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Radar Processing: FPGAs or GPUs?
White Paper
While general-purpose graphics processing units (GP-GPUs) offer high rates of peak 
floating-point operations per second (FLOPs), FPGAs now offer competing levels of 
floating-point processing. Moreover, Altera® FPGAs now support OpenCL™, a 
leading programming language used with GPUs.

Introduction
FPGAs and CPUs have long been an integral part of radar signal processing. FPGAs 
are traditionally used for front-end processing, while CPUs for the back-end 
processing. As radar systems increase in capability and complexity, the processing 
requirements have increased dramatically. While FPGAs have kept pace in increasing 
processing capabilities and throughput, CPUs have struggled to provide the signal 
processing performance required in next-generation radar. This struggle has led to 
increasing use of CPU accelerators, such as graphic processing units (GPUs), to 
support the heavy processing loads.

This white paper compares FPGAs and GPUs floating-point performance and design 
flows. In the last few years, GPUs have moved beyond graphics become powerful 
floating-point processing platforms, known as GP-GPUs, that offer high rates of peak 
FLOPs. FPGAs, traditionally used for fixed-point digital signal processing (DSP), now 
offer competing levels of floating-point processing, making them candidates for back-
end radar processing acceleration. 

On the FPGA front, a number of verifiable floating-point benchmarks have been 
published at both 40 nm and 28 nm. Altera’s next-generation high-performance 
FPGAs will support a minimum of 5 TFLOPs performance by leveraging Intel’s 14 nm 
Tri-Gate process. Up to 100 GFLOPs/W can be expected using this advanced 
semiconductor process. Moreover, Altera FPGAs now support OpenCL, a leading 
programming language used with GPUs.

Peak GFLOPs Ratings
Current FPGAs have capabilities of 1+ peak TFLOPs (1), while AMD and Nvidia’s 
latest GPUs are rated even higher, up to nearly 4 TFLOPs. However, the peak GFLOPs 
or TFLOPs provides little information on the performance of a given device in a 
particular application. It merely indicates the total number of theoretical floating-
point additions or multiplies which can be performed per second. This analysis 
indicates that FPGAs can, in many cases, exceed the throughput of GPUs in 
algorithms and data sizes common in radar applications.
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Page 2 Algorithm Benchmarking 
A common algorithm of moderate complexity is the fast Fourier transform (FFT). 
Because most radar systems perform much of their processing in the frequency 
domain, the FFT algorithm is used very heavily. For example, a 4,096-point FFT has 
been implemented using single-precision floating-point processing. It is able to input 
and output four complex samples per clock cycle. Each single FFT core can run at over 
80 GFLOPs, and a large 28 nm FPGA has resources to implement seven such cores.

However, as Figure 1 indicates, the FFT algorithm on this FPGA is nearly 
400 GFLOPs. This result is based on a “push button” OpenCL compilation, with no 
FPGA expertise required. Using logic-lock and Design Space Explorer (DSE) 
optimizations, the seven-core design can approach the fMAX of the single-core design, 
boosting it to over 500 GFLOPs, with over 10 GFLOPs/W using 28 nm FPGAs.

This GFLOPs/W result is much higher than achievable CPU or GPU power efficiency. 
In terms of GPU comparisons, the GPU is not efficient at these FFT lengths, so no 
benchmarks are presented. The GPU becomes efficient with FFT lengths of several 
hundred thousand points, when it can provide useful acceleration to a CPU. 
However, the shorter FFT lengths are prevalent in radar processing, where FFT 
lengths of 512 to 8,192 are the norm.

In summary, the useful GFLOPs are often a fraction of the peak or theoretical 
GFLOPs. For this reason, a better approach is to compare performance with an 
algorithm that can reasonably represent the characteristics of typical applications. As 
the complexity of the benchmarked algorithm increases, it becomes more 
representative of actual radar system performance.

Algorithm Benchmarking 
Rather than rely upon a vendor’s peak GFLOPs ratings to drive processing 
technology decisions, an alternative is to rely upon third-party evaluations using 
examples of sufficient complexity. A common algorithm for in space-time adaptive 
processing (STAP) radar is the Cholesky decomposition. This algorithm is often used 
in linear algebra for efficient solving of multiple equations, and can be used on 
correlation matrices. 

Figure 1. Stratix V 5SGSD8 FPGA Floating-Point FFT Performance
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Algorithm Benchmarking Page 3
The Cholesky algorithm has a high numerical complexity, and almost always requires 
floating-point numerical representation for reasonable results. The computations 
required are proportional to N3, where N is the matrix dimension, so the processing 
requirements are often demanding. As radar systems normally operate in real time, a 
high throughput is a requirement. The result will depend both on the matrix size and 
the required matrix processing throughput, but can often be over 100 GFLOPs. 

Table 1 shows benchmarking results based on an Nvidia GPU rated at 1.35 TFLOPs, 
using various libraries, as well as a Xilinx Virtex6 XC6VSX475T, an FPGA optimized 
for DSP processing with a density of 475K LCs. These devices are similar in density to 
the Altera FPGA used for Cholesky benchmarks. The LAPACK and MAGMA are 
commercially supplied libraries, while the GPU GFLOPs refers to the OpenCL 
implementation developed at University of Tennessee (2). The latter are clearly more 
optimized at smaller matrix sizes.

A mid-size Altera Stratix® V FPGA (460K logic elements (LEs)) was benchmarked by 
Altera using the Cholesky algorithm in single-precision floating-point processing. As 
shown in Table 2, the Stratix V FPGA performance on the Cholesky algorithm is much 
higher than Xilinx results. The Altera benchmarks also include the QR decomposition, 
another matrix processing algorithm of reasonable complexity. Both Cholesky and 
QRD are available as parameterizable cores from Altera. 

Table 1. GPU and Xilinx FPGA Cholesky Benchmarks (2)

Matrix LAPACK GFLOPs MAGMA GFLOPs GPU GFLOPs FPGA GFLOPs

512 (SP)

512 (DP)

19.49

11.99

22.21

20.52

58.40

57.49
19.23

768 (SP)

768 (DP)

29.53

18.12

38.53

36.97

81.87

54.02
20.38

1,024 (SP)

1,024 (DP)

36.07

22.06

57.01

49.60

67.96

42.42
21.0

2,048 (SP)

2,048 (DP)

65.55

32.21

117.49

87.78

96.15

52.74
—

Table 2. Altera FPGA Cholesky and QR Benchmarks

Algorithm (Complex, 
Single Precision) Matrix Size Vector Size fMAX (MHz) GFLOPs

Cholesky

360 × 360 90 190 92

60 × 60 60 255 42

30 × 30 30 285 25

QR

450 × 450 75 225 135

400 × 400 100 201 159

250 × 400 100 203 162
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It should be noted that the matrix sizes of the benchmarks are not the same. The 
University of Tennessee results start at matrix sizes of [512 × 512], while the Altera 
benchmarks go up to [360x360] for Cholesky and [450x450] for QRD. The reason is 
that GPUs are very inefficient at smaller matrix sizes, so there is little incentive to use 
them to accelerate a CPU in these cases. In contrast, FPGAs can operate efficiently 
with much smaller matrices. This efficiency is critical, as radar systems need fairly 
high throughput, in the thousands of matrices per second. So smaller sizes are used, 
even when it requires tiling a larger matrix into smaller ones for processing.

In addition, the Altera benchmarks are per Cholesky core. Each parameterizable 
Cholesky core allows selection of matrix size, vector size, and channel count. The 
vector size roughly determines the FPGA resources. The larger [360 × 360] matrix size 
uses a larger vector size, allowing for a single core in this FPGA, at 91 GFLOPs. The 
smaller [60 × 60] matrix uses fewer resources, so two cores could be implemented, for 
a total of 2 × 42 = 84 GFLOPs. The smallest [30 × 30] matrix size permits three cores, 
for a total of 3 × 25 = 75 GFLOPs.

FPGAs seem to be much better suited for problems with smaller data sizes, which is 
the case in many radar systems. The reduced efficiency of GPUs is due to 
computational loads increasing as N3, data I/O increasing as N2, and eventually the 
I/O bottlenecks of the GPU become less of a problem as the dataset increases. In 
addition, as matrix sizes increase, the matrix throughput per second drops 
dramatically due to the increased processing per matrix. At some point, the 
throughput becomes too low to be unusable for real-time requirements of radar 
systems. 

For FFTs, the computation load increases to N log2 N, whereas the data I/O increases 
as N. Again, at very large data sizes, the GPU becomes an efficient computational 
engine. By contrast, the FPGA is an efficient computation engine at all data sizes, and 
better suited in most radar applications where FFT sizes are modest, but throughput 
is at a premium.

GPU and FPGA Design Methodology 
GPUs are programmed using either Nvidia’s proprietary CUDA language, or an open 
standard OpenCL language. These languages are very similar in capability, with the 
biggest difference being that CUDA can only be used on Nvidia GPUs.

FPGAs are typically programmed using HDL languages Verilog or VHDL. Neither of 
these languages is well suited to supporting floating-point designs, although the 
latest versions do incorporate definition, though not necessarily synthesis, of floating-
point numbers. For example, in System Verilog, a short real variable is analogue to an 
IEEE single (float), and real to an IEEE double.

DSP Builder Advanced Blockset
Synthesis of floating-point datapaths into an FPGA using traditional methods is very 
inefficient, as shown by the low performance of Xilinx FPGAs on the Cholesky 
algorithm, implemented using Xilinx Floating-Point Core Gen functions. However, 
Altera offers two alternatives. The first is to use DSP Builder Advanced Blockset, a 
Mathworks-based design entry. This tool contains support for both fixed- and 
floating-point numbers, and supports seven different precisions of floating-point 
processing, including IEEE half-, single- and double-precision implementations. It 
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also supports vectorization, which is needed for efficient implementation of linear 
algebra. Most important is its ability to map floating-point circuits efficiently onto 
today’s fixed-point FPGA architectures, as demonstrated by the benchmarks 
supporting close to 100 GFLOPs on the Cholesky algorithm in a midsize 28 nm FPGA. 
By comparison, the Cholesky implementation on a similarly sized Xilinx FPGA 
without this synthesis capability shows only 20 GFLOPs of performance on the same 
algorithm (2).

OpenCL for FPGAs
OpenCL is familiar to GPU programmers. An OpenCL Compiler (3) for FPGAs means 
that OpenCL code written for AMD or Nvidia GPUs can be compiled onto an FPGA. 
In addition, an OpenCL Compiler from Altera enables GPU programs to use FPGAs, 
without the necessity of developing the typical FPGA design skill set. 

Using OpenCL with FPGAs offers several key advantages over GPUs. First, GPUs 
tend to be I/O limited. All input and output data must be passed by the host CPU 
through the PCI Express® (PCIe®) interface. The resulting delays can stall the GPU 
processing engines, resulting in lower performance.

OpenCL Extensions for FPGAs
FPGAs are well known for their wide variety of high-bandwidth I/O capabilities. 
These capabilities allow data to stream in and out of the FPGA over Gigabit Ethernet 
(GbE), Serial RapidIO® (SRIO), or directly from analog-to-digital converters (ADCs) 
and digital-to-analog converters (DACs). Altera has defined a vendor-specific 
extension of the OpenCL standard to support streaming operations. This extension is 
a critical feature in radar systems, as it allows the data to move directly from the fixed-
point front-end beamforming and digital downconversion processing to the floating-
point processing stages for pulse compression, Doppler, STAP, moving target 
indicator (MTI), and other functions shown in Figure 2. In this way, the data flow 
avoids the CPU bottleneck before being passed to a GPU accelerator, so the overall 
processing latency is reduced.
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FPGAs can also offer a much lower processing latency than a GPU, even independent 
of I/O bottlenecks. It is well known that GPUs must operate on many thousands of 
threads to perform efficiently, due to the extremely long latencies to and from 
memory and even between the many processing cores of the GPU. In effect, the GPU 
must operate many, many tasks to keep the processing cores from stalling as they 
await data, which results in very long latency for any given task.

The FPGA uses a “coarse-grained parallelism” architecture instead. It creates multiple 
optimized and parallel datapaths, each of which outputs one result per clock cycle. 
The number of instances of the datapath depends upon the FPGA resources, but is 
typically much less than the number of GPU cores. However, each datapath instance 
has a much higher throughput than a GPU core. The primary benefit of this approach 
is low latency, a critical performance advantage in many applications. 

Another advantage of FPGAs is their much lower power consumption, resulting in 
dramatically lower GFLOPs/W. FPGA power measurements using development 
boards show 5-6 GFLOPs/W for algorithms such as Cholesky and QRD, and about 10 
GFLOPs/W for simpler algorithms such as FFTs. GPU energy efficiency 
measurements are much hard to find, but using the GPU performance of 50 GFLOPs 
for Cholesky and a typical power consumption of 200 W, results in 0.25 GFLOPs/W, 
which is twenty times more power consumed per useful FLOPs. 

For airborne or vehicle-mounted radar, size, weight, and power (SWaP) 
considerations are paramount. One can easily imagine radar-bearing drones with tens 
of TFLOPs in future systems. The amount of processing power available is correlated 
with the permissible resolution and coverage of a modern radar system.

Figure 2. Generic Radar Signal Processing Diagram
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Fused Datapath
Both OpenCL and DSP Builder rely on a technique known as “fused datapath” 
(Figure 3), where floating-point processing is implemented in such a fashion as to 
dramatically reduce the number of barrel-shifting circuits required, which in turn 
allows for large scale and high-performance floating-point designs to be built using 
FPGAs.

To reduce the frequency of implementing barrel shifting, the synthesis process looks 
for opportunities where using larger mantissa widths can offset the need for frequent 
normalization and denormalization. The availability of 27 × 27 and 36 × 36 hard 
multipliers allows for significantly larger multipliers than the 23 bits required by 
single-precision implementations, and also the construction of 54 × 54 and 72 × 72 
multipliers allows for larger than the 52 bits required for double-precision 
implementations. The FPGA logic is already optimized for implementation of large, 
fixed-point adder circuits, with inclusion of built-in carry look-ahead circuits.

Figure 3. Fused Datapath Implementation of Floating-Point Processing 
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Page 8 GPU and FPGA Design Methodology 
Where normalization and de-normalization is required, an alternative 
implementation that avoids low performance and excessive routing is to use 
multipliers. For a 24 bit single-precision mantissa (including the sign bit), the 24 × 24 
multiplier shifts the input by multiplying by 2n. Again, the availability of hardened 
multipliers in 27 × 27 and 36 × 36 allows for extended mantissa sizes in single-
precision implementations, and can be used to construct the multiplier sizes for 
double-precision implementations. 

A vector dot product is the underlying operation consuming the bulk of the FLOPs 
used in many linear algebra algorithms. A single-precision implementation of length 
64 long vector dot product would require 64 floating-point multipliers, followed by 
an adder tree made up of 63 floating-point adders. Such an implementation would 
require many barrel shifting circuits.

Instead, the outputs of the 64 multipliers can be denormalized to a common exponent, 
being the largest of the 64 exponents. Then these 64 outputs could be summed using a 
fixed-point adder circuit, and a final normalization performed at the end of the adder 
tree. This localized-block floating-point processing dispenses with all the interim 
normalization and denormalization required at each individual adder, and is shown 
in Figure 4. Even with IEEE 754 floating-point processing, the number with the largest 
exponent determines the exponent at the end, so this change just moves the exponent 
adjustment to an earlier point in the calculation.

Figure 4. Vector Dot Product Optimization
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GPU and FPGA Design Methodology Page 9
However, when performing signal processing, the best results are found by carrying 
as much precision as possible for performing a truncation of results at the end of the 
calculation. The approach here compensates for this sub-optimal early 
denormalization by carrying extra mantissa bit widths over and above that required 
by single-precision floating-point processing, usually from 27 to 36 bits. The mantissa 
extension is performed with floating-point multipliers to eliminate the need to 
normalize the product at each step.

1 This approach can also produce one result per clock cycle. GPU architectures can 
produce all the floating point multipliers in parallel, but cannot efficiently perform the 
additions in parallel. This inability is due to requirements that say different cores 
must pass data through local memories to communicate to each other, thereby lacking 
the flexibility of connectivity of an FPGA architecture.

The fused datapath approach generates results that are more accurate that 
conventional IEEE 754 floating-point results, as shown by Table 3.

These results were obtained by implementing large matrix inversions using the 
Cholesky decomposition algorithm. The same algorithm was implemented in three 
different ways:

■ In MATLAB/Simulink with IEEE 754 single-precision floating-point processing.

■ In RTL single-precision floating-point processing using the fused datapath 
approach.

■ In MATLAB with double-precision floating-point processing. 

Double-precision implementation is about one billion times (109) more precise than 
single-precision implementation.

This comparison of MATLAB single-precision errors, RTL single-precision errors, and 
MATLAB double-precision errors confirms the integrity of the fused datapath 
approach. This approach is shown for both the normalized error across all the 
complex elements in the output matrix and the matrix element with the maximum 
error. The overall error or norm is calculated by using the Frobenius norm:

1 Because the norm includes errors in all elements, it is often much larger than the 
individual errors.

Table 3. Cholesky Decomposition Accuracy (Single Precision)

Complex Input Matrix Size (n x n) Vector Size Err with MATLAB Using 
Desktop Computer

Err with DSP Builder 
Advanced Blockset-

Generated RTL

360 x 360 50 2.1112e-006 1.1996e-006

60 x 60 100 2.8577e-007 1.3644e-007

30 x 30 100 1.5488e-006 9.0267e-008
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Page 10 Conclusion
In addition, the both DSP Builder Advanced Blockset and OpenCL tool flows 
transparently support and optimize current designs for next-generation FPGA 
architectures. Up to 100 peak GFLOPs/W can be expected, due to both architecture 
innovations and process technology innovations.

Conclusion
High-performance radar systems now have new processing platform options. In 
addition to much improved SWaP, FPGAs can provide lower latency and higher 
GFLOPs than processor-based solutions. These advantages will be even more 
dramatic with the introduction of next-generation, high-performance computing-
optimized FPGAs.

Altera’s OpenCL Compiler provides a near seamless path for GPU programmers to 
evaluate the merits of this new processing architecture. Altera OpenCL is 1.2 
compliant, with a full set of math library support. It abstracts away the traditional 
FPGA challenges of timing closure, DDR memory management, and PCIe host 
processor interfacing. 

For non-GPU developers, Altera offers DSP Builder Advanced Blockset tool flow, 
which allows developers to build high-fMAX fixed- or floating-point DSP designs, 
while retaining the advantages of a Mathworks-based simulation and development 
environment. This product has been used for years by radar developers using FPGAs 
to enable a more productive workflow and simulation, which offers the same fMAX 
performance as a hand-coded HDL.

Further Information
1. White Paper: Achieving One TeraFLOPS with 28-nm FPGAs:

www.altera.com/literature/wp/wp-01142-teraflops.pdf

2. Performance Comparison of Cholesky Decomposition on GPUs and FPGAs, Depeng 
Yang, Junqing Sun, JunKu Lee, Getao Liang, David D. Jenkins, Gregory D. 
Peterson, and Husheng Li, Department of Electrical Engineering and Computer 
Science, University of Tennessee:
saahpc.ncsa.illinois.edu/10/papers/paper_45.pdf

3. White Paper: Implementing FPGA Design with the OpenCL Standard:
www.altera.com/literature/wp/wp-01173-opencl.pdf
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Table 4 shows the revision history for this document.

Table 4. Document Revision History

Date Version Changes

May 2013 2.0 Minor text edits. Updated Table 2 and Table 3.

April 2013 1.0 Initial release.
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