt to reinitialize
the link.

● When reception is disabled, the input buffers are
kept empty until this bit is cleared.

● When PORT_DIS is asserted and the drivers are
disabled, the transmit buffer are reset and kept
empty until this bit is cleared, any previously stored
packets are lost and any attempt to write a packet
to the atx Atlantic interface is ignored by the
Physical layer, new packets are NOT stored for
later transmission.

1'b0

OUT_PENA 22 RW Output port transmit enable:
'b0—port is stopped and not enabled to issue any
packets except to route or respond to I/O logical
maintenance packets, depending upon the
functionality of the processing element. Control
symbols are not affected and are sent normally.
'b1—port is enabled to issue any packets.

1'b1

4–100 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

General Maintenance Interrupt Control Registers

Tables 4–55 through 4–56 describe the maintenance interrupt control
registers. If any of these error conditions are detected and if the
corresponding Interrupt Enable bit is set, the sys_mnt_s_irq signal is
asserted.

IN_PENA 21 RW Input port receive enable:
'b0 - port is stopped and only enabled to respond I/O
logical
MAINTENANCE requests. Other requests return
packet-not-accepted control symbols to force an error
condition to be signaled by the sending device
'b1 - port is enabled to respond to any packet

1'b1

ERR_CHK_DIS 20 RW This bit disables all RapidIO transmission error
checking
'b0 - Error checking and recovery is enabled
'b1 - Error checking and recovery is disabled
Device behavior when error checking and recovery is
disabled and an error condition occurs is undefined.

1'b0

MULTICAST 19 RW Send incoming Multicast-event control symbols to this
port (multiple port devices only). This bit has no effect
on the MegaCore function as multicast event
generation is not supported.

1'b0

RSRV 18:1 RO Reserved 18'h0

PORT_TYPE 0 RO This indicates the port type, parallel or serial.
'b0 - Parallel port (1)
'b1 - Serial port

1'b1

Note Table 4–54:
(1) For parallel mode support using the RapidIO MegaCore function contact your Altera field

applications representative or make a support request using www.altera.com/mysupport/
(2) Reflects the choice made in MegaWizard interface.

Table 4–54. Serial Port Control CSR—Offset: 'h15C (Part 2 of 2)

Field Bit Access Function Default

Table 4–55. Maintenance Interrupt—Offset: 'h10080 (Part 1 of 2)

Field Bit Access Function Default

RSRV 31:7 RO Reserved 25'h0

PORT_WRITE_ERROR 6 RW1C Port-write error 1'b0

Altera Corporation MegaCore Version 7.1 4–101
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Receive Maintenance Registers

Table 4–57 describes the receiver maintenance register.

PACKET_DROPPED 5 RW1C Received port-write packet dropped. A port-write
packet is dropped under the following conditions:
● a port-write request packet is received but

por-write reception has not been enabled by
setting bit PORT_WRITE_ENABLE in the Rx
Port Write Control register.

● a previously received port-write hasn't been
read out from the“Rx Port Write register

1'b0

PACKET_STORED 4 RW1C Indicates that the core has received a Port Write
packet and that the payload can be retrieved using
the System Maintenance MM Slave interface.

1'b0

RSRV 3 RO Reserved 1'b0

RSRV 2 RO Reserved 1'b0

WRITE_OUT_OF_BOUNDS 1 RW1C If the address of an Avalon-MM write transfer
presented at the Maintenance Avalon-MM Slave
interface does not fall within any of the TX
Maintenance Address translation windows, then it
is considered out of bounds and this bit is set.

1'b0

READ_OUT_OF_BOUNDS 0 RW1C If the address of an Avalon-MM read transfer
presented at the Maintenance Avalon-MM Slave
interface does not fall within any of the TX
Maintenance Address translation windows, then it
is considered out of bounds and this bit is set.

1'b0

Table 4–56. Maintenance Interrupt Enable—Offset: 'h10084

Field Bit Access Function Default

RSRV 31:7 RO Reserved 25'h0

PORT_WRITE_ERROR 6 RW Port-write error interrupt enable 1'b0

RX_PACKET_DROPPED 5 RW Rx port-write packet dropped interrupt enable 1'b0

RX_PACKET_STORED 4 RW Rx port-write packet stored in buffer interrupt
enable.

1'b0

RSRV 3:2 RO Reserved 2'b00

WRITE_OUT_OF_BOUNDS 1 RW Tx write request address out of bounds interrupt
enable.

1'b0

READ_OUT_OF_BOUNDS 0 RW Tx read request address out of bounds interrupt
enable.

1'b0

Table 4–55. Maintenance Interrupt—Offset: 'h10080 (Part 2 of 2)

Field Bit Access Function Default

4–102 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–57. Rx Maintenance Mapping—Offset: 'h10088

Field Bit Access Function Default

RX_BASE 31:24 RW Rx base address. The offset value carried in a
received Maintenance Type packet is
concatenated with this RX_BASE to form a 32-bit
Avalon Address as follows.
Avalon_address = {rx_base, cfg_offset,
word_addr, 2'b00}

8'h0

RSRV 23:0 RO Reserved 24'h0

Altera Corporation MegaCore Version 7.1 4–103
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Transmit Maintenance Registers

Tables 4–58 through 4–61 describe the transmitter maintenance registers.
When transmitting a Maintenance Packet, an address translation process
occurs, involving a Base, Mask, Offset, and Control register. There are up
to sixteen groups of four registers. The 16 register address offsets are
shown in the table titles. For more details on how to use these windows,
see “Maintenance Slave Processor” on page 4–14

Table 4–58. Tx Maintenance Mapping Window n Base—Offset: 'h10100, 'h10110, 'h10120, 'h10130,
'h10140, 'h10150, 'h10160, 'h10170, 'h10180, 'h10190, 'h101A0, 'h101B0, 'h101C0, 'h101D0, 'h101E0,
'h101F0

Field Bit Access Function Default

BASE 31:3 RW Start of the Avalon-MM address window to be
mapped. The three least significant bits of the
32-bit base are assumed to be zero.

29'h0

RSRV 2:0 RO Reserved 3'h0

Table 4–59. Tx Maintenance Mapping Window n Mask—Offset: 'h10104, 'h10114, 'h10124, 'h10134,
'h10144, 'h10154, 'h10164, 'h10174, 'h10184, 'h10194, 'h101A4, 'h101B4, 'h101C4, 'h101D4, 'h101E4,
'h101F4

Field Bit Access Function Default

MASK 31:3 RW Mask for the address mapping window. The
three least significant bits of the 32-bit mask
are assumed to be zero.

29'h0

WEN 2 RW Window enable. Set to one to enable the
corresponding window.

1'b0

RSRV 1:0 RO Reserved 2'h0

Table 4–60. Tx Maintenance Mapping Window n Offset—Offset: 'h10108, 'h10118, 'h10128, 'h10138,
'h10148, 'h10158, 'h10168, 'h10178, 'h10188, 'h10198, 'h101A8, 'h101B8, 'h101C8, 'h101D8, 'h101E8,
'h101F8

Field Bit Access Function Default

RSRV 31:24 RO Reserved 8'h0

OFFSET 23:0 RW Window offset 24'h0

4–104 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Transmit Port-Write Registers

Tables 4–62 through 4–64 describes the transmit port-write registers

1 See “Port Write Processor” on page 4–20 for a description on
how to use these registers to transmit a port write.

Table 4–61. Tx Maintenance Mapping Window n Control—Offset: 'h1010C, 'h1011C, 'h1012C, 'h1013C,
'h1014C, 'h1015C, 'h1016C, 'h1017C, 'h1018C, 'h1019C, 'h101AC, 'h101BC, 'h101CC, 'h101DC, 'h101EC,
'h101FC

Field Bit Access Function Default

RSRV 31:24 RO Reserved 8'h0

DESTINATION_ID 23:16 RW Destination ID 8'h0

HOP_COUNT 15:8 RW Hop count 8'hFF

PRIORITY 7:6 RW Packet priority.
2’b11 is not a valid value for the PRIORITY
field. An attempt to write 2’b11 to this field will
be overwritten as 2’b10.

2'b00

RSRV 5:0 RO Reserved 6'h0

Table 4–62. Tx Port Write Control—Offset: 'h10200

Field Bit Access Function Default

RSRV 30:24 RO Reserved 8'h0

DESTINATION_ID 23:16 RW Destination ID 8'h0

RSRV 15:8 RO Reserved 8'hFF

PRIORITY 7:6 RW Request Packet’s priority.
2’b11 is not a valid value for the PRIORITY
field. An attempt to write 2’b11 to this field will
be overwritten as 2’b10.

2'b00

SIZE 5:2 RW Packet payload size in number of double
words. If set to 0, the payload size is single
word. If SIZE is set to a value larger than 8, the
payload size is 8 double words (64 bytes).

4'h0

RSRV 1 RO Reserved 1'b0

PACKET_READY 0 RW Write 1 to start transmitting the port-write
request. This bit is cleared internally once the
packet has been transferred to the transport
layer to be forwarded to the physical layer for
transmission.

1'b0

Altera Corporation MegaCore Version 7.1 4–105
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Receive Port-Write Registers

Tables 4–65 through 4–67 describes the receive port-write registers.

1 See “Port Write Processor” on page 4–20 for a description on
how to receive port write maintenance packets.

Table 4–63. Tx Port Write Status—Offset: 'h10204

Field Bit Access Function Default

RSRV 31:0 RO Reserved 31'h0

Table 4–64. Tx Port Write Buffer n—Offset: 'h10210 – 'h1024C

Field Bit Access Function Default

PORT_WRITE_DATA_n 31:0 RW Port-write data. This buffer is implemented in
memory and is not initialized at reset.

32'hx

Table 4–65. Rx PPort Write Control—Offset: 'h10250

Field Bit Access Function Default

RSRV 31:2 RO Reserved 30'h0

CLEAR_BUFFER 1 RW Clear port-write buffer. Write 1 to activate.
Always read 0.

1'b0

PORT_WRITE_ENA 0 RW Port-write enable. If set to 1, port-write packets
are accepted. If set to 0, port-write packet are
dropped.

1'b1

Table 4–66. Rx Port Write Status—Offset: 'h10254

Field Bit Access Function Default

RSRV 31:6 RO Reserved 26'h0

PAYLOAD_SIZE 5:2 RO Packet payload size in number of double
words. If the size is zero, the payload size is
single word.

4'h0

RSRV 1 RO Reserved 1'b0

PORT_WRITE_BUSY 0 RO Port-write busy. Set if a packet is currently
being stored in the buffer.

1'b0

4–106 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

I/O Master Address Mapping Registers

Tables 4–68 through 4–70 describe the I/O master registers. When the
MegaCore function receives an NREAD, NWRITE, NWRITE_R, or
SWRITE request packet, the RapidIO address has to be translated into a
local Avalon-MM Address. The translation involves the Base, Mask, and
Offset registers. There are up to sixteen register sets, one for each address
mapping window. The 16 possible register address offsets are shown in
the table titles.

1 See“Input/Output Avalon-MM Master Address Mapping
Windows” on page 4–25 for more details.

Table 4–67. Rx Port Write Buffer n—Offset: 'h10260 – 'h1029C

Field Bit Access Function Default

PORT_WRITE_DATA_n 31:0 RO Port-write data. This buffer is implemented in
memory and is not initialized at reset.

32'hx

Table 4–68. I/O Master Mapping Window n Base—Offset: 'h10300, 'h10310, 'h10320, 'h10330, 'h10340,
'h10350, 'h10360, 'h10370, 'h10380, 'h10390, 'h103A0, 'h103B0, 'h103C0, 'h103D0, 'h103E0, 'h103F0

Field Bit Access Function Default

BASE 31:3 RW Start of the RapidIO address window to be
mapped. The three least significant bits of the
34-bit base are assumed to be zeros.

29'h0

RSRV 2 RO Reserved 1'b0

XAMB 1:0 RW Extended Address: two most significant bits of
the 34-bit base.

2'h0

Table 4–69. I/O Master Mapping Window n Mask—Offset: 'h10304, 'h10314, 'h10324, 'h10334, 'h10344,
'h10354, 'h10364, 'h10374, 'h10384, 'h10394, 'h103A4, 'h103B4, 'h103C4, 'h103D4, 'h103E4, 'h103F4

Field Bit Access Function Default

MASK 31:3 RW Bits 31 to 3 of the mask for the address
mapping window. The three least significant
bits of the 34-bit mask are assumed to be
zeros.

29'h0

WEN 2 RW Window enable. Set to one to enable the
corresponding window.

1'b0

XAMM 1:0 RW Extended Address: two most significant bits of
34-bit mask.

3'h0

Altera Corporation MegaCore Version 7.1 4–107
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Input/Output Slave Mapping Registers

Tables 4–71 through 4–76 describe the Input/Output Slave registers. The
registers are used to define windows in the Avalon-MM address space
that are used to determine the outgoing request packet’s ftype,
DestinationID, priority, and address fields. There are up to sixteen
register sets, one for each possible address mapping window. The 16
possible register address offsets are shown in the table titles.

1 Refer to “Input/Output Avalon-MM Slave Address Mapping
Windows” on page 4–30 for a description on how to use these
registers.

Table 4–70. I/O Master Mapping Window n Offset—Offset: 'h10308, 'h10318, 'h10328, 'h10338, 'h10348,
'h10358, 'h10368, 'h10378, 'h10388, 'h10398, 'h103A8, 'h103B8, 'h103C8, 'h103D8, 'h103E8, 'h103F8

Field Bit Access Function Default

OFFSET 31:3 RW Starting offset into the Avalon-MM address
space. The three least significant bits of the
32-bit offset are assumed to be zero.

29'h0

RSRV 2:0 RO Reserved 3'h0

Table 4–71. Input/Output Slave Mapping Window n Base—Offset: 'h10400, 'h10410, 'h10420, 'h10430,
'h10440, 'h10450, 'h10460, 'h10470, 'h10480, 'h10490, 'h104A0, 'h104B0, 'h104C0, 'h104D0, 'h104E0,
'h104F0

Field Bit Access Function Default

BASE 31:3 RW Start of the Avalon-MM address window to be
mapped. The three least significant bits of the
32-bit base are assumed to be all zeros.

29'h0

RSRV 2:0 RO Reserved 1'b0

Table 4–72. Input/Output Slave Mapping Window n Mask—Offset: 'h10404, 'h10414, 'h10424, 'h10434,
'h10444, 'h10454, 'h10464, 'h10474, 'h10484, 'h10494, 'h104A4, 'h104B4, 'h104C4, 'h104D4, 'h104E4,
'h104F4

Field Bit Access Function Default

MASK 31:3 RW 29 most significant bits of the mask for the
address mapping window. The three least
significant bits of the 32-bit mask are assumed
to be zeros.

29'h0

4–108 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

WEN 2 RW Window enable. Set to one to enable the
corresponding window.

1'b0

RSRV 1:0 RO Reserved 2'h0

Table 4–73. Input/Output Slave Mapping Window n Offset—Offset: 'h10408, 'h10418, 'h10428, 'h10438,
'h10448, 'h10458, 'h10468, 'h10478, 'h10488, 'h10498, 'h104A8, 'h104B8, 'h104C8, 'h104D8, 'h104E8,
'h104F8

Field Bit Access Function Default

OFFSET 31:3 RW Bits [31:3] of the starting offset into the
RapidIO address space. The three least
significant bits of the 34-bit offset are assumed
to be zeros.

29'h0

RSRV 2 RO Reserved 1'b0

XAMO 1:0 RW Extended Address: two most significant bits of
the 34-bit offset.

2'h0

Table 4–74. Input/Output Slave Mapping Window n Control—Offset: 'h1040C, 'h1041C, 'h1042C, 'h1043C,
'h1044C, 'h1045C, 'h1046C, 'h1047C, 'h1048C, 'h1049C, 'h104AC, 'h104BC, 'h104CC, 'h104DC, 'h104EC,
'h104FC

Field Bit Access Function Default

RSRV 31:24 RO Reserved. 8 MSB for 16-bit DestinationID 8'h0

DESTINATION_ID 23:16 RW 8 least significant bits of DestinationID 8'h0

RSRV 15:8 RO Reserved 8'h0

PRIORITY 7:6 RW Request Packet’s priority
2’b11 is not a valid value for the PRIORITY
field. An attempt to write 2’b11 to this field will
be overwritten as 2’b10.

2'h0

RSRV 5:2 RO Reserved 4'h0

SWRITE_ENABLE 1 RW SWRITE enable. Set to one to generate
SWRITE request packets. (1)

1'b0

NWRITE_R_ENABLE 0 RW NWRITE_R enable (1) 1'b0

Note to Table 4–74:
(1) Bits 0 and 1 (NWRITE_R_ENABLE and SWRITE_ENABLE) are mutually exclusive. An attempt to write ones to both

of these fields at the same time will be ignored, and that part of the register will keep its previous value.

Table 4–72. Input/Output Slave Mapping Window n Mask—Offset: 'h10404, 'h10414, 'h10424, 'h10434,
'h10444, 'h10454, 'h10464, 'h10474, 'h10484, 'h10494, 'h104A4, 'h104B4, 'h104C4, 'h104D4, 'h104E4,
'h104F4

Field Bit Access Function Default

Altera Corporation MegaCore Version 7.1 4–109
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Input/Output Slave Interrupts

Figure 4–75 describes the available Input/Output Slave interrupts. These
interrupt bits assert the sys_mnt_s_irq signal if the corresponding
interrupt bit is enabled.

Table 4–75. Input/Output Slave Interrupt—Offset: 'h10500

Field Bit Access Function Default

RSRV 31:4 RO Reserved 25'h0

INVALID_WRITE_BYTEENABLE 3 RW1C Write byte enable invalid. Asserted when
io_s_wr_byteenable is set to invalid
values. For information on valid values see
Table 4–5 and Table 4–7.

1'b0

INVALID_WRITE_BURSTCOUNT 2 RW1C Write burst count invalid. Asserted when
io_s_wr_burstcount is set to an odd
number larger than one in variations with
32-bit wide data path Avalon-MM write
interfaces.

1'b0

WRITE_OUT_OF_BOUNDS 1 RW1C Write request address out of bounds.
Asserted when the Avalon-MM address
does not fall within any enabled address
mapping windows.

1'b0

READ_OUT_OF_BOUNDS 0 RW1C Read request address out of bounds.
Asserted when the Avalon-MM address
does not fall within any enabled address
mapping windows.

1'b0

Table 4–76. Input/Output Slave Interrupt Enable—Offset: 'h10504

Field Bit Access Function Default

RSRV 31:6 RO Reserved 28'h0

INVALID_WRITE_BYTEENABLE 3 RW Write byte enable invalid interrupt enable 1'b0

INVALID_WRITE_BURSTCOUNT 2 RW Write burst count invalid interrupt enable 1'b0

WRITE_OUT_OF_BOUNDS 1 RW Write request address out of bounds
interrupt enable

1'b0

READ_OUT_OF_BOUNDS 0 RW Read request address out of bounds
interrupt enable

1'b0

4–110 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Error Management Registers

Tables 4–77 through 4–81 describe the error management registers. These
registers can be used by software to diagnose problems with packets
being received by this local end point. If enabled, the detected error will
trigger the assertion of sys_mnt_s_irq. The packet that caused the
error will be captured in the capture registers. After an error condition is
detected, the information is captured and the capture registers are
"locked" until the Error Detect CSR is cleared. Upon being cleared, the
capture registers are ready to capture a new packet that exhibits an error
condition.

Table 4–77. Logical/Transport Layer Error Detect CSR—Offset: 'h10800

Field Bit Access Function Default

IO_ERROR_RSP 31 RW Received a response of 'ERROR' for an I/O Logical
Layer Request.

1'b0

MSG_ERROR_RESPONSE 30 RW Received a response of 'ERROR' for a MSG Logical
Layer Request.

1'b0

RSRV 29 RO Reserved 1'b0

MSG_FORMAT_ERROR 28 RW Received MESSAGE packet data payload with an
invalid size or segment.

1'b0

ILL_TRAN_DECODE 27 RW Received illegal fields in the request/response
packet for a supported transaction.

1'b0

ILL_TRAN_TARGET 26 RW Received a packet that contained a destination ID
that is not defined for this end point.

1'b0

MSG_REQ_TIMEOUT 25 RW A required message request has not been received
within the specified time-out interval.

1'b0

PKT_RSP_TIMEOUT 24 RW A required response has not been received within
the specified time out interval.

1'b0

UNSOLICIT_RSP 23 RW An unsolicited/unexpected response packet was
received.

1'b0

UNSUPPORT_TRAN 22 RW A transaction is received that is not supported in the
Destination Operations CAR.

1'b0

RSRV 21:0 RO Reserved 22'h0

Altera Corporation MegaCore Version 7.1 4–111
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

Table 4–78. Logical/Transport Layer Error Enable CSR—Offset: 'h10804

Field Bit Access Function Default

IO_ERROR_RSP_EN 31 RW Enable reporting of an I/O error response. Save and
lock original request transaction information in all
Logical/Transport Layer Capture CSRs.

1'b0

MSG_ERROR_RESPONSE_EN 30 RW Enable reporting of a Message error response. Save
and lock original request transaction information in
all Logical/Transport Layer Capture CSRs.

1'b0

RSRV 29 RO Reserved 1’b0

MSG_FORMAT_ERROR_EN 28 RW Enable reporting of a message format error. Save
and lock original request transaction information in
all Logical/Transport Layer Capture CSRs.

1’b0

ILL_TRAN_DECODE_EN 27 RW Enable reporting of an illegal transaction decode
error Save and lock transaction capture information
in Logical/Transport Layer Device ID and Control
Capture CSRs.

1'b0

ILL_TRAN_TARGET_EN 26 RW Enable reporting of an illegal transaction target error.
Save and lock transaction capture information in
Logical/Transport Layer Device ID and Control
Capture CSRs.

1'b0

MSG_REQ_TIMEOUT_EN 25 RW Enable reporting of a Message Request time-out
error. Save and lock original request transaction
information in Logical/Transport Layer Device ID and
Control Capture CSRs for the last Message request
segment packet received.

1'b0

PKT_RSP_TIMEOUT_EN 24 RW Enable reporting of a packet response time-out
error. Save and lock original request address in
Logical/Transport Layer Address Capture CSRs.
Save and lock original request Destination ID in
Logical/Transport Layer Device ID Capture CSR.

1'b0

UNSOLICIT_RSP_EN 23 RW Enable reporting of an unsolicited response error.
Save and lock transaction capture information in
Logical/Transport Layer Device ID and Control
Capture CSRs.

1'b0

UNSUPPORT_TRAN_EN 22 RW Enable report of an unsupported transaction error.
Save and lock transaction capture information in
Logical/Transport Layer Device ID and Control
Capture CSRs.

1'b0

RSRV 21:0 RO Reserved 22'h0

4–112 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Doorbell Message Registers

The RapidIO Megacore function has registers accessible by the
Avalon-MM slave port in the Doorbell Module. These registers are
described in the following sections

Table 4–79. Logical/Transport Layer Address Capture CSR—Offset: 'h10808

Field Bit Access Function Default

ADDRESS 31:3 RO Bits 31 to 3 of the RapidIO address associated with the
error.

29'h0

RSRV 2 RO Reserved 1'b0

XAMSBS 1:0 RO Extended address bits of the address associated with
the error.

2'h0

Table 4–80. Logical/Transport Layer Device ID Capture CSR—Offset: 'h1080C

Field Bit Access Function Default

Reserved 31:24 RO Reserved 8'h0

DESTINATION_ID 23:16 RO The destination ID associated with the error. 8'h0

RSRV 15:8 RO Reserved 8'h0

SOURCE_ID 7:0 RO The source ID associated with the error. 8'h0

Table 4–81. Logical/Transport Layer Control Capture CSR—Offset: 'h10810

Field Bit Access Function Default

FTYPE 31:28 RO Format type associated with the error. 4'h0

TTYPE 27:24 RO Transaction type associated with the error. 4'h0

MSG_INFO 23:16 RO Letter, mbox, and msgseg for the last message
request received for the mailbox that had and error.

8'h0

RSRV 15:0 RO Reserved 16'h0

Altera Corporation MegaCore Version 7.1 4–113
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

1 Refer to section Doorbell Module on page 5-33 for a detailed
explanation of Doorbell functionality supported by this
MegaCore function..

Table 4–82. Doorbell Message Module Memory Map

Address Name Used by

Doorbell Message Space

'h00 Rx Doorbell

External Avalon-MM master wishing
to generate or receive doorbell
messages.

'h04 Rx Doorbell Status

'h08 Tx Doorbell Control

'h0C Tx Doorbell

'h10 Tx Doorbell Status

'h14 Tx Doorbell Completion

'h18 Tx Doorbell Completion Status

'h1C Tx Doorbell Status Control

'h20 Doorbell Interrupt Enable

'h24 Doorbell Interrupt Status

Table 4–83. Rx Doorbell – Offset: 'h00

Field Bit Access Function Default

RSRV 31:24 RO Reserved for future 16 bit Device ID support 8'b0

SOURCE_ID 23:16 RO Device ID of the doorbell message initiator 8'b0

INFORMATION
(MSB)

15:8 RO Received doorbell message information field, MSB 8'b0

INFORMATION
(LSB)

7:0 RO Received doorbell message information field, LSB 8'b0

4–114 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–84. Rx Doorbell Status – Offset: 'h04

Field Bit Access Function Default

RSRV 31:8 RO Reserved 8'b0

FIFO_LEVEL 7:0 RO Shows the number of available doorbell messages in
the Rx FIFO. A maximum of 16 received messages is
supported.

8'b0

Table 4–85. Tx Doorbell Control – Offset: 'h08

Field Bit Access Function Default

RSRV 31:2 RO Reserved 30'b0

PRIORITY 1:0 R/W Request Packet’s priority 2’b11 is not a valid value for
the PRIORITY field. An attempt to write 2’b11 to this
field will be overwritten as 2’b10.

2'b0

Table 4–86. Tx Doorbell – Offset: 'h0C

Field Bit Access Function Default

RSRV 31:24 RO Reserved for future support of 16–bit Device IDs 8'b0

DESTINATION_ID 23:16 R/W Device ID of the targeted RapidIO processing element 8'b0

INFORMATION(MSB) 15:8 R/W MSB information field of the outbound doorbell message 8'b0

INFORMATION (LSB) 7:0 R/W LSB information field of the outbound doorbell message 8'b0

Table 4–87. Tx Doorbell Status – Offset: 'h10 (Part 1 of 2)

Field Bit Access Function Default

RSRV 31:24 RO Reserved 8'b0

PENDING 23:16 RO Number of doorbell messages that have been
transmitted but for which a response hasn't been
received yet. There can be a maximum of 16
pending doorbell messages.

8'b0

Altera Corporation MegaCore Version 7.1 4–115
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

TX_FIFO_LEVEL 15:8 RO The number of doorbell messages in the Tx FIFO
waiting for transmission. This fifo can store a
maximum of 16.

8'b0

TXCPL_FIFO_LEVEL 7:0 RO The number of available completed Tx doorbell
messages in the Tx Completion FIFO. The fifo can
store a maximum of 16.

8'b0

Table 4–87. Tx Doorbell Status – Offset: 'h10 (Part 2 of 2)

Field Bit Access Function Default

Table 4–88. Tx Doorbell Completion– Offset: 'h14

Field Bit Access Function Default

RSRV 31:24 RO Reserved for future support of 16–bit Device IDs 8'b0

DESTINATION_ID 23:16 RO The Device ID of the targeted RapidIO processing
element.

8'b0

INFORMATION 15:8 RO MSB of the information field of an outbound doorbell
message that has been confirmed as successful or
unsuccessful.

8'b0

INFORMATION 7:0 RO LSB of the information field of an outbound doorbell
message that has been confirmed as successful or
unsuccessful.

8'b0

Note: The completed Tx doorbell message comes directly from the Tx Doorbell Completion FIFO.

Table 4–89. Tx Doorbell Completion Status– Offset: 'h18

Field Bit Access Function Default

RSRV 31:2 RO Reserved 30'b0

ERROR_CODE 1:0 RO This error code corresponds to the most recently read
message from the Tx Doorbell Completion. After
software reads the Tx Doorbell Completion register, a
read to this register should follow to determine the
status of the message.
2’b00: Response DONE status
2’b01: Response with ERROR status
2’b10: Timeout error

2'b0

4–116 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

Software Interface

Table 4–90. Tx Doorbell Status Control– Offset: 'h1C

Field Bit Access Function Default

RSRV 31:2 RO Reserved 30'B0

ERROR 1 R/W If set, outbound doorbell messages that received a
response with Error, or were timed-out, are stored in
the Tx Completion FIFO. Otherwise, no error reporting
will occur.

1'b0

COMPLETED 0 R/W If set, all of the successful outbound doorbell
messages are stored in the Tx Completion FIFO.

1'b0

Table 4–91. Doorbell Interrupt Enable– Offset: 'h20

Field Bit Access Function Default

RSRV 31:3 RO Reserved 29'b0

TX_CPL_OVERFLOW 2 R/W Tx Doorbell Completion Buffer Overflow Interrupt
Enable

1'b0

TX_CPL 1 R/W Tx Doorbell Completion Interrupt Enable 1'b0

RX 0 R/W Doorbell received interrupt Enable 1'b0

Table 4–92. Doorbell Interrupt Status– Offset: 'h24

Field Bit Access Function Default

RSRV 31:3 RO Reserved 29'b0

TX_CPL_OVERFLOW 2 RW1C Interrupt asserted due to Tx Completion buffer
overflow. This bit will remain set until at least one
entry is read from the TX Completion FIFO. After
reading at least one entry, software should clear
this bit. It is not necessary to read all of the TX
Completion FIFO entries.

1'b0

TX_CPL 1 RW1C Interrupt asserted due to Tx completion status 1'b0

RX 0 RW1C Interrupt asserted due to received messages 1'b0

Altera Corporation MegaCore Version 7.1 4–117
May 2007 RapidIO MegaCore Function User Guide

Variations with Physical, Transport, and Logical Layers

MegaCore
Verification

Before releasing a version of the RapidIO MegaCore function, Altera runs
a comprehensive regression test, which executes the wizard to create the
instance files. These files are tested in simulation and hardware to
confirm functionality.

The RapidIO MegaCore function was also subjected to interoperability
testing. Interoperability tests verify the performance of the MegaCore
function in real-life applications, and ensure compatibility with ASSP
devices.

Simulation Testing

The RapidIO core is verified using industry-standard simulators
ModelSim, and VCS in combination with Vera. The test suite contains
testbenches that use the RapidIO bus functional model (BFM) from the
RapidIO Trade Association to verify the functionality of the IP core.

The regression suite tests various functionalities, including:

● Link initialization
● Packet format
● Packet priority
● Error handling
● Throughput
● Flow control

Hardware Testing

The RapidIO MegaCore function is tested and verified in hardware for
different platforms and environments.

The hardware tests cover serial ×1 and ×4 variations running at 1.25, 2.5,
and 3.125 gigabits per second (Gbps), and processing the following traffic
types:

■ NReads of various size payloads—4 bytes to 256 bytes
■ NWrites of various size payloads—4 bytes to 256 bytes
■ NWrite_R of a few different size packets
■ PortWrites
■ Maintenance

The hardware tests also cover the following control symbol types: Packet
Accepted, Packet Retry, Packet Not Accepted, Start of Packet and Endof
Packet Control Symbol, and Link Maintenance Control Symbols.

4–118 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

MegaCore Verification

Interoperability Testing

The interoperability tests performed on the RapidIO MegaCore function
certify that the serial RapidIO MegaCore function has been tested for the
following functionality:

■ Compatibility with commercial RapidIO devices
■ Device compatibility with the Stratix® GX and Stratix II GX families

of devices
■ Endurance
■ Operation at speed

The interoperability tests were performed with the Texas Instrument DSP
TMS320C6455.

The Stratix II GX test board was connected to the other RapidIO devices
using SMA cables. The test sequences were executed by a NIOS II
processor controlling transactions to the TMS320C6455 directly.
Maintenance and I/O transactions with data integrity check were
performed for each setup. Figure 4–24 shows the setup with a direct
connection to the TMS320C6455.

Figure 4–24. Interoperability Test - Stratix II GX & TMS320C6455 Setup

SMA Cables

USB Cables

Host PC

AMC
SMA
Adapter

DSP
TMS320C6455

Stratix II GX SI
Board

Altera Corporation MegaCore Version 7.1 A–1
May 2007 RapidIO MegaCore Function User Guide

Appendix A. Initialization
Sequence

This appendix describes the most basic initialization sequence for a
RapidIO™ system comprising two FPGAs, each one containing a RapidIO
MegaCore® function.

To initialize the system, perform follow these steps:

1. Read the Port 0 Error and Status (ERRSTAT) command and status
register (CSR) ('h00158) to confirm port initialization.

2. Set the following registers on the first FPGA:

a. To set the base ID of the device to 1, set the DEVICE_ID field
(bits 23:16) of the Base Device ID register (‘h00060) to 0x1.

b. To allow request packets to be issued, write 1 to the ENA field
(bit 30) of the Port General Control CSR register (‘h13C).

c. To enable an all-encompassing address mapping window, write
1 to the WEN field (bit 4) of the Tx Maintenance Window 0
Mask register (‘h10104).

d. To set the destination ID (destination device) to 2, set the
DESTINATION_ID field (bits 23:16) of the Tx Maintenance
Window 0 Control register (‘h1010C) to 0x2.

3. Set the following registers on the second FPGA:

a. To set the base ID of the device to 2, set the DEVICE_ID field
(bits 23:16) of the Base Device ID register (‘h00060) to 0x2.

b. To allow request packets to be issued, write 1 to the ENA field
(bit 30) of the Port General Control CSR register (‘h13C).

c. To enable an all-encompassing address mapping window, write
1 to the WEN field (bit 4) of the Tx Maintenance Window 0
Mask register (‘h10104).

d. To set the destination ID (destination device) to 1, set the
DESTINATION_ID field (bits 23:16) of the Tx Maintenance
Window 0 Control register (‘h1010C) to 0x1.

A–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide May 2007

These register settings allow one FPGA to remotely access the other
FPGA.

1 The registers follow the big endian format.

To access the registers, the system requires the following component:

■ An Avalon-MM master, for example a processor, such as a Nios®
embedded processor, which includes C subroutines to facilitate
access to the RapidIO MegaCore functions.

1 You can use SOPC Builder, a Quartus® II software tool, to
rapidly and easily build and evaluate your RapidIO system.

f For more information on initializing a RapidIO system, refer to
Fuller, Sam. 2005. RapidIO: The Embedded System Interconnect. John Wiley
& Sons, Ltd., Chapter 10 RapidIO Bringup and Initialization Programming.

Altera Corporation MegaCore Version 7.1 B–1
RapidIO MegaCore Function User Guide

Appendix B. XGMII Interface
Timing

This appendix outlines XGMII timing considerations.

Data Alignment

RapidIO transmits source-center aligned data into HSTL or SSTL pins.
The clock rate required is 156.25 MHz for 3.125 Gbaud and 62.5 for 1.25
Gbaud. The following timing diagram illustrates basic timing
relationships.

Figure B–1. XGMII Timing

The RapidIO XGMII interface requires the following I/O timing
relationships:

■ Use Fast Inputs for RD, RC and other inputs.
■ Use similar clock types (for example rclk[0] should not be a Global

clock and rclk[1] a regional clock).

RD or TD
RC or TC

RERR

Tsu Thold

B–2 MegaCore Version 7.1 Altera Corporation
RapidIO MegaCore Function User Guide

Setting Quartus II TSU and TH Checks

You must set Quartus II TSU and TH checks. The value to use for the TSU
and TH will be a function of the following:

■ Effects of clock jitter, other signal integrity issues.
■ Any clock phase offset on the output of the attached device
■ Skew over the traces
■ Typical Transmitter 960 ps for Tsu and Thold shown (3.125 Gbps)
■ Receiver ideal is 480 ps for Tsu and Thold shown (3.125 Gbps)
■ Adjustments for output clock phase. If not exactly center aligned,

adjust the TSU and TH assignments accordingly.

Example

If the output clock was out 100 ps past the center point, add 100 ps to your
TSU and subtract 100 ps from the TH. Typically, take the RX ideal and
subtract the trace skew, then adjust for clock phase as shown for TAN:

■ set_instance_assignment -name TSU_REQUIREMENT “400 ps”
–from * -to rd

■ set_instance_assignment -name TSU_REQUIREMENT “400 ps”
–from * -to rc

■ set_instance_assignment -name TSU_REQUIREMENT “400 ps”
–from * -to rerr

■ set_instance_assignment -name TH_REQUIREMENT “400 ps”
–from * -to rd

■ set_instance_assignment -name TH_REQUIREMENT “400 ps”
–from * -to rc

■ set_instance_assignment -name TH_REQUIREMENT “400 ps”
–from * -to rerr

The following are for STA:

■ set_max_delay -from [get_pins -hierarchical *] -to [get_ports {rd*}]
0.4

■ set_max_delay -from [get_pins -hierarchical *] -to [get_ports {rc}] 0.4
■ set_max_delay -from [get_pins -hierarchical *] -to [get_ports {rerr}]

0.4
■ set_min_delay -from [get_pins -hierarchical *] -to [get_ports {rd*}] -

0.4
■ set_min_delay -from [get_pins -hierarchical *] -to [get_ports {rc}] -0.4
■ set_min_delay -from [get_pins -hierarchical *] -to [get_ports {rerr}] -

0.4

	Contents
	About This User Guide
	Revision History
	How to Contact Altera

	1. About This MegaCore Function
	Release Information
	New in RapidIO MegaCore Function Version 7.1
	Device Family Support
	Performance and Size
	Features
	General Description
	MegaCore Function Design Flows
	MegaWizard Plug-In Manager Design Flow
	SOPC Builder Design Flow

	OpenCore Plus Evaluation

	2. Getting Started
	Design Flow
	MegaWizard Plug-In Manager Design Flow Walkthrough
	Create a New Quartus II Project
	Launch the MegaWizard Plug-In Manager
	Parameterize
	Set Up Simulation and Generate the Function
	Simulate the Design
	Demonstration Testbench for Variations with a Physical Layer Only
	Demonstration Testbench for Variations with a Transport and Logical Layers.

	IP Functional Simulation Model
	Compile the Design

	SOPC Builder Design Flow Walkthrough
	Create a New Quartus II Project
	Launch SOPC Builder from Quartus II
	Instantiate and Parameterize the RapidIO Component
	Add the RapidIO Component
	Add the DMA Controller
	Add the On-Chip Memory
	Connect the System Components
	Assign Addresses and Set the Clock Frequency
	Generate the System
	Simulate the System
	Compile the System

	Program a Device
	Set Up Licensing

	3. Physical Layer-Serial Specifications
	Functional Description
	Features
	Interfaces
	RapidIO Interface
	Atlantic Interface
	Atlantic Interface Error Management
	Atlantic Interface Error Handling Signals

	Avalon-MM Slave Interface
	XGMII External Transceiver Interface
	Clock Domains
	Baud Rates

	Resets

	Layer 1
	Receiver
	Clock & Data
	Receiver Transceiver
	Lane Synchronization State Machine
	Packet/Symbol Delineation & Idle Character Extraction
	CRC Check
	Atlantic Interface/Packet Data Packing
	S0 & S1 Symbol Interface

	Transmitter
	Clock and Data
	Transmitter Transceiver (NonXGMII Mode)
	Initialization State Machine
	Packet/Symbol Assembling & Idle Character Insertion
	Idle Sequence Generation
	CRC Generation & Insertion
	Atlantic Interface/Packet Data Packing
	S0 & S1 Symbol Interface

	Layer 2
	Receiver
	Clock and Data
	Symbol FIFO Buffer
	Symbol Control
	Packet Control
	Error Recovery Control

	Transmitter
	Clock and Data
	Symbol FIFO Buffer
	Symbol Control
	Packet Control
	Error Recovery Control

	Layer 3
	Receiver
	Clock & Data
	Receiver Buffers

	Transmitter
	Transmit & Retransmit Queues
	Transmit Buffer
	Clock & Data
	Forced Compensation Sequence Insertion

	OpenCore Plus Time-Out Behavior
	Parameters
	Signals
	Software Interface
	Physical Layer Registers

	MegaCore Verification
	Simulation Testing
	Hardware Testing
	Interoperability Testing

	4. Variations with Physical, Transport, and Logical Layers
	Functional Description
	Interfaces
	Avalon-MM Interface
	Avalon- ST Interface

	Clock & Reset
	Clock
	Reset

	Transport Layer Module
	Receiver
	Transmitter

	Concentrator Register Module
	Maintenance Module
	Maintenance Register
	Maintenance Slave Processor
	Maintenance Master Processor
	Port Write Processor
	Maintenance Module Error Handling

	Input/Output Logical Layer Modules
	Input/Output Avalon-MM Master Module
	Avalon-MM Interfaces Use Little Endian Byte Ordering
	Input/Output Avalon-MM Master Address Mapping Windows
	Input/Output Avalon-MM Slave Module
	Input/Output Avalon-MM Slave Address Mapping Windows
	Input/Output Slave Translation Window Example

	Avalon-MM Slave Address Mapping
	Slave Request Packet Size Encoding

	Doorbell Module
	Doorbell Module Block Diagram
	Doorbell Message Generation
	Doorbell Message Reception

	Avalon-ST Pass-Through Interface
	Pass-Through Port Examples
	Packet Routed Through RX Port on Avalon-ST Pass-Through Port
	NREAD Example Using TX Port on Avalon-ST Pass-Through Port

	OpenCore Plus Time-Out Behavior

	Error Detection and Management
	Physical Layer Error Management
	Protocol Violations
	Fatal Errors
	Fatal Error When Resetting the Link Partner

	Logical Layer Error Management
	Maintenance Avalon-MM Slave
	Standard Error Management Registers
	IO Error Response
	Unsolicited Response
	Packet response Time-out
	Illegal Transaction Decode

	Registers in the Implementation Defined Space
	Avalon-MM Slave Interface's Error Indication Signal

	Maintenance Avalon-MM Master
	Port-Write Reception Module
	Port-Write Transmission Module

	Input/Output Avalon-MM Slave
	Standard Error Management Registers
	IO Error Response
	Unsolicited Response
	Packet Response Time-Out
	Illegal Transaction Decode

	Registers in the Implementation-Defined Space
	The Avalon-MM slave interface's error indication signal

	Input/Output Avalon-MM Master
	Standard Error Management Registers
	Unsupported Transaction
	Illegal Transaction Decode

	Response Packets with ERROR Status

	Avalon-ST Pass-Through Port

	Demonstration Testbench Description
	Reset, Initialization, and Configuration
	Maintenance Write and Read Transactions
	SWRITE Transactions
	NWRITE_R Transactions
	NWRITE Transactions
	NREAD Transactions
	Doorbell Transactions
	Port Write Transactions
	Transactions Across the Avalon-ST Pass-Through Interface

	Parameters
	Signals
	Software Interface
	CARs, CSRs, Extended Features, and Implementation-Defined Registers
	Capability Registers (CARs)
	Command and Status Registers (CSRs)
	Extended Feature Registers
	General Maintenance Interrupt Control Registers
	Receive Maintenance Registers
	Transmit Maintenance Registers
	Transmit Port-Write Registers
	Receive Port-Write Registers
	I/O Master Address Mapping Registers
	Input/Output Slave Mapping Registers
	Input/Output Slave Interrupts
	Error Management Registers
	Doorbell Message Registers

	MegaCore Verification
	Simulation Testing
	Hardware Testing
	Interoperability Testing

	Appendix A. Initialization Sequence
	Appendix B. XGMII Interface Timing
	Data Alignment
	Setting Quartus II TSU and TH Checks
	Example

