

Libero IDE v5.0

User's Guide

i

Actel Corporation, Mountain View, CA 94043-4655

© 2003 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029120-5

Release: August 2003

No part of this document may be copied or reproduced in any form or by any means without prior written consent of

Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability

or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no

responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person

without prior written consent of Actel Corporation.

Trademarks

Actel and the Actel logotype are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

Liberty is a licensed trademark of Synopsys Inc. This product uses SDC, a Proprietary format of Synopsys Inc.

Libero is a trademark of Actel Corporation.

Mentor Graphics, Viewlogic, ViewDraw, MOTIVE, and ModelSim are registered trademarks of Mentor Graphics,

Inc.

Synplify and Synplicity are registered trademarks of Synplicity, Inc.

Verilog is a registered trademark of Open Verilog International.

WaveFormer Lite and SynaptiCAD are trademarks of SynaptiCAD, Inc.

Windows is a registered trademark and Windows NT is a trademark of Microsoft Corporation in the U.S. and other

countries.

All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

Table of Contents

ii

Table of Contents

1. Introduction ___1

2. Project Management ___11

3. HDL Entry___33

4. Schematic Entry ___37

5. Design Constraints __43

6. Design Implementation __153

7. Tcl Scripting ___200

8. SmartPower ___273

9. Timing Analysis __301

10. Using Timer ___312

11. Synthesis __345

12. Testbench Creation ___351

13. Simulation __355

14. Device Programming __363

15. Contacting Actel ___371

1

Introduction
Welcome to Libero IDE
Libero IDE is the most comprehensive and powerful FPGA design and development

software available, providing start to finish design flow guidance and support for novice

and experienced users. Libero IDE combines Actel tools with such EDA powerhouses as

Synplify, ModelSim, ViewDraw, WaveFormer Lite, and Silicon Explorer.

Libero IDE software supports all Actel Flash and antifuse products, including

the popular ProASICPLUS and Axcelerator products.

3

Getting Started Quickly with Libero IDE
The Libero IDE design flow consists of the following steps.

• Create a new project or open a project

• Create source files (schematic, HDL, and ACTgen Macros)

• Import source files into your project

• Synthesize your design with Synplify (non-schematic designs)

• Perform Functional Simulation with ModelSim

• Implement your design with Actel's Designer software

• Perform Timing Simulation with ModelSim

• Program your device

• Debug your device

5

What's new in Libero IDE v5.0
Choose which tools to integrate

Using the project profile, specify which tools to integrate with your project. You can also

set profiles for each tool, specifying the tool name, location, and other parameters.

Create new projects quickly

The New Project Wizard helps you create new projects quickly and easily. Select the

project tools and import source files to get your started fast.

Design flow guidance

The Process window guides you through the design process, indicating completed steps

and where you are in your design flow.

Operate more synthesis tools

Libero IDE now supports SynplifyTM from Synplicity, LeonardoSpectrumTM from Mentor

Graphics®, and Precision RTLTM from Mentor Graphics.

Choose your text editor

Use the Libero HDL Editor or setup your own preferred text editor.

Search and open files

The powerful new search feature finds files and posts results in the log window. Simply

click a search result to open the file.

More Save options

Use the Save As command to create a copy of your project or to change the project name.

Specify VHDL Package compilation order

Specify the sequence in which your VHDL Package files should be compiled.

User defined “Do” file

For simulation, you may now use a “Do” file that is created outside of Libero IDE, or use

the file automatically created by Libero IDE. It is also possible to include a Do file with

the automatically created Do file.

Unknown hierarchy

The File Manager now indicates files that cannot be fully read by Libero.

Libero IDE User's Guide

6

FlashPro programmer support

With the integration of FlashPro, Libero now takes you from design creation to device

programming., by invoking FlashPro and passing the project programming files to it.

ChipPlanner (Designer)

ChipPlanner is a graphical applications for viewing and placing I/O and logic macros.

You can also use it for floorplanning. This tool is particularly useful when you need

maximum control over your design placement in order to achieve optimum trade-offs

between chip density and device performance.

Libero Editions
A description of the different Libero editions can be found online at

http://www.actel.com/products/tools/libero/libversions.html.

Minimum System Requirements:
� 300MHz Pentium or greater

� 128 MB RAM

� FAT32 or NTF (NTFS file system strongly recommended)

� 600 MB available hard disk space minimum, 1 GB for full install of Libero IDE

and all libraries

� 100 MB free space in C: drive for installation file swapping is recommended

� 5 MB available hard disk space for each VITAL/VHDL device family simulation

library

� 5 MB available hard disk space for each Verilog device family simulation library

� CD-ROM drive

� HTML browser

� 800x600 video resolution

About Libero IDE v5.0

7

Libero Tools
The Libero Project Manager integrates design tools, streamlines your design flow,

manages design and log files, and passes design data between tools.

Function Tool Company

Design Entry (HDL) HDL Editor Actel

Design Entry (Schematic) ViewDraw AE Actel

Synthesis Synplify Synplicity

Synthesis Precision Mentor Graphics

Synthesis LeonardoSpectrum Mentor Graphics

Simulation ModelSim Mentor Graphics

Automatic Testbench Generator WaveFormer Lite SynaptiCAD

Automatic Macro Generator ACTgen Actel

Place-and-Route Designer Actel

Programming Software FlashPro Actel

Programming Software APS/Silicon Sculptor Actel

In-Silicon Debug Silicon Explorer II Actel

HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and

Verilog with color, high-lighting keywords for both HDL languages.

ViewDraw AE is the Libero schematic entry vehicle.

Libero IDE User's Guide

8

Synplify AE from Synplicity, is integrated as part of the design package, enabling

designers to target HDL code to specific Actel devices.

Leonardo Spectrum from Mentor Graphics can be integrated with Libero, but it does

not come as part of the Libero tool set.

Precision from Mentor Graphics can be integrated with Libero, but it does not come as

part of the Libero tool set.

Actel Designer software package includes:

• PinEditor package level floorplanner and I/O attribute editor

• ChipEditor chip level module placer

• ChipPlanner for floorplanning

• NetlistViewer design schematic viewer

• SmartPower power analysis tool

• Timer static timing analysis and constraints editor

• ACTgen macro generator

ModelSim from Mentor Graphics enables source level verification so designers can verify

HDL code line by line. Designers can perform simulation at all levels: behavioral (or pre-

synthesis), structural (or post-synthesis), and back-annotated, dynamic simulation.

(ModelSim is supported in Libero Gold, Platinum, and Platinum Eval only.)

About Libero IDE v5.0

9

WaveFormer Lite from SynaptiCAD allows graphical entering of HDL testbenches and

manages multiple testbenches needed for different design configurations. The graphical

testbench generation tool is ideal for designers unfamiliar with the process of creating

testbenches, or for experts wanting to save time.

Actel Silicon Explorer accelerates device verification. Actel's antifuse FPGAs contain

internal probe circuitry that provides built-in, no-cost, access to every node in a design,

enabling 100% real-time observation and analysis of a device's internal logic without

design iteration. The probe circuitry is accessed by Silicon Explorer, an easy to use

integrated verification and logic analysis tool that attaches to a PC's standard COM port,

turning the PC into a fully functional logic analyzer. Silicon Explorer is also available for

download from http://www.actel.com/custsup/updates/siliexp/index.html.

Third-party software compatibility
Actel recommends that you use the integrated tools that come with Libero IDE.

Consider the following issues when deciding to use other tools with Libero IDE.

Using Standalone ePD with Actel Libero IDE

Actel does not recommend that you use stand-alone versions of Innoveda’s ePD or

DxViewDraw with Libero. Do not install these and Libero’s ViewDraw AE on the same

PC. ViewDraw AE and ePD or DxViewDraw use similar environment variables and

registry entries that will conflict. If you'd like to install ePD or DxViewDraw and Libero

on the same machine, do not install ViewDraw AE during Libero installation.

A schematic created with ViewDraw AE should not be modified by a full version of

ViewDraw. A full-block schematic created with ePD or DxViewDraw cannot be

imported into ViewDraw AE.

Using ModelSim PE with Actel Libero IDE

If you try to use full standalone version of ModelSim tool with Libero, Libero's auto-

generated library mapping may cause an error in the ModelSim environment. This is

because the standalone ModelSim tool does not include compiled Actel libraries and does

Libero IDE User's Guide

10

not set up the compiled library tree in the same manner as the ModelSim AE tool.

Using other versions of Synplify with Actel Libero IDE

You can use a full version of Synplify with Libero. After purchasing a full version license

of Synplify, set SYNPLICITY_LICENSE_FILE=<full version Synplify license

location>\license.txt.

You can tell Libero IDE to look for a specific version of Synplify by creating a separate

tool profile for each version. Choose which version to use in your project profile.

Using Precision RTL from Mentor Graphics with Libero IDE

You can use a full version of Precision RTL with Libero IDE. After purchasing Precision

from Mentor Graphics, set up a tool profile for Precision RTL and add the tool to your

project profile.

Using LeonardoSpectrum from Mentor Graphics with Libero IDE

You can use a full version of LeonardoSpectrum with Libero IDE. After purchasing

LeonardoSpectrum from Mentor Graphics, set up a tool profile for LeonardoSpectrum

and integrate the tool with your project profile.

11

Project Management
Libero IDE Design Flow
The Libero Design Flow consists of six steps:

Step One - Design Creation

Plan out your design and enter it as either HDL (VHDL or Verilog), structural

schematic, or mixed-mode (schematic and RTL).

Step Two - Design Verification - Functional Simulation

After you have defined your design, you must verify that it functions the way you

intended. After creating a testbench using WaveFormer Lite use the ModelSim VHDL

or Verilog simulator to perform functional simulation on your schematic or HDL design.

Step Three - Synthesis/EDIF Generation

A design must be synthesized if the design was created using VHDL or Verilog. Use

Synplify or Synplify Lite from Synplicity to generate your EDIF netlist. You can re-verify

your design "post-synthesis" using the VHDL or Verilog ModelSim simulator used in

step 2.

While all RTL code must be synthesized, pure schematic designs are automatically

"netlisted" out via the Libero tools to create a structural VHDL or structural Verilog

netlist.

Step Four - Design Implementation

After you have functionally verified that your design works, the next step is to implement

the design using the Actel Designer software. The Designer software automatically

places and routes the design and returns timing information. Use the tools that come

with Designer to further optimize your design. Use Timer to perform static timing

Libero IDE User's Guide

12

analysis on your design, ChipEditor or ChipPlanner to customize your I/O macro

placement, PinEditor for I/O customization, SmartPower for power analysis, and

NetlistViewer to view your netlist.

Five - Timing Simulation

After you are done with design Implementation, you can verify that your design meets

timing specifications. After creating a testbench using WaveFormer Lite, use the

ModelSim VHDL or Verilog simulator to perform timing simulation.

Step Six - Device Programming

Once you have completed your design, and you are satisfied with the timing simulation,

create your programming file. Depending upon your device family, you need to generate

a Fuse or Bitstream programming file.

Libero IDE Design Flow

Project Management

13

Creating a new Libero project
Use the New Project Wizard to create a new Libero project.

To create a new project:

1. From the File menu, click New Project. The New Project Wizard starts.

2. Follow the instructions in the Wizard and click Finish when done.

Opening your Libero project
There are several ways you can open your Libero project files (.prj).

To open an existing project after opening Libero IDE:

1. From the File menu, click Open Project.

2. In Look in, navigate to the drive/folder where the .prj file is located and double-

click to select it. (By default, Libero saves file to the Actelprj folder.)

Tip: The last five saved projects are available from the File menu. From the File

menu, click Recent Projects, and then select the project to open.

Tip: You can open an existing project by double-clicking the .prj file or dragging

the .prj file over the Libero IDE desktop icon.

Libero IDE User's Guide

14

Saving a project with a new name
Your project is saved when you close the project. To save the project with another name,

use the Save Project As command.

To save the project with a new name:

1. From the File menu, click Save Project As. The Save Project As dialog box

opens.

Save Project As Dialog Box

2. Enter a new project name.

3. Enter a new project location, or click browse to specify a new location.

4. Click OK.

Project Management

15

Closing and Exiting
Your project is automatically saved when closed. To save it with another name, use the

Save Project As command.

To close a project:

1. From the File menu, click Close Project.

To exit Libero IDE:

1. From the File menu, click Exit.

Project sources (files)
Project sources are any design files that make up your design. These can include

schematics, HDL files, simulation files, testbenches, etc. Anything that describes your

design or is needed to program the device is a project source.

Source files appear in the Design Explorer window. The Design Hierarchy tab displays

the structure of the design modules as they relate to each other, while the File Manager

tab displays all the files that make up the project.

The design description for a project is contained within the following types of sources:

• Schematics

• HDL Files (VHDL or Verilog)

One source file in the project is the top-level source for the design. The top level-source

defines the inputs and outputs that will be mapped into the devices, and references the

logic descriptions contained in lower-level sources. The referencing of another source is

called an instantiation. Lower level sources can also instatntiate sources to build as many

levels of logic as necessary to describe your design.

Some project sources can be imported.

Libero IDE User's Guide

16

Sources for your project can include:

Source File Extension

Schematic *.1-9

Verilog Module .v

VHDL Entity .vhd

ACTgen Macro .gen

Testbench .vhd

Stimulus .tim

Programming Files .afm, .prb

New Files
You can create new files from Libero. New file types include:

• Schematic

• ACTgen macro

• VHDL Entity

• VHDL Package file

• Stimulus

• Stimulus HDL file

To create a new file:

1. From the File menu, click New.

2. Select the File type and type a name.

3. Click OK. The appropriate application starts. The saved file is added to your

Libero project.

Project Management

17

Importing Files
Anything that describes your design, or is needed to program the device is a project

source. These can include schematics, HDL files, simulation files, testbenches, etc.

Import these source files directly into your Libero project.

To import a file:

1. From the File menu, click Import Files.

2. In Files of type, select the file type.

3. In Look in, navigate to the drive/folder where the file is located.

4. Select the file to import and click Open.

Notes:

• Keep and import your VHDL package and behavioral and structural VHDL

source files separately. Do not place your VHDL package into your source file.

• You cannot import a Verilog File into a VHDL project and vice versa.

File Types for Import
File Type File Extension

ViewDraw Symbol *.1-9

ViewDraw Schematic *.1-9

Behavioral and Structural VHDL .vhd, .vhdl

VHDL Package .vhd, .vhdl

ACTgen Macro .gen

Verilog Include .h

Behavioral and Structural Verilog .v

Stimulus .vhd, .vhdl, .v

EDIF Netlist .edn

Libero IDE User's Guide

18

Saving Files
Files and projects are saved when you close them.

To save an active file:
• From the File menu, click Save, Save As, or Save All.

• Click the Save button in the toolbar.

Deleting Files
Files can be deleted from the current project or from the disk.

To delete a file from the project:

1. Select the File Manager tab in the Design Explorer window.

2. Right-click the file and select Delete from Project. The file remains on your disk.

To delete a file from your project and the disk:

1. Select the File Manager tab in the Design Explorer window.

2. Right-click the file and select Delete from Disk and Project. The file is deleted

from your disk and is no longer part of any project.

Finding files
Use the Find In Files dialog box to search for files.

To find a file:

1. From the Edit menu, click Find. The Find In Files dialog box appears.

Project Management

19

Find In Files

2. Select the properties for your search.

• Find what: Type a word string in the Find what text field.

• In files/file types: Select a file type.

• In folder: Select a folder.

• Match whole word only: Select to match the whole word only.

• Regular expression: Select to recognize Microsoft Word-style expressions.

• Match case: Select to search for case-sensitive occurrences of a word or

phrase. This limits the search so it only locates text that matches the

upper- and lowercase characters you enter.

3. Click Find. The results appear in the Find In Files tab in the log window. Click

the file name in the log window to open the file.

Found In Files Tab in Log Window

Libero IDE User's Guide

20

Libero project options
Use the Options dialog box to specify your project settings for the currently open project.

From the Options menu, click Project Settings to open the Options dialog box. View

and edit the preferences and Click OK. To revert to the default settings, click Default.

Options include:

• Project Settings

• Simulation

• Programming

Libero project settings
Use the Project Settings tab in the Options window to change the device family.

To change the device family:

1. From the Tools menu, click Options. The Options dialog box appears .

2. Select a family from the list and click OK.

Note:

• You cannot change the device family if the project contains ACTgen files,

structural files, or an .adb file.

Setting your simulation options
You can set a variety of simulation options for your project.

To set your simulation options:

Project Management

21

1. From the Options menu, click Project Settings.

2. Click Simulation.

3. Select your options and click OK.

• Use automatic do file: Select if you do not want Libero to initialize

ModelSim.

• User defined Do file: Enter the do file name or click the browse button.

• Compile VHDL Package files: Select to compile VHDL package files

using ModelSim AE.

• Include Do file: Select to execute the wave.do or other specified Do file.

Use the wave.do file to customize the ModelSim Waveform window

display settings.

• Simulation Run Time: Specify how long the simulation should run in ns.

If the value is 0, or if the field is empty, there won’t be a run command

included in the run.do file.

• Testbench entity name: Specify the name of your testbench entity name.

Default is “testbench,” the value used by WaveFormer Lite.

• Top Level instance name in the testbench: Default is <top_0>”, the value

used by WaveFormer Lite. Libero replaces <top> by the actual top level

macro when ModelSim is run.

• Vsim Command Type:Select Min, Typical (Typ), or Max

• Resolution: The default is family specific, but you can customize it to fit

your needs.

Libero IDE User's Guide

22

Family Default

Resolution

ACT1, ACT2, ACT3 1 ns

MX 1 ns

DX 1 ns

SX, SX-A 1 ns

eX 1 ns

Axcelerator 1 ps

ProASIC 1 ps

ProASIC PLUS 1 ps

• Vsim additional options: Text entered in this field is added to the vsim

command.

• Default: Restores factory settings.

Programming
If you did not install FlashPro as part of the Libero installation process, you can use the

Programming tab in the Options dialog box to integrate FlashPro with your project.

To integrate FlashPro with your project:

1. From the Options menu, click Project Settings.

2. Click the Programming tab.

3. Fill in the options:

• Location: Specify the location of the FlashPro executable.

• Additional Parameters: Additional parameters of the command line.

• Jar file location: Specify the location of the FlashPro jar file.

Project Management

23

4. Click OK.

Setting your project profile
Each Libero IDE project can have a different profile, enabling you to integrate different

tools with different Libero projects.

To set or change your project profile:

1. From the Options menu, click Profile.

• To add a tool: Click Add and select which type of tool (synthesis, stimulus, or

simulation). Fill out the tool profile and click OK.

• To change a tool profile: After selecting the tool, click to Edit to select another

tool, change the tool name, or change the tool location.

• To remove a tool from the project:After selecting a tool, click Remove.

• To restore the tool profiles shipped with Libero: Click Restore Defaults.

2. When you are done, click OK.

VHDL Package Files Organization
It is important to preserve the VHDL package file sequence if your VHDL package files

are interdependent.

To specify the VHDL package file order:

1. From the Options menu, click VHDL Package File Organization. The VHDL

Package Files dialog box appears.

2. Use the up and down arrows to specify the order, or drag the files into order.

3. Select Simulation or Synthesis if you want the file included when simulation or

synthesis is run.

4. Click OK.

Libero IDE User's Guide

24

Setting preferences
Use the Preferences dialog to customize Libero to your needs.

To set your preferences:

1. From the File menu, click Preferences.

2. Specify your preferences on each of the tabs.

Internet Tab

Proxy Tab

File Preferences Tab

Log Window

Text Editor

3. Click OK.

Note

• These preferences are stored on a per user basis. These preferences are not project

specific.

Updates
Actel strongly recommends that you check at least once a week for fixes, updates, and

enhancements for your Actel software.

The Updates tab in the Preferences dialog box allows you to set your automatic software

update preferences.

To set your automatic software update preferences:

1. From the File menu, click Preferences and Updates.

2. Choose one of the following options.

Project Management

25

• Automatically check for updates at startup: Select to be notified of updates when

you start Designer.

• Remind me to check for updates at startup: Select to be asked if you want to

check for a software update when you start Designer.

• Do not check for updates or remind me at startup: Select if you do not want to

check for software updates at startup.

To manually check for software updates, from the Help menu, click Check for

Software Updates.

3. Click OK.

Note:

• This feature requires an internet connection.

Setting Your Proxy
An FTP connection is used to update some data files. Use the Proxy tab in the

Preferences dialog box to enter your proxy name if you use a proxy server.

1. From the File menu, click Preferences.

2. Click the Proxy tab.

3. If you use a Proxy server, click the check-box and enter the name.

4. Click OK to dismiss the Preferences dialog box.

Libero file association
Several programs, including Libero, create files with the .prj extension. If you want

Libero to start whenever you double-click on a .prj file, you need to set up Libero as the

default editor for .prj files.

Libero IDE User's Guide

26

To make Libero the default editor for .prj files:
1. From the File menu, click Preferences.

2. Click the File Association tab.

3. Check the box to associate Libero with .prj files.

Setting your log window preferences
Errors, Warnings, and Informational messages are color coded in the log window. You

can change the default colors by using the log Window tab in the Preferences dialog box.

To change colors in the log window:

1. From the File menu, choose Preferences.

2. Click the Log Window tab in the Preferences Dialog Box.

3. Select your new default colors and click OK.

The default color settings for the log window are:

Message Type Colors

Errors Red

Warnings Light Blue

Informational Black

Linked Dark Blue

Project Management

27

Text editor
You can use the Libero HDL text editor or another text editor.

To set your text editor preferences:

1. From the File menu, click Preferences.

2. Click Text Editor.

Preferences: Text Editor

2. Set your options and click OK.

Libero text editor options

• Use Libero text editor: Select to use the Libero HDL text editor.

• Replace tab with spaces: Enter the number of spaces you want entered

when using the tab key.

• Open programming/debugging files as read-only: Select to specify read-

only permission to .stp and .prb files.

Libero IDE User's Guide

28

• User defined text editor: Unselect use Libero text editor to activate this

area. Enter the .exe location of the text editor.

• Additional parameters: Use to specify other settings to pass to the text

editor. Typically, it is not necessary to modify this field.

Libero’s Project Manager
Libero’s Project Manager workspace integrates the needed design tools, streamlines the

design flow, manages all design and log files, and passes necessary design data between

tools.

The Design Explorer Window, located in the upper left, consists of the Design

Hierarchy and File Manager windows. Below is the Process Window. The HDL Editor

fills up the right side of the Project Manager, while the Log Window is found at the

bottom.

Libero also includes toolbars and menus.

Design Hierarchy
The Design Hierarchy tab displays a hierarchical representation of the design based on

the source files in the project. Libero IDE continuously analyzes and updates source files

and updates the hierarchy. The Design Hierarchy tab displays the structure of the design

modules as they relate to each other.

Project Management

29

The corresponding file name (the file that defines the block) next to block name in

parentheses.

Design Hierarchy - Block and File Names

More information about the block can be found by right-clicking it and selecting

Properties. The Block Properties dialog box displays block properties including, file path,

created date, and last modified date.

Files that cannot be read by Libero are identified with red question marks.

Design Hierarchy - Unknown Hierarchy

Libero IDE User's Guide

30

All integrated source editors are linked with Libero’s Project Manager. If a source is

modified and the modification changes the hierarchy of the design, the Design Hierarchy

automatically updates to reflect the change.

If you want to update the design hierarchy, choose Refresh from the Edit menu.

To open a source:

Double-click a source in the Design Hierarchy to open it. Depending on the block type

and design state, several possible options are available from the right-click menus.

File Manager
The folders in the File Manager are like the ones in the Windows Explorer. These

folders reside on your computer and support relative paths - paths from the project folder

to files in your folders. This folder structure makes it easier to organize your files.

The File Manager window displays all the files associated with your project. Files are

grouped by type.

• block symbol files

• schematic files

• HDL files

• ACTgen Macros

• stimulus files

• design implementation files

Right-clicking a file in the File Manager provides a menu of available options specific to

the file type. You can also delete files from the project by selecting Delete from Project

Project Management

31

from the right-click menu.

Tip: You can drag files in the File Manager to re-order them.

Process Window
The process window displays all available tools involved in the design process.

This window shows you the current state of your design by activating and highlighting

tools at appropriate times in the design process, while graying out tools that are not yet

available. Green checks indicated successfully completed steps.

Double-click a tool to start it. Right-click a tool to access the right-click menu, which

provides all the available processes you can start with the tool.

HDL Editor Window
The HDL Editor targets the creation of HDL code. It supports VHDL and Verilog

with color, highlighting keywords for both HDL languages.

Note

• To avoid conflicts between changes made in your HDL files, Actel recommends

that you use one editor for all of your HDL edits.

Log Window
Colors and Symbols

For ProASIC and ProASICPLUS families the log window displays notes and warnings.

For Antifuse families, the log window displays error, warning, and informational

messages. Messages are represented by symbols and color coded. The default colors are:

Type Color

Libero IDE User's Guide

32

Error Red

Warning Blue

Information Black

The colors can be changed by using the Preferences dialog box.

Output, Error, Warning, and Info Tabs

The Output tab displays all messages. Use the errors, warnings, or informational tabs to

filter for just those messages. The views within the error, warnings, and info displays are

reset when a new command is executed or a new design is opened. To see a complete

history of your design session, click the output tab.

Linked Messages

Error and warning messages that are dark blue and underlined are linked to online help

to provide you with more details or helpful workarounds. Click them to open online help.

33

HDL Entry
Using the HDL Editor
The HDL Editor is a text editor designed for editing HDL source files. In addition to

regular editing features, the editor provides a syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the

tabs to move between files.

The easiest way to use the HDL editor is to maximize its space by closing the Design

Explorer and Process windows. Close these windows by selecting them in the View

menu.

Editing

Editing functions are available in the Edit menu. Available functions include cut, copy,

paste, find and replace. These features are also available in the toolbar.

Saving

You must save your file to add it to your Libero project. Click Save in the File menu, or

click the Save icon in the toolbar.

Printing

Print and Print Preview functions are available from the File menu and the toolbar.

Note

• To avoid conflicts between changes made in your HDL files, Actel recommends

that you use one editor for all of your HDL edits.

Libero IDE User's Guide

34

Creating new HDL files

To create an HDL file:

1. Open your project.

2. From the File menu, click New.

3. Click VHDL and type a file name in the Name field. Click OK. (Do not enter a

file extension; Libero adds one for you.) The HDL Editor workspace opens.

4. After creating your HDL file, save your file to the project by clicking Save from

the File menu. Your HDL file is saved to your project, appearing in the File

Manager.

Opening an HDL source file

To open an HDL source file:

1. From the File menu, click New.

2. From Files of Type, select HDL File (*.vhd, *.vhdl).

3. In Look in, navigate to the drive/folder where the .hdl file is located.

4. Select your file and click Open. Libero opens your file in the HDL Editor

Importing HDL source files
Import your HDL file into your project just as you would any source file.

To import an HDL source file:

1. From the File menu, click Import Files.

2. In Files of type, select the file type.

3. In Look in, navigate to the drive/folder where the file is located.

4. Select the file to import and click Open.

HDL Entry

35

HDL Syntax Checker
After you are done creating your HDL file, use the HDL Syntax Checker to help

validate an HDL file after editing the HDL code.

To run the syntax checker:

1. In the Libero File Manager, right-click an HDL file and click Check HDL File.

2. The syntax checker parses the selected HDL file and looks for typographical

mistakes and syntactical errors. Warning and error messages for the HDL file

appear in the Libero Log Window.

Commenting Text
You can comment text as you type in the HDL Editor, or you can comment out blocks of

text by selecting a group of text and applying the Comment command.

To comment or uncomment out text:

1. Type your text.

2. Select the text.

3. From the Edit menu or right-click menu, click Comment Out or Uncomment.

Using ACTgen macros
Use ACTgen to:

• create high level modules, such as counters, multiplexers, multipliers, etc. that are

optimized for Actel FPGAs.

• create system level building blocks, such as filters, FIFOs and memories.

These can be instantiated into your schematic, Verilog design, or HDL design.

Libero IDE User's Guide

36

To use ACTgen with your HDL design:

1. Add the ACTgen macro to your Libero project.

• From the Libero File menu, click New.

• In the New File dialog box, select ACTgen macro, type a name, and click

OK. ACTgen starts.

• Select your macro type from the left Macro list box. The appropriate

options appear. Select a tab and fill in the fields. Click Generate.

• In the Save As dialog box, leave the default selections and click Save. The

file is added to your Libero project, appearing in the Design Hierarchy.

2. Instantiate the module in your HDL design.

37

Schematic Entry
ViewDraw AE
ViewDraw AE is a special version of ViewDraw. Use it for schematic entry with Libero

IDE.

Actel does not recommend that you use stand-alone versions of ePD or DxViewDraw

from Mentor Graphics with Libero IDE. Do not install these and ViewDraw AE on the

same PC. ViewDraw AE and ePD or DxViewDraw use similar environment variables

and registry entries that will conflict. If you'd like to install ePD or DxViewDraw and

Libero on the same machine, do not install ViewDraw AE during Libero installation.

A schematic created with ViewDraw AE should not be modified by a full version of

ViewDraw. A full-block schematic created with ePD or DxViewDraw cannot be

imported into ViewDraw AE.

Note: The full online help system for ViewDraw AE can be accessed by opening

ViewDraw AE and clicking the Help menu.

Schematic guidelines
When creating your schematics, follow these guidelines.

Using Hierarchical Connectors

Hierarchical connectors are required in any schematic design for external ports for the top

level. Hierarchical connectors must be used also on ports of sub-modules.

I/O Pads

I/O pads can be automatically inserted by running synthesis. For schematic designs that

only use Actel primitives (no HDL blocks), you can manually insert ALL I/O pads if you

do not want to go through the synthesis flow.

Libero IDE User's Guide

38

Naming Conventions
1. Project names should be less than 8 characters.

“my_top” is acceptable

“my_top_level” is not

2. Do not use spaces in:

• Project names

• Instance names

• Net names

• Port names

3. Do not use any special characters in any of your naming, such as: ~ ! @ # $ % ^ &

* () = + { } | \ / < > ? ` ' " ", . or spaces.

4. The "inverted" net property is not supported.

5. If you want to rip out scalar bits from a bus, use [] for scalar bit naming. For

example, Bus[15], Bus[14], …, Bus[0].

6. Do not use numbers at the beginning or the end of any names. ViewDraw AE

regards Bus[1] as equivalent to Bus1.

Scalar bit Bus1[15] of Bus1[15:0] conflicts with scalar bit Bus11[5] of Bus11[15:0]

during netlist generation.

If you want to use numbers to distinguish related nets, numbers can be used

followed by letters at the end, for example: NET1N, or Bus1A[15:0].

7. Multi-dimensional busses are not supported. For example, do not use naming

"Bus[0:3][0:3]" in ViewDraw AE.

Schematic Entry

39

Creating a schematic source file
Use ViewDraw AE to create your schematic source files.

To create a schematic source file:

1. From the File menu, click New.

2. Select Schematic and type a name for your schematic file in the Name field. Click

OK. ViewDraw AE starts.

3. Using ViewDraw AE, create your schematic.

4. When you are done, click Save+Check. The Save+Check command creates your

WIR file. When Save and Check is complete, the message “Check complete, 0

errors and 0 warnings in project <name>” appears in the status bar. You must

select Save & Check. Only selecting Save will not generate the needed WIR file

for that block.

5. (Optional) Run connectivity checker. Right-click the schematic file in the File

Manager tab and click Check Schematic. The connectivity checker checks the

connectivity of the wir file. Errors and warnings appear in the log window.

6. From the File menu, click Exit. The schematic is saved to your project in Libero,

appearing in both the File Manager and the Design Hierarchy tabs.

Importing schematics
You can import any schematic created with ViewDraw AE.

To import a schematic file:

1. From the File menu, click Import Files.

2. In Files of type, select Schematics.

3. In Look in, navigate to the drive/folder where the file is located.

4. Select the file to import and click Open. The schematic is imported into your

Libero IDE User's Guide

40

project and appears in the File Manager, under Schematic files.

To open the schematic, double click on ViewDraw AE in the Process window, or

right-click the file in the File Manager and select, Open Schematic.

Notes:

A schematic created with ViewDraw AE should not be modified by a full version

of ViewDraw. A full-block schematic created with ePD or DxViewDraw cannot be

imported into ViewDraw AE.

Opening a schematic source file
Use ViewDraw AE to edit your schematic files.

To open your schematic file:

1. Open your project in Libero IDE.

2. Double-click the schematic file in the File Manager or Design Hierarchy

windows. ViewDraw AE opens with the file loaded.

3. From the File menu, click Save+Check to create the required files for netlist

generation. When Save + Check is complete, the Status Bar will say "Check

complete, 0 errors and 0 warnings in project <name>." You must select Save

+Check. Only selecting Save will not generate the needed WIR file for that block.

4. From the File menu, click Exit. The schematic is saved to the project, appearing

in both the File Manager and Design Hierarchy tabs. Your schematic file is

updated in Libero.

Schematic Entry

41

Using ACTgen macros
Use ACTgen to:

• create high level modules, such as counters, multiplexors, multipliers, etc. that are

optimized for Actel FPGAs.

• create system level building blocks, such as filters, FIFOs and memories.

These can be instantiated into your schematic, Verilog design, or HDL design.

To generate macros for your schematic:

1. Add the ACTgen macro to your Libero project.

• From the Libero File menu, click New.

• In the New File dialog box, select ACTgen macro, type a name, and click

OK. ACTgen starts.

• Select your macro type from the left Macro list box. The appropriate

options appear. Select a tab and fill in the fields. Click Generate to create

an HDL representation of the macro.

• In the Save As dialog box, leave the default selections and click Save. The

file is added to your Libero project, appearing in the Design Hierarchy.

2. Create the Symbol. In the Design Hierarchy, right-click the ACTgen module

and choose Create Symbol. The symbol is created, appearing in the File

Manager, under Block Symbol files.

3. Use the Symbol.

• Start ViewDraw.

• From the Add menu, click Component.

• Select the new symbol, then drag and drop it onto your schematic.

Libero IDE User's Guide

42

43

Design Constraints
About Design Constraints
The Designer software supports both physical and timing constraints. Constraints can be

set by either using Actel's interactive tools or by importing constraint files directly into

Designer.

Physical Constraints
Designer supports two types of physical constraints: I/O Assignments and Location and

Region Assignments.

I/O Assignments

Use PinEditor to manually place and configure your I/Os. Or, assign I/O locations

automatically by importing one of the following constraint files into Designer:

• GCF (Flash families)

• PDC (Axcelerator family)

• PIN file (SX-A, eX, SX, MX, 3200DX, 1200XL, ACT3, ACT2, ACT1

families)

Location and Region Assignments

Use ChipEditor to view and manually change location assignments. Use ChipView to

view the placement and routing in Flash designs.

You can also assign location constraints and enter region constraints by importing one of

the following constraint files into Designer:

• GCF (Flash families)

• PDC (Axcelerator family)

Libero IDE User's Guide

44

PinEditor
The PinEditor tool provides a graphical application for displaying and configuring I/O

 assignments and attributes.

Use PinEditor to:

• assign I/O macros to pins

• fix pin assignments that have automatically been assigned during layout

• view and print pin assignments

• assign I/O standards to banks, for families that utilize I/O banks

• edit I/O attributes, such as I/O standards, slew, and capacitance

• assign VREF pins, for I/O standards that require an input reference voltage

To start PinEditor:

There are three ways to start PinEditor:

• Click PinEditor in the Designer main flow window

• From the Tool menu, click PinEditor

• Click the PinEditor toolbar button in Designer

PinEditor Interface
Package window
PinEditor’s Package window displays pins, I/O macro assignments, and I/O Banks

(Axcelerator family only).

The Package window is integrated with PinEditor windows and list boxes. If you select

an assigned pin in the Package window, the pin location is highlighted in the World

Design Constraints

45

View window and the I/O macro name is selected in the Assigned list box and the I/O

Attribute Editor.

The Package Window displays detailed information about each pin, including:

• pin number

• special pin properties, such as JTAG, clock, ground, or power

• assigned I/O macro name, if any

• pin type, represented by color

Color Manager
Use the Color Manager to customize the colors used to display the package in

ChipEditor and PinEditor. The Color Manager specifies the display colors for I/O

banks, I/O FIFO Blocks, RAM tiles, Core tiles, clusters, super clusters, and nets.

To customize the colors in the Package window:

1. From the View menu, click Color Manager.

2. In the Color Manager dialog box, click the color box in front of the item you

wish to customize, or click the I/O bank you wish to change. The color pallet is

displayed.

3. Select a color and click OK. The new color will appear in the Color Manager

dialog box.

4. After you are done customizing your colors using the Color Manger dialog box,

click OK.

World View window
The World View window’s default location is under the Assigned list box. Use the World

View window to control which portion of the package is displayed in the Package

window. The blue rectangle (known as the Package rectangle) represents the package.

The green rectangle (known as the Viewing rectangle) represents the currently displayed

area in the Package window.

To display another part of the package, use the left mouse button to drag the Viewing

rectangle to the area on the Package rectangle you would like to display. To specify a new

display area, use the right mouse button to stroke out a new Viewing rectangle on the

Libero IDE User's Guide

46

Package rectangle.

I/O Attribute Editor
The default location of the I/O Attribute Editor is below the Package and World View

windows. The I/O Attribute Editor lists all assigned and unassigned I/O macros and

their attributes in a spreadsheet format. Use the I/O Attribute Editor to view, sort, select,

and edit these I/O attributes. Double-click a column heading to sort by that attribute. If

you select a macro in the list boxes, the I/O attribute editor scrolls to highlight the

selected macro.

Configure PinEditor List Boxes
Use the Configure List Box dialog box to customize what is displayed in the Assigned

and Unassigned list boxes.

To configure the listboxes:

1. From the View menu, click Configure List Boxes.

• Filter Assigned and Unassigned Lists: Entering a specific pin name in this

field filters out all other pins in the Assigned and Unassigned List

Boxes. Use the * wildcard to filter for groups.

• Show fixed and unfixed pins: Selecting this causes all fixed and unfixed

pins to be displayed in the Assigned list box.

• Show only fixed pins: Selecting this filters out all unfixed pins from the

Assigned list box.

• Show only unfixed pins: Selecting this filters out all fixed pins from the

Assigned list box.

2. Click Apply to see changes. When satisfied, click OK.

Design Constraints

47

Making Pin Assignments
Use PinEditor to make and edit I/O macro pin assignments. Edits made in PinEditor are

permanent, as long as they are fixed and committed.

Depending upon the design family, PinEditor opens as a stand alone tool or in the

MultiView Navigator.

To assign an I/O macro to a pin using PinEditor in the MultiView Navigator

interface:

1. Select the instance in the Logical or Physical tabs.

2. Drag the instance to the pin location.

If the location is a valid one, the macro is assigned and automatically fixed.

To assign an I/O macro to a pin using stand alone PinEditor:

1. Select the macro name in the Unassigned list box. The macro is simultaneously

selected in the I/O Attribute Editor.

2. Assign the selected macro to a pin location using any one of these methods:

• Drag the selected macro name from the Unassigned list box to the pin

location in the Package Window. Valid pin locations are highlighted in

the Package Window.

• In the Edit menu, choose Assign to invoke the Assign mode. Then, select

the pin location in the Package Window.

• Click the Assign toolbar button to invoke the Assign mode and then

select the pin location in the Package window.

Libero IDE User's Guide

48

• If you know the specific pin location, enter the pin assignment in the Pin#

cell or select a valid placement from the drop-down menu.

If the location is a valid one, the macro is assigned and automatically fixed. The
status bar displays information about invalid assignments. Choose Extended Error
Messages from the Help menu for more information about specific error
messages.

Note:

• If you assign a macro to a pin that has already been assigned a macro, the

previously assigned macro becomes unassigned, even if its placement has been

fixed.

Locking Pin Assignments
Designer does not alter locked pins during Layout. Designer recognizes pins as locked if

they are:

• assigned manually using PinEditor

• assigned in a design schematic

• assigned using a pin file (non-Axcelerator ProASIC families)

• assigned using a PDC file (Axcelerator family only)

Locked pins are permanent, as long as you commit your locked pins to your design before

you exit PinEditor.

To lock pins:

1. Select the pin(s) to lock in the Assigned list box, Package window, or I/O

Attribute Editor. To select multiple pins, hold the ctrl key and select multiple

pins with your mouse. To select all pins, choose Select All from the Edit menu.

2. In the Edit menu, click Lock. Or, using the I/O Attribute Editor, select the

Locked check box.

Note:

• If you are using the I/O Attribute Editor, you can only fix one pin at a time.

Design Constraints

49

To unlock a pin:

1. Select the pin(s) to unlock in the Assigned list box, Package window, or I/O

Attribute Editor. To select multiple pins, hold the ctrl key and select multiple

pins with your mouse. To select all pins, choose Select All from the Edit menu.

2. In the Edit menu, click Unlock. Or, in the I/O Attribute editor, uncheck the

Locked check box.

Closing and committing pin assignments
Edits made in PinEditor are only temporary. If you wish to keep your pin assignments

and I/O attribute changes, you must commit your changes before closing PinEditor.

To commit your pin assignments at any time, from the File menu, click Commit.

To commit your pin assignments when closing PinEditor click Yes when asked if you

would like to commit changes made in PinEditor.

Committing your changes saves them to the "working" design for this Designer session

only.

To permanently save changes made in PinEditor to your design file, (.adb) you must save

your design. From the Designer File menu, click Save.

Using the I/O Attribute Editor
The I/O Attribute Editor displays I/O attributes in a spreadsheet format. Use the I/O

Attribute Editor to view, sort, select, and edit standard and device-specific I/O attributes.

Standard attributes
The I/O Attribute Editor shows four standard attributes for all I/O macros:

• Port Name indicates the I/O macro name.

• Macro Cell indicates the type of I/O macro.

• Pin # indicates the current pin assignment.

• Fixed, if checked, indicates that you cannot change the current pin

assignment during layout.

Libero IDE User's Guide

50

Axcelerator I/O attributes
Besides the standard attributes, the I/O Attribute Editor displays Axcelerator specific

attributes. The list below includes a description of Axcelerator specific attributes.

1. I/O Standard indicates the I/O standard. Possible I/O standards include

LVTTL, LVCMOS 2.5V, LVCMOS 1.8V, LVCMOS 1.5V, 3.3V PCI,

LVDS, LVPECL, GTL+, HSTL Class I, SSTL3 Class I and II, and SSTL2

Class I and II. Information on these standards can be found in "Glossary" on

page 51. Refer to the appropriate data sheet for information about I/O

standards for different families.

2. Slew indicates the slew rate for output buffers. Generally, available slew rates

are high and low. The output buffer has a programmable slew rate for both

high to low and low to high transitions. The slow slew rate is incompatible

with 3.3V PCI requirements. For the Axcelerator family, slew can only be

edited for the LVTTL I/O standard.

3. Resistor Pull indicates the resistor pull: NONE, weak pull-up, Weak pull-

down. The default value is NONE. The only exception to this is an I/O that

exists in the netlist as a port, is not connected to the core, and is configured as

an Output Buffer. In that case, the default setting will be for a weak pull-down.

4. Hot Swap indicates if the pin is hot swappable. The device, the

5. I/O standard specified, and the selected voltage determine this read-only

attribute. All the I/O standards except 3.3V PCI are hot-swap compatible and

3.3V tolerant.

6. Loading (pf) indicates the output-capacitance value based on the I/O standard

selected in the I/O Standard cell.

7. Input Delay is set to "on" by checking the box.

8. Output Drive Strength can be set to 8, 12, 16, 24 in mA, weakest to strongest.

The LVTTL output buffer has four programmable settings of its drive

strength. Other I/O standards have full strength.

9. Bank Name displays the bank name. This cannot be edited.

Design Constraints

51

SX-A and RTSX-S I/O Attributes
Besides the standard I/O attributes, the I/O Attribute Editor displays device-specific

attributes. Device-specific attributes vary by device and only supported attributes are

displayed. The list below includes a description of SX-A and RTSX-S specific attributes.

1. I/O Standard indicates the I/O standard. Possible I/O standards include

LVTTL/TTL, PCI, CMOS, Custom. Information on these standards can be

found in "Glossary" on page 51. Refer to the appropriate data sheet for

information about I/O standards for different families.

2. IO Threshold indicates compatible threshold level for inputs and outputs,

either CMOS, TTL, or PCI.

3. Slew indicates the slew rate for output buffers. Generally, available slew rates

are high and low. The output buffer has a programmable slew rate for both

high to low and low to high transitions. The slow slew rate is incompatible

with 3.3V PCI requirements.

4. Resistor Pull indicates the resistor pull at power-up time: NONE, weak pull-

up, Weak pull-down. This state is of short duration and does not stay. The

default value is NONE. The only exception to this is an I/O that exists in the

netlist as a port, is not connected to the core, and is configured as an Output

Buffer. In that case, the default setting will be for a weak pull-down.

5. Hot Swap indicates if the pin is hot swappable. The device, the I/O standard

specified, and the selected voltage determine this read-only attribute. All the

I/O standards except 3.3V PCI are hot swap compatible and 5V tolerant.

6. Loading (pf) indicates the output-capacitance value based on the I/O standard

selected in the I/O Standard cell. If you have selected custom in the I/O

Standard field, you can modify the capacitance value to any integer value that

accurately reflects the capacitive loading on the Actel device pins.

ProASIC and ProASIC PLUS I/O Attributes
Besides standard I/O attributes. the I/O Attribute Editor also displays device-specific

attributes. Device-specific attributes vary by device and only supported attributes are

displayed. The list below includes a description of ProASIC ProASIC PLUS and specific

Libero IDE User's Guide

52

attributes.

1. Loading (pf) indicates the output-capacitance value based on the I/O standard

in the I/O Standard cell. The loading selected is applied to all outputs.

About I/O Banks
For devices that support multiple I/O standards, I/Os are grouped onto I/O banks

around the chip.

The Axcelerator Family has 8 I/O banks that surround the chip, two per-side, numbering

0-7. The I/O banks are color coded for quick identification. (Colors can be changed

using the Color Manager.)

Design Constraints

53

Each I/O bank has a common:

• VCCI, the supply voltage for its I/Os

• VREF, the reference voltage bus (for voltage-referenced I/O standards)

Only one VREF value can be assigned to each I/O bank. Only I/Os compatible with

both the same VCCI and VREF standards can be assigned to the same bank.

Assigning technologies to I/O Banks

To assign technologies to banks:

1. Select an I/O bank.

2. From the Edit menu, click I/O Bank Properties.

3. In the Configure I/O Dialog Box, select your options and click Apply. The I/O bank

is assigned the selected standards. Any I/O of the selected types can now be assigned

to that I/O bank. Any previously assigned I/Os in the bank that are no longer

compatible with the standards applied are removed.

4. If VREF pins can be assigned, the Assign VREF Pins button will highlight.

5. Assign I/O standards to other banks by selecting the banks from the list and

assigning standards. Any banks not assigned I/O standards use the default standard

selected in the Device Selection Wizard.

6. Click OK. Using PinEditor, proceed to assign I/Os with the same standards to the

appropriate banks.

Libero IDE User's Guide

54

I/O Bank options
When assigning technologies to your I/O banks, use the Configure I/O Bank dialog box.

Options include:

Select Technologies

Selecting a standard selects all compatible standards and grays out incompatible ones. For

example, selecting LVTTL also selects PCI, PCIX, and LVPECL, since they all have

the same VCCI. Further selecting GTL (3.3V) disables SSTL3 as an option because the

VREFs of the two are not the same.

Assign VREF Pins

After you have selected your technology, click Apply. If VREF pins are required, this

button becomes activated. Click to assign VREF pins. You must assign VREF pins at

least once.

Click More Attributes to set the following:

Low Power Mode (Optional)

Select Enable Input Buffers or Enable Output Buffers. These are not required. This

feature is not supported in the RTAX-S family.

Input Delay

Design Constraints

55

Drag the slider bar to your desired delay. The delay is bank specific. Drag the meter to

your desired delay index. The delay code and typical value appear. Click View All Delays

to see all the delay values (Best, Worst, Typical, Rise-Rise, Fall-Fall) for the input delay

selected. A technology must be selected in order to see the input delays. Click OK to

dismiss the View All Delays dialog box. This feature is not supported in the RTAX-S

family.

Specifying I/O bank voltage
You can directly specify voltages for each I/O bank by doing one of the following:

• Using the Assign Technologies to I/O Banks dialog box

• Placing an I/O of a particular technology in an I/O bank that has not been

assigned a voltage

• Using the command set_iobank in a PDC File

Libero IDE User's Guide

56

Location and Region Assignments
Location and region assignments can be made using ChipEditor and ChipPlanner.

Using ChipEditor
ChipEditor is a graphical application for viewing and placing I/O and logic macros. This

tool is particularly useful when you need maximum control over your design placement.

ChipEditor supports the following families: ACT1, ACT2, ACT3, DX, MX, SX, SX-

A, and eX families. For all other families, use ChipPlanner.

Use ChipEditor to:

• View macro placements made during layout

• Place, unplace, or move macros

• Fix I/O macro placements

• View net connections using a ratsnest, minimum spanning tree, or route view

• View architectural boundaries

• View and edit silicon features, such as I/O banks

• Cross probe with Silicon Explorer to select probes

• View placement and routing of paths when used with Timer

Using ChipPlanner
ChipPlanner is a graphical application for viewing and placing I/O and logic macros. You

can also use it for floorplanning. This tool is particularly useful when you need maximum

control over your design placement.

Note: ChipPlanner does not support ACT1, ACT2, ACT3, MX, DX, eX, SX,

SX-A. Use ChipEditor instead.

Design Constraints

57

Use ChipPlanner to:

• View macro placements made during layout

• Place, unplace, or move macros

• Fix I/O macro placements

• View net connections using a ratsnest or route view

• View architectural boundaries

• View and edit silicon features, such as I/O banks

• Cross probe with Silicon Explorer to select probes

• View placement and routing of paths when used with Timer

• Create and assign macros or nets to regions

Starting ChipPlanner
ChipPlanner requires a compiled design. Therefore, you can only start ChipPlanner if

your design has been compiled. If you start ChipPlanner before compiling your design,

Designer guides you through the compile process before opening ChipPlanner.

You must start ChipPlanner from Designer.

To start ChipPlanner do one of the following:

• Click ChipPlanner in the Designer design flow window

• Click the ChipPlanner toolbar button in Designer

ChipPlanner opens in the MultiView Navigator interface.

The MultiView Navigator opens with ChipPlanner active.

Libero IDE User's Guide

58

Starting and Exiting ChipEditor and ChipPlanner

To start ChipEditor or ChipPlanner:

1. If you have not done so, Compile your design.

2. From the Tools menu, click ChipEditor or ChipPlanner. ChipEditor starts in a

separate window. If you are running ChipPlanner, the MultiView Navigator starts

with ChipPlanner active.

Tip: You can also start these tools by clicking ChipEditor or ChipPlanner in the

Designer design flow window

Exiting ChipPlanner:

1. From the File menu, click Close.

2. To close the MultiView Navigator, from the File menu, click Exit.

Exiting ChipEditor:

1. From the File menu, click Exit. If you haven't committed your changes, you

will be asked if you want to commit your changes.

Committing
Changes made in ChipEditor or ChipPlanner are not permanent until you use the

Commit command. The Commit command saves your changes to your design session.

Changes are not reversible. To permanently save your changes, you must save your design

in Designer.

To commit your changes:

1. From the File menu, click Commit.

Design Constraints

59

Logic assignment
Manually assigning logic is an optional methodology to help you improve the

performance and density of your design. If your design requires refining or customizing,

ChipPlanner and ChipEditor provide maximum control to achieve optimum results.

To manually assign logic, use ChipPlanner and ChipEditor before and after Layout.

Assigning and unassigning logic
You do not need to manually assign logic in your design. However, should you have

specific design requirements, ChipEditor and ChipPlanner allow you to have maximum

control over your design.

To assign logic using ChipPlanner:

1. Select the logic in the Physical tab.

1. Drag the logic to the desired location. As you drag, valid assignment locations are

highlighted. To remove the assignment, from the Edit menu, click Undo.

If the logic assignment is valid, the logic is assigned and locked. To save changes
for this design session, commit your changes when exiting the MultiView
Navigator.

Note: Assigning logic to a location that already has logic unassigns the
previously assigned logic, even if its assignment was locked.

To assign logic using ChipEditor:

1. Select the logic in the Unassigned list box.

2. Drag the logic to the desired location in the ChipEditor Window.

If the logic placement is valid, the logic is placed. To remove the placement, from
the Edit menu, click Undo.

Libero IDE User's Guide

60

Error messages in the status bar notify you about invalid placement attempts.
Choose Extended Error Messages from the Help menu for more details on a
specific error message. If you want to ensure that the logic is not moved during
layout, you must Lock the logic assignment and commit your changes when

exiting ChipEditor.

Note: Assigning logic to a location that already has logic unassigns the
previously assigned logic, even if its assignment was locked.

To assign multiple logic macros:

1. While holding down the CTRL or SHIFT key, select the logic in the order you

want it placed.

2. From the Edit menu, click Assign.

3. One by one, select the desired location. The macros are placed in the order

selected.

To unassign logic:

1. Select the logic.

2. From the Edit menu, click Unassign.

To unassign multiple logic macros:

1. Hold down the CTRL or SHIFT key and select the logic you want to unplace.

To select all logic, choose Select All from the Edit menu.

2. From the Edit menu, click Unassign.

Moving logic
You can move logic that was placed manually or automatically during Layout.

Design Constraints

61

To move logic:

1. Select the logic.

2. Drag the logic to the new location.

Tip: To remove the placement, from the Edit menu, click Undo.

Locking logic
Locked logic is not moved during Layout. Locked logic only becomes permanent if you

commit the changes to your design before exiting ChipEditor or ChipPlanner.

To lock macros:

1. Select the macro to lock. To select multiple macros, hold the CTRL key and

select multiple macros with your mouse. To select all macros, choose Select All

from the Edit menu.

2. From the Edit menu, click Lock.

3. From the File menu, click Commit to make the changes permanent and update

your .adb file.

To unlock a macro:

1. Select the macro. To select multiple macros, hold the CTRL key and select

multiple macros with your mouse. To select all macros, from the Edit menu, click

Select All.

2. From the Edit menu, click Unlock.

Libero IDE User's Guide

62

About I/O FIFOs
In the Axcelerator family, every I/O can have a dedicated PerPin FIFO with a fixed

depth of 64 bits. Each PerPin FIFO can be individually controlled; in which case the flag

logic has to be built into the FPGA. Alternatively, you can use the embedded I/O FIFO

Controllers to control sets of I/Os.

The embedded I/O FIFO Controllers can control sets of I/Os. These sets are known as

I/O FIFO Blocks.

Note: RTAX-S does not support PerPin FIFOs and I/O FIFO Controllers.

Assigning I/O FIFO Controllers
Manual assignment of the embedded I/O FIFO Controllers before running Layout is

required.

I/O FIFO Controller Considerations:

• All I/Os with a dedicated FIFO that is controlled by the same I/O FIFO

Controller must be assigned in the same I/O FIFO Block as the I/O FIFO

Controller.

• All I/Os with a dedicated FIFO that is individually controlled can be assigned

anywhere.

• I/Os with a dedicated FIFO cannot be controlled by different embedded I/O

FIFO Controllers in the same I/O FIFO Block.

• The I/O FIFO Controllers must be assigned before running Layout. They cannot

be automatically assigned.

Design Constraints

63

The above does not change the banking rules (i.e. any I/Os assigned to a bank must have

compatible technologies). While the I/O FIFO or I/O FIFO Controller does not have a

technology requirement, the I/O that contains the dedicated FIFO does.

Note: RTAX-S does not support PerPin FIFOs and I/O FIFO Controllers.

To assign an I/O FIFO Controller:

1. Select the I/O FIFO Controller you want to assign.

2. Drag the I/O FIFO Controller to the desired location.

Floorplanning
Floorplanning is an optional methodology that can be used to improve the performance

and routability of your design. The objective in floorplanning is to assign logic to specific

regions on the chip in order to enhance performance and routability.

When floorplanning, you analyze your design to see if certain logic can be clustered

within regions. This is especially helpful for hierarchical designs with plenty of local

connectivity within a block. If your timing analysis indicates several paths with negative

slack, try clustering the logic included in these paths into their own regions. This forces

the placement of logic within the path closer together and may improve timing.

Use ChipPlanner to help you floorplan. ChipPlanner can be used before and after

Layout.

Libero IDE User's Guide

64

Regions
When floorplanning, you assign logic to regions to improve the design performance.

Regions can be created using PDC or GCF files, or by using ChipPlanner. Spine regions

can only be created using a PDC or GCF file.

Types of regions
There are four types of regions.

Region Type Conditions

Empty No macros can be assigned to an empty region.

Exclusive Only contains macros assigned to the region.

Not supported in ProASIC and ProASIC PLUS.

Inclusive

Can contain macros both assigned and unassigned to

the region

Spine Can either be defined as Exclusive or Inclusive in the

PDC or GCF file.

Cannot be resized.

Can only contain certain types of macros.

Creating regions
Using ChipPlanner, you can create Empty, Exclusive, and Inclusive regions.

To create an empty or inclusive region:

1. From the ChipPlanner Edit menu, select Regions, and click Create Empty or

Create Logic. Selecting Create Logic creates an inclusive region.

2. Drag the mouse over the area where you want the region to be placed.

Design Constraints

65

To create an exclusive region:

1. From the Edit menu, select Regions, and click Create Logic. Selecting Create

Logic creates an inclusive region.

2. Drag the mouse over the area where you want the region to be placed.

3. Right-click the region and select Properties. The Region Properties dialog box

appears.

4. Select Exclusive and click OK.

Assigning logic to regions
During floorplanning, logic can be assigned to regions to improve design performance.

To assign logic to regions:

1. Right-click a region and select Assign/UnAssign. The Assign Instances to

Region dialog box appears.

Libero IDE User's Guide

66

Assign Instances to Region Dialog Box

2. Select Instance.

3. Enter a Pattern in the text box and click Find. To see all instances, type * and

click Find.

4. Select the instance in the left list box and click Assign.

Tip: You can also assign logic to regions by using a drag-and-drop operation.

Assigning nets to regions
When assigning a net to a region, only the instances connected to the net are assigned to

the region.

To assign nets to regions:

1. Right-click a region and select Assign/UnAssign. The Assign Instances to

Region dialog box appears.

Design Constraints

67

2. Select Net.

3. Enter a patten in the Pattern text box and click Find.

4. Select the Net in the left list box and click Assign.

Editing regions
After creating regions with ChipPlanner, you can name, delete, move, and re-size them.

To name a region:

1. Right-click the region and select Properties. The Properties dialog box appears.

2. Type a new region name and click OK.

To delete a region:

Right-click on the region and select Delete.

To move a region:

Select and drag the region to a new location.

To re-size a region:

1. Select the region.

2. Grab and drag the sides and corners to re-size the region. A region cannot be re-

sized smaller than the logic it already contains.

Libero IDE User's Guide

68

ChipPlanner Display Properties
To control what architectural features are displayed in ChipPlanner, use the Display

Properties dialog box. For detailed information about supported architectural features,

see the data sheet.

To set display properties:

1. From the View menu, click Display Properties.

Display Properties Dialog Box

Design Constraints

69

All the architectural features that can be displayed appear in the Display
Properties dialog box.

2. To make an object visible, select the Visible checkbox.

3. To change the color used to display the object, click the color bar and select

another color.

4. Save/Load Display Properties.

• Click Save to save your display properties to a file.

• Click Load to open a saved display properties file.

• Click Default to load the default display properties.

5. Click Apply to see your changes.

6. Click OK to dismiss the dialog box.

Ratsnest
The ratsnest view displays net connectivity between placed logic macros by connecting

lines from the output pins to all input pins. Use the ratsnest to understand how logic

macros are connected to each other. The ratsnest view is activated by default, showing all

input and output nets for the selected macro.

Turn the Ratsnest view on or off by clicking the Ratsnest toolbar button.

Route view
The route view displays a representation of the actual routes used to connect placed

macros. This feature helps show the general location of routing segments used by the

design.

To activate the route view in ChipEditor:

1. Complete Layout. To display routes, Layout must be completed before running

ChipEditor.

Libero IDE User's Guide

70

2. From the Nets menu, choose input, output, or both or click the corresponding

Net toolbar icon.

3. From the Nets menu, choose Display Algorithm Routes or click the routes icon

in the toolbar.

4. Select the placed macro in the ChipView window or Placed list box. Select

multiple macros by holding down the CTRL key.

Note: If a macro is moved or unplaced, then the nets connected to that macro will be

displayed using a ratsnest.

Net details

To display net details:

1. Select a net or locate the net by name.

2. From the Nets menu, click Show Net Details. The Net Details dialog box

displays pin name and xy coordinates.

Clusters and SuperClusters
A cluster is a group of logic elements. The type of elements that make up the cluster is

determined by the device type.

A super cluster is at least 2 clusters (SX) or 2 clusters and a buffer (Axcelerator). Modules

in a cluster can be connected by fast or direct connects.

Use these areas as guides to ensure that the nets are fast/direct connect for

implementation. Nets that connect within a rectangle can be implemented as fast or

direct connects, depending on availability. For details about fast connects and direct

connects, please see the Actel FPGA Databook.

Design Constraints

71

Note: This feature is only available for the SX, SX-A, eX, and Axcelerator

families.

To view clusters or super clusters in ChipPlanner:

1. From the View menu, click Display Properties. The Display Properties dialog

box appears.

2. Locate cluster or super cluster and select the Visible check box. Click the color bar

to change the display color.

3. Click OK.

To view clusters or super clusters in ChipEditor:

1. From the View menu, select Static Objects and click Cluster Rect. or

SuperCluster Rect. The cluster areas appear in the ChipView window.

Finding Design Objects

Locating a net by name

To locate a net by name in ChipEditor:

1. From the Nets menu, click Select Net.

2. Enter Net name and click Find. The net is highlighted in the ChipView window.

Finding objects

Use the Find feature in the MultiView Navigator to locate instances, nets, ports, and

regions. You can use the Find feature when using any tool that opens in the MultiView

Navigator interface.

Libero IDE User's Guide

72

To find instances:

1. From the Edit menu, click Find. The find dialog appears.

2. Click the Instances tab.

Find Instances Dialog Box

3. To search by name, type the name and Cell Type in the Name and Cell Type

fields. When searching for instances, Instance Name or Cell Type can be blank,

but not both.

These fields accept regular expressions. Wildcards in regular expression include:

• ? matches any single character

• * matches any string

• [] matches any single character among those listed between brackets

• [A-Z] matches any single character in range A-Z

Design Constraints

73

• [Z-A] matches any single character in range A-Z

• / is the level-bordering symbol. "A/B" designates "object B, which is part of

instance A". Note that the level-bordering symbol cannot be put between brackets

in a regular expression.

4. Select Wildcards if you want to search using wildcards.

5. Select Match case if you want the search to only return items with the exact

characters specified.

6. Click Advance to specify how you want your results displayed. Specify or create a

new pane in the log window to display your results. If you use an existing pane,

you can choose to overwrite your previous results or append the new results.

7. Click Find. The located instances, if any, appear in the Find pane in the log

window.

To find a net:

1. From the Edit menu, click Find. The find dialog appears.

2. Click the Nets tab.

Libero IDE User's Guide

74

Find Nets Dialog Box

2. Type the name of the net. This field accepts regular expressions. Wildcards in

regular expression include:

• ? matches any single character

• * matches any string

• [] matches any single character among those listed between brackets

• [A-Z] matches any single character in range A-Z

• [Z-A] matches any single character in range A-Z

• / is the level-bordering symbol. "A/B" designates "object B, which is part of

instance A". Note that the level-bordering symbol cannot be put between brackets

in a regular expression.

3. Select Wildcards if you want to search using wildcards.

Design Constraints

75

4. Select Match case if you want the search to only return items with the exact

characters specified.

5. Click Advance to specify how you want your results displayed. Specify or create a

new pane in the log window to display your results. If you use an existing pane,

you can choose to overwrite your previous results or append the new results.

6. Click Find. The located nets, if any, appear in the Find pane in the log window.

To find ports:

1. From the Edit menu, click Find. The find dialog appears.

2. Click the Ports tab.

Find Ports Dialog Box

3. To search by name, type the Name of the port to be located. These fields accept

regular expressions. Wildcards in regular expression include:

Libero IDE User's Guide

76

• ? matches any single character

• * matches any string

• [] matches any single character among those listed between brackets

• [A-Z] matches any single character in range A-Z

• [Z-A] matches any single character in range A-Z

• / is the level-bordering symbol. "A/B" designates "object B, which is part

of instance A". Note that the level-bordering symbol cannot be put

between brackets in a regular expression.

4. To find a port by type, select All, In, Out, or In/Out.

5. Select Wildcards if you want to search using wildcards.

6. Select Match case if you want the search to only return items with the exact

characters specified.

7. Click Advance to specify how you want your results displayed. Specify or create a

new pane in the log window to display your results. If you use an existing pane,

you can choose to overwrite your previous results or append the new results.

8. Click Find. The located ports, if any, appear in the Find pane in the log window.

To find regions:

1. From the Edit menu, click Find. The Find dialog box appears.

2. Click Regions.

Design Constraints

77

Find Regions Dialog Box

3. To search by name, type the Name of the region you want to find. These fields

accept regular expressions. Wildcards in regular expression include:

• ? matches any single character

• * matches any string

• [] matches any single character among those listed between brackets

• [A-Z] matches any single character in range A-Z

• [Z-A] matches any single character in range A-Z

• / is the level-bordering symbol. "A/B" designates "object B, which is part of

instance A". Note that the level-bordering symbol cannot be put between brackets

in a regular expression.

4. To search by type of region, select All User, Inclusive, Exclusive, and Empty.

Libero IDE User's Guide

78

I/O Banks
For devices that support multiple I/O standards, I/Os are grouped onto I/O banks

around the chip.

The Axcelerator Family has 8 I/O banks that surround the chip, two per-side, numbering

0-7. The I/O banks are color coded for quick identification. (Colors can be changed

using the Color Manager.)

Each I/O bank has a common:

• VCCI, the supply voltage for its I/Os

• VREF, the reference voltage bus (for voltage-referenced I/O standards)

Only one VREF value can be assigned to each I/O bank. Only I/Os compatible with

both the same VCCI and VREF standards can be assigned to the same bank.

Assigning technologies to I/O Banks

To assign technologies to banks:

1. Select an I/O bank.

2. From the Edit menu, click I/O Bank Properties.

3. In the Configure I/O Dialog Box, select your options and click Apply. The I/O bank

is assigned the selected standards. Any I/O of the selected types can now be assigned

to that I/O bank. Any previously assigned I/Os in the bank that are no longer

compatible with the standards applied are removed.

4. If VREF pins can be assigned, the Assign VREF Pins button will highlight.

Design Constraints

79

5. Assign I/O standards to other banks by selecting the banks from the list and

assigning standards. Any banks not assigned I/O standards use the default standard

selected in the Device Selection Wizard.

6. Click OK. Using PinEditor, proceed to assign I/Os with the same standards to the

appropriate banks.

I/O Bank options
When assigning technologies to your I/O banks, use the Configure I/O Bank dialog box.

Options include:

Select Technologies

Selecting a standard selects all compatible standards and grays out incompatible ones. For

example, selecting LVTTL also selects PCI, PCIX, and LVPECL, since they all have

the same VCCI. Further selecting GTL (3.3V) disables SSTL3 as an option because the

VREFs of the two are not the same.

Assign VREF Pins

After you have selected your technology, click Apply. If VREF pins are required, this

button becomes activated. Click to assign VREF pins. You must assign VREF pins at

least once.

Click More Attributes to set the following:

Low Power Mode (Optional)

Select Enable Input Buffers or Enable Output Buffers. These are not required. This

feature is not supported in the RTAX-S family.

Libero IDE User's Guide

80

Input Delay

Drag the slider bar to your desired delay. The delay is bank specific. Drag the meter to

your desired delay index. The delay code and typical value appear. Click View All Delays

to see all the delay values (Best, Worst, Typical, Rise-Rise, Fall-Fall) for the input delay

selected. A technology must be selected in order to see the input delays. Click OK to

dismiss the View All Delays dialog box. This feature is not supported in the RTAX-S

family.

Assigning VREF pins
Voltage referenced I/O inputs require an input referenced voltage (VREF).

To assign VREF pins:

1. From the Edit menu, click Assign I/O Technologies to I/O Banks.

2. Specify the supported technologies for the I/O bank and click OK.

3. If VREF pins can be assigned, the Assign VREF Pins button activates.

4. Click Assign VREF Pins. The Assign VREF Pins dialog box appear

5. Check the VREF box next to the pin number and click OK. Click the Reset to

Defaults button to revert to Actel recommended defaults.

6. Click OK to dismiss the Assign I/O Technologies to I/O Banks dialog box.

Specifying I/O bank voltage
You can directly specify voltages for each I/O bank by doing one of the following:

• Using the Assign Technologies to I/O Banks dialog box

• Placing an I/O of a particular technology in an I/O bank that has not been

assigned a voltage

• Using the command set_iobank in a PDC File

Using ChipEditor with Silicon Explorer
Use ChipEditor to select probes for Silicon Explorer. To use ChipEditor with Silicon

Design Constraints

81

Explorer, you must have installed and be familiar with Silicon Explorer.

To select probes using ChipEditor:

1. Open Silicon Explorer.

2. Load the probe file of the current design.

3. Start ChipEditor.

4. Synchronize data. Click the R (Re-sync) button in ChipEditor’s toolbar. When

completed, the A and B buttons in the toolbar are activated.

5. Select a module in ChipEditor.

6. Click the A button in ChipEditor’s toolbar to assign the selected module’s

output to probe A in Silicon Explorer.

7. Select another module in ChipEditor.

8. Click the B button in ChipEditor’s toolbar to assign the selected module’s

output to probe B in Silicon Explorer.

9. From Silicon Explorer, click the Acquire toolbar button. Waveforms are

displayed in Silicon Explorer.

Using ChipEditor with Timer
Use ChipEditor and Timer together to view place-and-route of paths in ChipEditor.

To view paths:

1. Open Timer and ChipEditor from Designer.

2. In Timer, click the Paths tab.

3. Select a Path set in the path set grid. Paths within that set are displayed below in

the path grid.

4. Select the path you wish to expand in the lower path grid.

Libero IDE User's Guide

82

5. Expand the path by double-clicking on the path, or in the Edit menu, click

Expand Path. The Expanded Paths window opens and displays a path in the

Expanded Paths Grid and a graphical representation of the path in the Chart

Window. The Expanded Paths grid shows all delay components for the selected

path (Instance, Net, Macro, Delay, Type, Total Delay and Fanout details). For

Delay, (r) stands for rising edge and (f) for falling edge.

6. Anything selected in the Expanded Paths grid or Graph window is reflected in

both windows. Selecting the path number in the Expanded Paths grid highlights

the entire path in the Chart window.

• Selecting an instance, net, or macro in the Expanded Paths grid highlights

that selection in the Chart window.

• Selecting a logic macro in the Chart window, highlights all instances of

the macro in the Expanded Paths grid.

• Toggle the Graph Window on and off by clicking Graph Window from

the Window menu. Use the View command menu to Zoom in and out. In

the Graph window, dragging the mouse downward and to the left will

zoom fit. Dragging downward and to the right drags out a zoom in area.

• In some cases, long instance names may overlap and be difficult to read in

the Graph window. This problem can be solved by moving the module.

To move the module, select the module and while holding down the Shift

key, click and drag the module to another location.

7. Select a module or net in the Expanded Paths dialog box. The module or net is

shown in ChipEditor.

Using the ChipEditor Interface
ChipEditor consists of the ChipView window, the Package window, and the Placed and

Unplaced list boxes.

Design Constraints

83

ChipView Window
The ChipEditor ChipView window displays logic modules and placed macros. When

you select a macro in the ChipView window, the macro location is highlighted in the

World View window and the macro name is selected in the Placed list box.

To zoom in and out, use the commands in the View menu or toolbar. To use hot keys,

place your mouse over the desired zoom area and use Shift and the "+" plus key to zoom

in on the location and Shift and the "-" minus key to zoom out.

Colors and Symbols Used in ChipEditor
Colors and symbols are used to differentiate the I/O and logic macros in the ChipView

Window.

Chip Window

Colors and Symbols

Color/Symbol

Definition

White Border A white border denotes a selected object.

Black Background A black background denotes an unused or unplaced module.

Blue Blue denotes a combinatorial module.

Yellow
Yellow denotes fixed logic modules. If the module is selected, the symbol

appears yellow. If the module is unselected, the border appears yellow.

Green Green denotes I/O modules.

Red Red denotes clock modules.

Magenta Magenta denotes sequential modules.

 Reserved modules that are not user definable are gray, crossed-out symbols on

a black background.

 Clock modules are red. Unused/unplaced modules are red symbols on a black

background. Used/placed

modules are black symbols on a red background.

 Input/Output modules are green. Unused/unplaced modules are green symbols

on a black background. Used/placed modules are black symbols on a green

Libero IDE User's Guide

84

background.

 Combinatorial modules are blue. Unused/unplaced modules are blue symbols

on a black background. Used/placed modules are black symbols on a blue

background.

 Sequential modules are magenta. Unused/unplaced modules are magenta

symbols on a black background. Used/placed modules are black symbols on a

magenta background.

Buffer modules are blue.

RAM modules are green. Unused/unplaced modules are green symbols (RAM)

on a black background. Used/placed modules are black on a green background.

PLL modules are green. Unused/unplaced modules are green symbols (PLL)

on a black background. Used/placed modules are back on a green background.

I/O FIFO Block Controller modules are green. Unused/unplaced modules are

green symbols (IOFCTL) on black backgrounds. A used/placed module is

black on a green background.

I/O FIFO Inbuff modules are pink on a black back ground. Used/placed

modules are black on a pink background.

I/O Inbuff modules are pink on a black background. Used/placed modules are

black on a pink background.

Design Constraints

85

Changing Colors in ChipEditor
Customize the colors used to display I/O banks, clusters, SuperClusters, and nets in the

ChipView window by using the Color Manager.

To customize colors in the ChipView window:

1. From the View menu, click Color Manager.

2. Click the color box in front of the item you wish to customize, or click the I/O

bank you wish to change to see the color pallet.

3. Select a new color and click OK. The new color appears in the Color Manager

dialog box.

4. When you are done customizing your colors using the Color Manager dialog box,

click OK.

Libero IDE User's Guide

86

Placed and Unplaced List Boxes
The ChipEditor Placed and Unplaced list boxes display placed or unplaced macros in the

design. All placed macros appear in the Placed list box and all unplaced macros appear in

the Unplaced list box.

To configure the list boxes:

1. From the View menu, click Configure List Boxes.

2. In the Configure List Boxes dialog box, select from the following options:

• Filter Placed and Unplaced Lists: Entering a macro name in this area will filter

for a specific macro or group to be displayed in the Placed or Unplaced list box.

You can use the "*" character as a wildcard.

• Placed List Box Filters: Use these radio buttons to filter the Placed List Box to

display fixed and unfixed macros, only fixed macros, or only unfixed macros.

• Unplaced List Box Filters: Use these radio buttons to display all macros or just

those that must be manually placed.

• List Type: Use the List Type filters to display macro instance names in a flat or

hierarchical list in the Placed and Unplaced list boxes. When instance names are

displayed hierarchically, collapsed levels are preceded by a plus sign (+) and

expanded levels are preceded by a minus sign (-). Clicking the plus sign expands

the hierarchy of a macro, while clicking the minus sign collapses the hierarchy.

Macros, both fixed and unfixed, are displayed hierarchically by default.

World View Window
Use the World View window to control which portion of the ChipView is displayed in

the ChipView window. The blue rectangle (known as the ChipView rectangle) represents

the chip. The green rectangle (known as the Viewing rectangle) represents the area

displayed in the ChipView window.

Design Constraints

87

To move the displayed area to another part of the chip, click the left mouse button and

drag the Viewing rectangle to the area on the ChipView rectangle you would like to

display. To specify a new display area, click the right mouse button and drag-out a new

Viewing rectangle on the ChipView rectangle.

ChipEditor Status bar
Family, die and package information appears in the right corner of the status bar. In

addition, the status bar displays information on commands, pins, placed macros, nets,

error messages, and the family, die, and package.

• Hold your mouse over a placed macro in the ChipView window to see the

pin number, instance name, net name, macro cell, and fixed or unfixed

status in the Status Bar.

• To see nets displayed in the status line, select a macro, zoom in, and click

one of the ratsnest lines.

• If you hold your mouse over a toolbar icon or a menu command, a short

description of the command function appears in the Status Bar.

•

Error messages in the Status Bar provide details about invalid placement attempts.

Choose

Help > Extended Error Messages to view more information about the last failed

command or placement attempt.

Using PDC and GCF files

About Physical Design Constraint (PDC) Files
A PDC file is a Tcl script file specifying physical constraints. This file can be imported

and exported from Designer. Any constraint that can be entered by using PinEditor,

ChipEditor, or ChipPlanner can also be specified in a PDC file. In addition, a PDC file

allows you to specify region constraints and net criticalities.

Note: PDC files are only supported for the Axcelerator family of devices. Use a PDC file

Libero IDE User's Guide

88

instead of a PIN file.

Supported commands include:
Command Action

assign_net_macros Assigns the macros connected to a net to a specified

defined region

assign_region Assigns macros to a pre-specified region

define_region Defines a rectilinear region

define_region Defines a rectangular region

reset_floorplan Deletes all defined regions. Placed macros are not

affected

reset_iobank Resets an I/O banks technology to the default

technology

reset_io Resets all attributes on a macro to the default values

reset_net_critical Resets net criticality to default level

set_io Sets I/O attributes

set_iobank

Specifies the I/O bank’s technology

set_location Places a given logic instance at a particular location

set_net_critical Sets net criticality, which is issued to influence

placement and routing in favor of performance

set_vref Specifies which pins are Vref pins

set_vref_defaults Sets the default vref pins for specified banks

unassign_macro_from_region Unnassigns macros from a specified region, if they

are assigned to that region

unassign_net_macro Unassigns macros connected to a specified net from a

defined region

undefine_region

Undefines the region

Design Constraints

89

About GCF Files
A GCF file is an ASCII file specifying design constraints. This file can be imported and

exported from Designer.

Note: GCF files are only supported for the Flash families.

Importing PDC files (Axcelerator family only)
The Physical Design Constraint (PDC) file can specify:

• I/O standards and features

• VCCI and VREF for all or some of the banks

• Pin assignments

• Placement locations

• Net criticality

The Axcelerator family of devices supports multiple I/O standards (with different I/O

voltages) in a single die. You can use ChipEditor and PinEditor to set I/O standards and

attributes, or alternatively you can export and import this information using a PDC file.

PDC files are only supported for the Axcelerator family of devices.

To import a PDC file:

1. From the File menu, click Import Auxiliary Files. The Import Auxiliary Files

dialog appears.

2. Click the Add button. The Add Auxiliary Files dialog box appears. Filter for your

PDC file by selecting Physical Design Constraint Files (*.pdc) from the Files of

Type drop-down list box.

Libero IDE User's Guide

90

3. Select the PDC file and click Import. The file is added to the Import Auxiliary

Files dialog box.

4. Click OK. The PDC file is imported into Designer. Any errors appear in the Log

Window.

Note:

• File names or paths with spaces may not import into Designer. Rename the file or

path, removing the spaces, and re-import.

• If the PDC file has commands to combine I/O Registers with I/Os this file must

be imported before compile

Exporting PDC files
PDC files can be exported from Designer.

To export a PDC file:

1. From the File menu, click Export, Constraint File.

2. Type a file name and choose a directory. Click OK. The Export Physical Design

Constraints (PDC) dialog box appears.

3. Choose the type of information you want to export:

• Pin locations and attributes: Select to export information about the pin

locations and attributes only.

• Placement constraints: Select to export information about the I/O

placement and routing constraints only.

• Complete placement information: Select to export information about the

I/O locations, I/O attributes, placement, and routing constraints.

4. Click OK.

Design Constraints

91

Importing GCF files
Import GCF files as you would any source file.

To import a GCF file:

1. In the File menu, click Import Source Files.

2. Click Add. The Add Source Files dialog appears.

3. Select ProASIC Constraint Files (.gcf) from Files of type.

4. Select your .gcf file and click Import. The File is added to the Import Source Files

dialog box.

5. Add any more source files to the list. All files added to the Import Source Files

dialog box are imported at the same time.

• Modifying:If you need to modify a selection, select the file row and click

Modify

• Deleting:If you need to delete a file, select the file row and click Delete.

• Ordering:Ordering your source files. Select and drag your files to specify

the import order. Specifying a priority is useful if you are importing

multiple netlist files, .gcf files, or .pdc files. When importing multiple

EDIF or structural HDL files, the top-level file must appear last in the list

(at the bottom).

6. After you are done adding all your source files, click OK. Your source files are

imported. Any errors appear in the Designer Log Window.

Exporting GCF files

To export a GCF file:

1. From the File menu, click Export, Constraint Files.

2. Enter the file name and click OK.

Libero IDE User's Guide

92

3. Chose the type of information you want exported:

• Pin locations: Select to export the I/O placement and region constraints

related to the I/Os only.

• Placement constraints: Select to export all placement constraints,

including I/O and core constraints.

• All GCF constraints: Select to export all constraint information.

4. Click OK.

Types of Constraints
Constraints are used to ensure that a design meets timing performance and required pin

assignments. For Flash families, the types of constraints that can be defined in a .gcf

constraint file include:

• Timing constraints

• Global resource constraints

• Netlist optimization constraints

• Placement constraints

Constraint File Syntax
A ProASIC constraint consists of a statement and an argument, terminated by a

semicolon. Statements are not case sensitive. However, cell instance, net, and port names

used as arguments may be quoted and are case sensitive. Except for white spaces, all

ASCII characters can be used. Comments are allowed in constraints files and must be

preceded by two forward slashes (//). Time values are given in nanoseconds. When

constraints are duplicated, the last one specified for a specific item overwrites any

previous similar constraints already specified for the considered item.

Constraint Quick Reference

• create_clock

Design Constraints

93

• generate_paths

• set_input_to_register_delay

• net_critical_ports

• set_critical

• set_critical_port

• set_max_path_delay

• set_switch_threshold

• set_auto_global

• set_global

• dont_fix_globals

• use_global

• dont_optimize

• optimize

• set_net_region

• set_max_fanout

• dont_touch

• set_empty_location

• set_empty_io

• set_initial_io

• set_io

• set_location

• set_initial_location

Libero IDE User's Guide

94

GCF Syntax Conventions
This section describes syntax conventions for notation, user data variables, and

comments. Comments begin with double slashes (//) and are terminated by a newline

character.

Syntax Conventions for Notation

Notation Description

item Represents a syntax item.

item ::= definition item is defined as definition.

item ::= definition1

||= definition2

item is defined as either definition1 or

definition2.

(Multiple alternative syntax definitions

are allowed.)

[item] item is optional.

{ item }
item is a list of required items. At least

one item must appear.

KEYWORD

Keywords appear in uppercase characters

in bold type for easy identification, but

are not case sensitive.

VARIABLE

Represents a variable and appears in

uppercase characters for easy

identification.

Syntax Conventions for User Data Variables

Variable Description

Design Constraints

95

FILEIDENTIFIER Represents a hierarchical filename.

IDENTIFIER

Represents the name of a design object. Can be a

block, cell instance, net, or port. IDENTIFIERS

can use any ASCII character except the white

space and the slash (/)., which is the hierarchical

divider character (see QPATH below).

IDENTIFIERS are case sensitive.

POSFLOAT
Represents a positive real number; for example,

4.3, 1.15, 2.35.

POSNUMBER

Represents a positive integer; for example, 1, 12,

140, 64. When representing time,

POSNUMBER is expressed in nanoseconds

(ns).

QPATH

Represents a hierarchical IDENTIFIER. The

levels of the hierarchy are represented by

IDENTIFIERS divided by a slash (/). The

QPATH hierarchical IDENTIFIER may or

may not be quoted.

About Global Resource Constraints
Each ProASIC and ProASICPLUS device includes four global networks that have access to

every tile. These four global networks provide high speed, low skew performance to

signals such as clocks and global reset.

Once the netlist is imported, Designer sets global resource parameters and promotes the

highest fanout nets to the remaining global resources unless the “dont_fix_globals”

statement has been specified in a constraint file. To do this, the importer program

demotes appropriate global cell instantiations in the design netlist.

Libero IDE User's Guide

96

Note: When using the “dont_fix_globals” statement, global assignments made in the

constraint files and design netlist will be honored (the constraint file entries will take

precedence).

These global resource parameters can be supplemented by including globalg resource

constraints in a constraint file. Global resource constraints can define which signals are

assigned to global resources and which signals cannot be promoted to global resources.

Global resource constraints can also override the default action that selects high fanout

nets for use by the global resources. If global resources overrides the default action,

assignments that do not include any of the four highest fanout nets will generate a

warning.

Priority Order for Global Promotion
While assigning signals to global resources, Designer considers this information in the

given priority:

1. set_global and set_io statements (instances of those global cells, which cannot be

demoted)

2. Nets with the highest potential fanout above 32 (after removal of all buffers and

inverters)

3. Global cell instantiation in a netlist (global cells which can be demoted)

Note:

• By default, a net with a fanout of less than 32 will not be promoted to global

automatically unless the “set_global” or “set_io” constraint statements is used for

this net. Users can override this threshold of 32 by using the

“set_auto_global_fanout” constraint statement.

dont_fix_globals
Use this statement to turn off the default action that automatically corrects the choice of

global assignment to use only the highest fanout nets.

Design Constraints

97

dont_fix_globals;

set_auto_global
Use this statement to specify the maximum number of global resources to be used. The

tool assigns global resources to high fanout signals automatically.

If the user specifies a number that exceeds the actual number of global resources available

in the device, Designer ignores the statement. If the user specifies 0, no automatic

assignment to global resources will take place.

set_auto_global number ;

For example, the following statement specifies that of the possible four global nets

available, the tool can automatically promote only two high fanout nets:

set_auto_global 2;

set_auto_global_fanout
Use this statement to set the minimum fanout a net must have to be considered for

automatic promotion to a global. By default this is set to 32.

set_auto_global_fanout number ;

For example, the following statement determines that a net must have at least a fanout of

12 before Designer considers it for automatic promotion to a global resource.

set_auto_global_fanout 12;

set_global
Use this statement to classify nets as global nets.

 set_global hier_net_name [, hier_net_name …];

Libero IDE User's Guide

98

For example:

set_global u1/u3/net_clk, u3/u1/net_7;

set_noglobal
Use this statement for classifying nets to avoid automatic promotion to global nets.

set_noglobal hier_net_name [, hier_net_name …];

For example:

set_noglobal u2/u8/net_14;

If the net was previously assigned to a global resource, this statement will demote it from

the global resource.

use_global
This statement allows you to specify a single spine or a rectangle of spine region which

may encompass more than 1 spine region.

use_global T2 <net_name>;
use_global B1, T3 <net_name>;

For example, if you give the spine rectangle as B1, T3. The driven instances of the given

net get a region constraint which encloses the rectangle including the spine rectangle B1,

T1, B2, T2, B2, T3.

It tries to place the driver as close to center of the rectangle as possible.

You can specify the following type of rectangles:

1. Bn, Bm : n<=m will mean Bn, Bn+1, ... Bm

2. Tn, Tm : n<=m will mean Tn, Tn+1, ... Tm

3. Bn, Tm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

Design Constraints

99

4. Tn, Bm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

See table for a summary of available spines.

Global Spine Usage

Device Spine

T1 to T3
A500K050

B1 to B3

T1 to T5
A500K130

B1 to B5

T1 to T6
A500K180

B1 to B6

T1 to T7
A500K270

B1 to B7

T1 to T3
APA075

B1 to B3

T1 to T4
APA150

B1 to B4

T1 to T4
APA300

B1 to B4

T1 to T6
APA450

B1 to B4

APA600 T1 to T7

Libero IDE User's Guide

100

 B1 to B7

T1 to T8
APA750

B1 to B8

T1 to T11
APA1000

B1 to B11

Note that T1 and B1 are the leftmost top and bottom global spines, respectively.

Netlist Optimization Constraints
Netlist optimization attempts to remove all cells from a netlist that have no effect on the

functional behavior of the circuit. This reduces the overall size of a design and produces

faster place and route times. This optimization is based on the propagation of constants

and inverter pushing and takes advantage of inverted inputs of the basic logic elements.

Refer to the ProASIC 500K Family and ProASIC PLUS Data Sheet for detailed information.

Netlist optimization can be controlled by including netlist optimization constraints in

constraint files submitted to Designer.

By default all optimizations will be performed on the netlist. To control the amount of

optimization that takes place, netlist optimization constraints can be used. Netlist

optimization constraints can turn off all optimizations or disable the default action that

allows all optimizations to limit the type of optimizations performed. The constraints can

also define a maximum fanout to be allowed after optimizations are performed and isolate

particular instances and hierarchical blocks from the effect of optimization.

Design Constraints

101

After completion of netlist optimization, the design is a functionally identical

representation of the design produced internally for use by Designer. View the design’s

layout after successful placement and routing. After optimization, a number of instances

that do not contribute to the functionality of the design may have been removed.

To keep the SDF file consistent with the original input netlist, deleted cells are written

with zero delay so that backannotation is performed transparently.

Netlist Optimization Constraint Syntax
The following netlist optimization options are available for all netlist optimization

constraints.

• buffer - removes all buffers in the design provided that the maximum fanout is

not exceeded.

• const - replaces all logical elements with one or more inputs connected to a

constant (logical “1” or “0”) by the appropriate logic function. If the replacement

logic function is identified as an inverter or buffer, that element is removed.

• dangling - recursively removes all cells driving unconnected nets.

• inverter - removes all inverters in the design provided that the maximum fanout is

not exceeded.

dont_optimize
This statement turns off all netlist optimizations. When followed by one or more of the

netlist optimization options, this statement turns off the named optimization option.

Buffers and inverters coming in the path of the global nets or spine nets are removed.

dont_optimize [{ inverter buffer const dangling}];

dont_touch
This statement allows the user to selectively disable optimization of named hierarchical instances. The

wildcard “*” can be used to isolate all sub-blocks under the named block.

Libero IDE User's Guide

102

dont_touch hier_net_name [, hier_net_name …];

For example:

dont_touch /U1/myblock/*;

Optimization types and optimization are done on all instances except those contained in

the block called /U1/myblock.

optimize
This statement turns on all netlist optimizations (the default mode). When followed by

one or more of the netlist optimization types, this statement enables only the named

optimization(s).

optimize [{ inverter buffer const dangling}];

For example:

optimize buffer inverter;

set_max_fanout
Use this statement to specify the maxFanout limit on the specific nets. Use when

optimizing the buffers and inverters. The buffers and inverters are not removed if the

fanout for the given net exceeds the given limit. If no net name is given, then the

command is applied to all the nets in the design. The net name can be a simple net or a

name having wild card characters.

set_max_fanout NUMBER <net_name_wildcard>;

Design Constraints

103

Placement Constraints
It is possible to use placement constraints to specify block-instance and macro placement.

Users can specify initial, fixed, region, and macro placements. Also, placement

obstructions (locations that are not to be used and thus to be keep empty during

placement instances) can be specified.

For example, a constraint that places two connected blocks close together usually

improves the timing performance for those blocks. Similarly, a constraint that assigns an

I/O pin to a particular net forces the router to make the connection between the driving

or receiving cell and the I/O itself.

Like all constraints, placement constraints limit Designer’s freedom when processing the

design. For instance, assigning a fixed location makes that location unavailable during

placement optimization. Such removal usually limits the program’s ability to produce a

chip-wide solution.

Macro
macro name (x1, y1 x2, y2) {
macro_statements
}

Where name is the macro name identifier, x1, y1 is the lower left coordinates of the

macro, and x2, y2 is the upper right coordinates of the macro.

For example:

macro mult (1,1 6,6) {
set_location...
}

Now you can use the “set_location” or “set_initial_location” statements to place or

initially place a sub-design instance by calling its macro and then applying a translation

and rotation. This statement has been extended to allow you to initially place a sub-

design instance by calling its macro and then applying a translation and rotation.

Libero IDE User's Guide

104

set_initial_location (x, y) hier_subdesign_inst_name
macro_name [transformations];

For example:

set_location (3,3) a/b mult flip lr;

Where “hier_subdesign_inst_name” is the hierarchical name of the instance of the sub-

design, x, y is the final location of the lower left corner of the macro after all

transformations have been completed, macro_name - is the name of previously defined

macro, and transformations are optional and any of the following in any order:

• flip lr - flip cell from left to right

• flip ud - flip cell from up to down

• rotate 90 cw - rotate 90° clockwise

• rotate 270 cw - rotate 270° clockwise

• rotate 90 ccw - rotate 90° counter-clockwise

• rotate 180 ccw - rotate 180° counter-clockwise

• rotate 270 ccw - rotate 270° counter-clockwise

The transformations are processed in the order in which they are defined in the
statement.

For example:

set_initial_location (3,3) a/b mult flip lr;

Package Pin and Pad Location
Generally, you are concerned with the mapping of signals (ports) to the pins of the

selected package. However, you may want to control the allocation of signals to particular

pads. This is accomplished by assigning ports to the pad location rather than to the

package pin. Because all pads are pre-bonded to package pins, the effect is to assign ports

Design Constraints

105

to package pins, with the emphasis on pad location rather than package pin.

Pad location is described by the letters N (North), S (South), E (East) or W (West)

followed by a space and a number. This location code determines the direction and offset

of the pad with respect to the die.

The top edge of the viewer contains the North pads and the right edge contains the East

pads. The number refers to the pad position along its edge. For example, N 48

corresponds to the 48th pad along the North edge of the die. Figure 4-2 on page 78

shows the numbering system used for pad location.

Figure A-1. Pad Locations

set_empty_io
Use this statement to specify a location in which no I/O pin should be placed. The

location can be specified by side and offset or by name.

set_empty_io { package_pin | pad_location};

For example, the following statement forces pin B5 and the pin associated with the

fourth tile on the North side to be empty:

set_empty_io B5, (N,4);

set_empty_location
Use this statement to specify a location in which no cell should be placed.

set_empty_location (x ,y);

Libero IDE User's Guide

106

set_empty_location (xbl ,ybl xtr ,ytr);

Where x , y (required) are the (x, y) tile coordinates that specify the empty cell location

and x bl , y bl x tr , y tr (required) are the x, y tile coordinates for the bottom left and top

right corner of the region.

Note: Only white spaces are allowed between the coordinates.

For example, the following statement informs the placement program that location (3, 7)

is unavailable for cell placement:

set_empty_location(3,7);

set_empty_location(113,160,80,50);

set_initial_io
Use this statement to initially assign package pins to I /O ports or locate I /O ports at a

specified side of a device. The placer can reassign or relocate the cells during placement

and routing.

set_initial_io { package_pin | pad_location} io_port_name
[, io_port_name , …];

Where “package_pin” is a package pin number for a specified I/O cell.

If you use “package_pin,” only one “io_port_name” argument is allowed (required if no

pin location is given). “pad_location” is one of N, S, E, or W, followed by a pad location

number on the chip. It constrains the pin location of a specified I/O cell to a specific pad

location on the chip. Only one “io_port_name” argument is allowed. “io_port_name”

(required) is the name of an I/O port to be assigned to a package pin or located at a

specified edge of a package.

The following example statement initially places the I/O associated with net in3 to

package pin A11:

Design Constraints

107

set_initial_io A11 in3;

The following example statement initially places the I/O associated with net in4 on the
fourth tile on the

North side:

set_initial_io (N,4) in4;
set_initial_io to a side is missing.

For example,
set_initial_io S in5; // assigns in5 to the South side

Multiple comma-separated ports can be specified when they are assigned to a side.

set_initial_location
Use this statement to initially locate a cell instance at specified x, y coordinates. The

placer can relocate the cell instance during place and route.

set_initial_location (x, y) hier_inst_name ;

Where x , y (required) are the x, y tile coordinates for the location of a specified cell

instance and “hier_inst_name” (required) is the hierarchical path to a cell instance.

For example:

set_initial_location (43,105) bk3/fp5/nand3_4;

set_io
Use this statement to either assign package pins to I/O ports or locate I/O ports at a

specified side or location of a device. This constraint is a hard constraint and can not be

overruled by the placer. This may have an impact on the timing results of a design. If a

hard constraint is not suitable, use the “set_initial_io” constraint.

set_io {..|..} netName/portName;

For example:

Libero IDE User's Guide

108

set_io A9 in1;
set_io (S,22) in2;

set_io N in3; // assigns in3 to the North side

Multiple comma-separated ports can be specified when they are assigned to a sid

set_location
Use this statement to locate a cell instance at specified x,y coordinates. The placer cannot

relocate the cell instance during place and route.

set_location (x, y) hier_inst_name ;

set_location (x bl ,y bl x tr ,y tr) hier_inst_name/*;

Where x , y (required) are the (x, y) tile coordinates that specify the empty cell location

and x bl , y bl x tr , y tr (required) are the x, y tile coordinates for the bottom left and top

right corner of the region.

For example:

set_location (1,15) u4/u3/nand3_4;
set_location (1,1 32,32) datapath/*;

set_net_region
This GCF constraint enables you to put all the connected instances, driver and all the

driven instances, for the net(s) into the target rectangle specified in the constraint. It puts

the region constraint on all the connected instances, which will be processed by the

placer. The IOs are excluded from the region constraints. The net name can take

wildcards.

set_net_region (x1, y2 x2, y2) <net_name_wildcard>;

Note:

• Only white spaces are allowed between the coordinates.

Design Constraints

109

Tcl Documentation Conventions
The Actel command syntax conventions are as follows.

Syntax Notation Description

command Commands or keywords are shown in courier typeface.

Variable Variables appear in italic. You must substitute an

appropriate value for the variable.

?argument? Optional argument. Do not use the question marks when

entering the argument.

arg1 | arg2 | … | argN

Alternative arguments. You can use exactly one of these

arguments.

… The ellipsis indicate items that precede the ellipsis may be

repeated. The ellipsis should not be entered.

assign_net_macros
The assign_net_macros command assigns macros connected to a net to a

region.

Syntax
assign_net_macros

region_name net1 ?netN?…

Arguments
region_name

Since the define_region returns a region object, users can write a simpler

command such as:

assign_net_macros [define_region ….] net1 net2

net1

Net names are AFL level names. These names match your netlist names

Libero IDE User's Guide

110

most of the time. When they don’t, you need to export AFL and use the

AFL names. Net names are case insensitive. Hierarchical net names from

ADL are not allowed.

Wild Cards are allowed for net names. The following regular expression

syntax is supported:

• ‘\’ interpret next character as non-special

• ‘?’ matches any single character

• ‘*’ matches any string

• ‘[]’ matches any single character among those listed between

brackets i.e. [A-Z] matches any single character in range A-Z.

Notes
1. The region must be created before you use the assign_net_macros

command. See define_region (rectangular) or

define_region (rectlinear).

2. Placed macros (not spanned by the net) that are inside the area occupied

by the net region are automatically unplaced.

3. Empty or exclusive regions cannot be created in areas where there are fixed

macros.

4. Net region constraints are internally converted into constraints on macros.

PDC export results as a series of assign_region <region_name>

macro1 statements for all the connected macros.

5. Net region constraints may result in a single macro being assigned to

multiple regions. These net region constraints result in constraining the

macro to the intersection of all the regions affected by the constraint.

Exceptions
• If the region does not have enough space, or if the region constraint is

impossible, the constraint is rejected and a warning message appears in the

log window.

• For overlapping regions, the intersection must be at least as big as the

overlapping macro count.

• If a macro on the net cannot legally be placed in the region, it is not placed

Design Constraints

111

and a warning message appears in the log window.

Example
assign_net_macros cluster_region1 keyin1intZ0Z_62

Libero IDE User's Guide

112

assign_region
The assign_region command constrains a set of macros to a specified region.

Syntax
assign_region

region macro1_name ?macron_name?…*

Arguments
region

Specifies the region where the macros are assigned. The macros are
constrained to this region. The region must already be defined. Since the
define_region returns a region object, you can write a simpler command
such as:
assign_region ?define_region . . .? macro1 macro2 …

macro1_name
Specifies the macro to assign to the region. Macro names are AFL level
names. These names match your netlist names most of the time. When
they do not, you need to export AFL and use the AFL names.

Macro names are case insensitive. Only Leaf level macros or HardMacros
can be assigned (i.e. group names are not allowed).

Wild Cards are allowed for macro names. The following regular

expression syntax is supported:

• ‘\’ interpret next character as non-special

• ‘?’ matches any single character

• ‘*’ matches any string

• ‘[]’ matches any single character among those listed

between brackets i.e. [A-Z] matches any single character

in range A-Z.

Note

• The region must be created before you can assign macros to it.

Exceptions

• If the region does not have enough space to fit the assigned macros, or if the

region constraint is impossible to meet, the constraint is rejected and a warning

message appears in the log window.

Design Constraints

113

Example
 assign_region cluster_region1 des01/G_2722_0_and2 des01/data1_53/U0

In this example, 2 macros are assigned to a region.

See Also
unassign_macro_from_region

Libero IDE User's Guide

114

define_region (rectangular region)
The define_region command defines a rectangular region.

Syntax
define_region

-name ?region_name? ?-type empty | exclusive |inclusive? x1 y1
x2 y2

Arguments
?-name region_name?

Specifies the name of the created region.. The region name is optional. If
given, it must be unique. Do not use “bank0” and “bank<N>” for region
names, as these are reserved. If a name is not specified, the system
generates a name.

?-type empty | exclusive |inclusive?

Specifies the region type. The default is inclusive.

Region

Constraint

Conditions

Empty No macros can be assigned to an empty region

Exclusive Only contains macros assigned to the region

Inclusive Can contain macros both assigned and unassigned to

the region

x1, y1

Specifies the lower left corner of the region in row, col

x2, y2

Specifies the upper right corner of the region in row, col

Notes
1. Empty and exclusive regions unplace macros in the area if they are not fixed.

2. Empty or exclusive regions cannot be created in areas where there are fixed

macros.

3. Use exclusive regions carefully. They may over constrain the automatic place and

route tool and reduce a design’s performance.

4. Use inclusive or exclusive region constraints if you intend to assign logic to a

region. An inclusive region constraint with no macros assigned to it has no effect.

Design Constraints

115

An exclusive region constraint with no macros assigned to it is equivalent to an

empty region.

5. Empty or exclusive regions cannot be created if a fixed macro exists within the

area bounded by the newly defined region. A warning message appears in the log

window.

Exceptions

• If macros assigned to a region exceed the area's capacity, an error message appears

in the log window.

• If automatic place and route is unable to place logic within the area of the defined

region an error message appears in the log window.

• Self-intersecting regions are not allowed. Rectangles must not intersect each

other.

Example
define_region -name cluster_region1 -type empty 100 46 102 46

Defines a region with one rectangle and type empty.

See Also
define_region (rectilinear region)

Libero IDE User's Guide

116

define_region (rectilinear region)
The define_region command can also be used to define a rectilinear region or a

rectangular region. This command applies only to the Axcelerator family.

Rectilinear regions are not supported for ProASIC and ProASIC PLUS.

Syntax
define_region

-name ?region_name? ?-type empty | exclusive | inclusive?
<rect1> <rect2> …

Arguments
?-name region_name?

Specifies the region name. If the region cannot be created, the name is
empty. The name must be unique. A default name is generated if a name
is not specified in this argument.

?-type empty | exclusive |inclusive?
Specifies type. The default is inclusive.

Region

Constraint

Conditions

Empty No macros can be assigned to an empty region

Exclusive Only contains macros assigned to the region

Inclusive Can contain macros both assigned and unassigned to

the region

<rect1> <rect2> …
Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not
overlap. They are given as x1 y1 x2 y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner
in row/column coordinates)

Notes
1. Empty and exclusive regions unplace macros in the area if they are not fixed.

2. Empty or exclusive regions cannot be created in areas where there are fixed

macros.

3. Use exclusive regions carefully. They may over constrain the automatic place and

route tool and reduce a design’s performance.

Design Constraints

117

4. Use inclusive or exclusive region constraints if you intend to assign logic to a

region. An inclusive region constraint with no macros assigned to it has no effect.

An exclusive region constraint with no macros assigned to it is equivalent to an

empty region.

5. Empty or exclusive regions cannot be created if a fixed macro exists within the

area bounded by the newly defined region. A warning message appears in the log

window.

Exceptions

• If macros assigned to a region exceed the area's capacity, an error message appears

in the log window.

• If place-and-route is unable to place logic within the area of the defined region,

an error message appears in the log window.

• Self-intersecting regions are not allowed. Lines must not intersect each other.

Example
define_region -type empty 420 9 422 9

Defines a region with no name.

Libero IDE User's Guide

118

reset_floorplan
The reset_floorplan command deletes all created regions.

Syntax
reset_floorplan

Arguments
None

Design Constraints

119

reset_io
The reset_io command restores all attributes on an I/O macro to the default

values.

Syntax
reset_io

portname

Arguments
portname

Specifies the port name of the I/O macro to be reset.
Note: The portname can contain a limited CShell like regular expression
using ?, *, [and] characters.

Examples
reset_io a

Resets the I/O macro “a” to the default I/O attributes.
reset_io b_*

Resets all I/O macros beginning with b_ to the default I/O attributes.

See Also
set_io

reset_iobank
The reset_iobank command resets an I/O bank’s technology to the default
technology, which is specified using the Designer software in the Device Selection
Wizard.

Syntax
reset_iobank

bankname

Arguments
bankname

Specifies the I/O bank to be reset to the default technology. For the Axcelerator

family, there are 8 banks numbered bank0-bank7.

Note
1. Any pins that are placed in the specified I/O bank that are incompatible with the

default technology are unplaced.

Examples
reset_iobank bank4

Libero IDE User's Guide

120

Resets I/O bank 4 to the default technology.

See Also
set_iobank

Design Constraints

121

reset_net_critical
The reset_net_critical command resets the net criticality to the default
criticality. Net criticality can vary from 1 to 10, with 1 being the least critical and
10 being the most critical. Criticality numbers are used in timing driven place-
and-route. The default net criticality is 5.

Increasing a net’s criticality forces place-and-route to keep instances connected
to the net as close as possible, at the cost of other (less critical) nets.

Syntax
reset_net_critical

netname ?netname? …

Arguments
netname

Specifies the net name that is reset to the default net criticality.

Note
1. The netname can contain a limited CShell like regular expression using ?, *,

[and] characters.

Examples
reset_net_critical preset_A

Resets the net preset_a to the default ciricality of 5.

See Also
set_net_critical

Libero IDE User's Guide

122

set_io
The set_io command sets the attributes of an I/O. You can use the set_io
command to assign an I/O technology, place, or fix the I/O at a given pin
location.

Syntax
set_io

portname ?-standard std? ?-slew high | low?
?-strength 8 | 12 | 16 | 24 ? ?-delay on | off?
?-register on | off? ?-pinname name?
?-fixed yes | no?

Arguments
portname

Specifies the portname of the I/O macro to set.

?-standard std?
Specifies the I/O standard to set for this I/O. Possible options include:
LVTTL, PCI, PCIX, LVCMOS25, LVCMOS18, LVCMOS 15, HSTL1, SSTL31,
SSTL32, SSTL21, SSTL22, GLP33, GTLP25.

Note: Assigning an I/O standard to a port may invalidate its location. In
this situation, the I/O will automatically be unplaced.

?-slew high | low?

Specifies the slew of this I/O.

?-strength 8 | 12 | 16 | 24?

Specifies the output drive strength of this I/O.

?-delay on | off?

Specifies whether this I/O has an input delay.

?-register on | off?

Specifies whether register combining is allowed on this I/O.

Note: This overrides the default setting set in the Compile options.

?-pinname name?

Places this I/O macro in the specified pin.

?-fixed yes | no?

Sets whether the location of this I/O is fixed. Fixed pins are not moved
during layout. If this I/O is not currently placed, then this argument has no
effect.

Design Constraints

123

Note
1. If an argument is not specified, the value is not changed, as long as it is

consistent with other settings. If setting an attribute invalidates the I/Os

location, then the I/O is unplaced.

2. The allowed I/O attributes vary from family to family. Please see the

relevant device databook for details on allowed I/O attribute settings for a

family.

Libero IDE User's Guide

124

set_iobank
The set_iobank command specifies the I/O bank’s technology. Using this
command may cause ports in the bank to be unplaced if they do not conform to
the standard. The I/O bank name and all the parameters are required.

Syntax
set_iobank

bankname ?-vcci vcci_voltage? ?-vccr vccr_voltage? ?-inputdelay
delay_value?
?-lpinput On|Off? ?-lpoutput On|Off

Arguments
bankname

Specifies the bank. For the Axcelerator family, banks are numbered 0-7.
-vcci vcci_voltage

Sets voltage. Voltage should be set to 3.3, 2.5, 1.8.
-vccr vccr_voltage

Sets voltage. Voltage should be set to 1.5, 2.5,…
-inputdelay delay_value

Enables the input delay. Delay value can be set from 1-31.
-lpinput On|Off

Enables or disables the Low Power Mode for input buffers.
-lpoutput On|Off

Enables or disables the Low Power Mode for output buffers.

Examples
set_iobank bank0 –vcci 3.3 –vccr 1.5 –inputdelay 1 –
lpinput on –lpoutput on

bankname ?-vcci vcci_voltage? ?-vccr vccr_voltage? ?-inputdelay

delay_value? ?-lpinput On|Off? ?-lpoutput On|Off?

See Also
reset_iobank

Design Constraints

125

set_location
The set_location command places a specified logic instance at a particular location.

Syntax
set_location

<clustername> -fixed yes x y

Arguments
clustername x y

Specifies the module instance name in the netlist. x and y set the module
instance name coordinates. The coordinates row/col are the same as seen
in ChipEditor.

Note

• The instance names are the post-compiled names after name translations, if any.

Libero IDE User's Guide

126

set_net_critical
The set_net_critical command sets the net criticality, which influences place-
and-route in favor of performance.

Syntax
set_net_critical

criticality_number hier_net_name ?hier_net_name?

Arguments
criticality_number

Sets the criticality level. Set from 1 to 10. Default is 5. Net criticality can
vary from 1 to 10, with 1 being the least critical and 10 being the most
critical. Criticality numbers are used in Timing Driven place-and-route. The
default net criticality is 5.

Increasing a net’s criticality forces place-and-route to keep instances
connected to the specified net as close as possible at the cost of other
(less critical) nets.

hier_net_name
Specifies the net name. Can be an AFL net name or a net regular
expression (a limited CShell like regular expression using ?, *, [and]
characters).

Notes
1. The command must have at least 2 parameters.

2. The net names are AFL names, meaning they must be visible in Timer and

ChipEditor.

Examples
set_net_critical 9 addr*

Sets the criticality level to 9 for all addr nets.

See Also
reset_net_critical

Design Constraints

127

set_vref
The set_vref command specifies which pins are Vref pins.

Syntax
set_vref

?bankname? pinnum ...

Arguments
?bankname?

Specifies the bank name. For the Axcelerator family, banks names are 0-7
(Bank0, Bank1, … Bank7).

pinnum
Specifies the alphanumeric pin name.

Notes
1. While the bank name is optional,you must not mention pin names that do

not belong to the bank. Pins that do not belong to a bank that require a
Vref are ignored.

2. Some I/O technologies need Vref settings. Some technologies may also
need a minimum number of Vref pins for every certain number of input
pins. These details are device dependent. Please refer to the device
databook for details. Designer can assign default Vref pins. However, this
may be too conservative, and you may not need as many Vref pins as the
default assignment.

Examples
set_vref A1 B10

See Also
set_vref_default

Libero IDE User's Guide

128

set_vref_defaults
The set_vref_defaults command sets the default vref pins for the specified

bank. This command is ignored if the bank does not need a Vref.

Some I/O technologies need Vref settings. Some technologies may also need a

minimum number of Vref pins for every specific number of input pins. These details

are device dependent. Please refer to the device databook for details. The Designer

software can assign default Vref pins. However, this may be too conservative, and you

may not need as many Vref pins as the default assignment.

Syntax
set_vref_defaults

bankname

Argugments
bankname

Specifies the bank name. For the Axcelerator family, banks names are 0-7 (Bank0,

Bank1, … Bank7).

Examples
set_vref_defaults bank1

Sets the default Vref pins for Bank 1.

See Also
set_vref

Design Constraints

129

unassign_net_macro
The unassign_net_macros command unassigns macros connected to a specified
net.

Syntax
Unassign_net_macros

region_name net1 ?netN?

Arguments
region_name

Specifies the region name.
net1

Specifies the net name.

?netN?…

Optional argument, specifies additional net macros to be unassigned.

Note
1. If you have not assigned the region, an error message appears in the log window.

See Also
assign_net_macros

Libero IDE User's Guide

130

unassign_macro_from_region
The unassign_macro_from_region command specifies the macro name to be
unassigned.

Syntax
unassign_macro_from_region

?region_name? macro_name

Arguments
?region_name?

Specifies the region where the macro or macros are to be removed.

macro_name

Specifies the macro name to be unassigned. Macro names are case
sensitive. Only Leaf level macros or HardMacros can be assigned (i.e. group
names are not allowed).

Wildcards are allowed for macro names. Hierarchical net names from ADL
are not allowed.

The following regular expression syntax is supported

• ‘\’ interpret next character as non-special
• ‘?’ matches any single character
• ∋‘*’ matches any string
• ‘[]’ matches any single character among those listed between

brackets i.e. [A-Z] matches any single character in range A-Z.

Note
1. If the macro was not previously assigned, an error message is generated.

Design Constraints

131

undefine_region
The undefine_region command removes the specified region.

Syntax
undefine_region

region_name

Arguments
region_name

Specifies the region to be removed.

Notes
1. The region must be previously defined.

2. All macros assigned to the region are unassigned.

Example
undefine_region cluster_region1

See Also
define_region (rectangular region)

define_region (rectilinear region)

PDC Errors
After executing a PDC Tcl command, a message or error might appear in the Designer

log window. Below is a list of possible errors and workarounds.

“ERROR: Error in setting I/O Standard”
This error may happen because the device does not support the I/O standard.

“ERROR: I/O Attribute is not applicable”
You specified an incorrect or invalid I/O attribute name in the set_io command. Please

check the spelling. Not all devices support the same set of I/O attributes.

“ERROR: Illegal or Invalid assignment to Package pin”
The specified assignment may be illegal because the bank associated may not be able to

support the given technology or the specified location does not match the type of the

given port.

Libero IDE User's Guide

132

“ERROR: Unknown port”
You specified an incorrect portname in the set_io command. Check the spelling. Also,

make sure to escape any Tcl special characters (TCL Special characters are $, “, [,], {. }, \

- you can escape by \)

“ERROR: Unknown I/O Standard”
You specified an incorrect I/O standard. This device may not support the standard you

specified or you have spelled it incorrectly.

“ERROR: Read only I/O Standard”
Designer can not change the I/O standard (and other properties) of a port that has been

set either in the library or schematic or HDL. You need to change the I/O standard in

the Library/Schematic/HDL and re-import the netlist.

“ERROR: Unknown I/O Attribute”
An incorrect or invalid I/O attribute name was specified when using the set_io

command, Please check the spelling. Note that not all devices support the same set of

I/O attributes.

“ERROR: Read only I/O Attribute”
The Designer software can not change the I/O standard (and other properties) of a port

that has been set either in the library or schematic or HDL. You need to change the I/O

standard in the Library/Schematic/HDL and re-import the netlist

“ERROR: Invalid Package pin”
This error is caused when an illegal or incorrectly spelled package pin name is used with

the set_io command. Check the spelling and make sure to escape Tcl characters, if any.

“ERROR: Net criticality must be 1-10”
Net criticality must be set between 1 and 10.

Design Constraints

133

“Error: Unknown Net”
This error occurs when an unknown net is specified in the set_net_critical or

 reset_net_critical commands. Check your spelling and make sure to escape Tcl special

characters.

“Warning: Some ports have been unplaced because of this
action”
The technology you assigned to the bank is incompatible with the ports already in the

bank. As a result, the ports were unplaced.

Timing Constraints
Timing constraints can be entered using the interactive Timer tool or by importing a

constraint file.

Constraint File Type Supported Families

SDC Axcelerator

DCF SX, SX-A, MX, eX,

ACT1, ACT2, and ACT3

GCF Flash

Synopsys Design Constraints (SDC) Files
SDC is a Tcl based format-constraining file. The commands of an SDC file follow the

Tcl syntax rules. Designer accepts an SDC constraint file generated by a third-party tool.

This file is used to communicate design intent between tools and provide clock and delay

constraints. The Synopsys Design Compiler, Prime Time, and Synplicity tools can

generate SDC descriptions, or you can generate the

SDC file manually.

Generated SDC files
There can be slight differences between a user generated SDC file, and SDC files

generated by other tools. For example, suppose you write the following constraint:

create_clock -period 100 clk

Libero IDE User's Guide

134

The SDC file from Design Compiler generates the same constraint in a different format:

create_clock -period 100 -waveform {0 50}
[get_ports {clk}]

The SDC file from Prime Time generates this constraint in yet another format:

create_clock -period 100.000000 -waveform
{0.000000\ 50.000000}[get_ports {clk}]

As long as constraint syntax and arguments conform to the Tcl syntax rules that SDC

follows, Designer will accept the SDC file.

Design Constraints

135

Importing Constraint (Auxiliary) Files
The following constraint file types can be imported into Designer:

 Auxiliary Files File Type Extension

Family

Criticality *.crt ACT1, ACT2, ACT3,

MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

SDC *.sdc SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Physical Design Constraint *.pdc Axcelerator

Value Change Dump *.vcd

Axcelerator, ProASIC,

ProASIC PLUS

Switching Activity

Intermediate File/Format

*.saif

Axcelerator, ProASIC,

ProASIC PLUS

Design Constraint File *.dcf

ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

To import an auxiliary file:

1. From the File menu, click Import Auxiliary Files. The Import Auxiliary Files

dialog appears,

2. Click the Add button. The Add Auxiliary Files dialog box appears.

3. Select your file and click Import. The file is added to the Import Auxiliary Files

dialog box. Continue to add more auxiliary files to the list.

• Modifying:If you need to modify a selection, select the file row and click

Libero IDE User's Guide

136

Modify

• Deleting:If you need to delete a file, select the file row and click Delete.

• Ordering:Ordering your source files. Select and drag your files to specify

the import order. Specifying a priority is useful if you are importing

multiple netlist files, .gcf files, or .pdc files.

4. After you are done adding all your Auxiliary files, click OK. Your auxiliary files

are imported. Any errors appear in Designer’s Log Window.

Note:

1. .vcd and .saif are used by SmartPower for power analysis.

2. .crt for backwards compatibility with existing designs only.

5. File names or paths with spaces may not import into Designer. Rename the file or

path, removing the spaces, and re-import.

SDC Commands
Designer supports some some SDC commands.

Design Object Access Commands
Design object access commands are SDC commands. Most constraint commands require

a command argument. Designer supports the SDC access commands shown below:

Design Object Access Command

Clock get_clocks

Port get_ports

get_clocks
Returns the named clock with the argument.

Example:

Design Constraints

137

create_clock -period 10 [get_clocks CK1]

get_ports
Returns the named ports with the argument

Example:

set_max_delay -from [get_ports datal] -to
[get_ports out1]

Timing constraint commands
Designer supports the SDC timing constraint commands below:

Constraint Command

Clock

Constraint
create_clock

Path

Constraint
set_max_delay

create_clock
The create_clock constraint is associated with a specific clock in a sequential design and

determines the maximum register-to-register delay in the design.

Syntax

create_clock -period period_value [-name
clock_name] [-waveform edge_list]
[port_pin_list]

Arguments

period_value

Specified in ns is mandatory. No clock is created if the period is not supplied.

Libero IDE User's Guide

138

clock_name

This is optional. It is unnecessary if port_pin_list contains one name.

edge_list

This is optional and not supported in the current version of Designer. If

supplied, it must contain exactly 2 edges. The duty cycle info will then be

added to the clock constraint.

port_pin_list
May contain either zero names or one name.

Valid Command Examples

create_clock -period 5 -name CK1

create_clock -period 4 -name CK1 -waveform 0 2

create_clock -period 6 [get_ports CK1]

create_clock -period 11 -name CK1 -waveform 0 2 5 7
This command is valid, but the waveform will be ignored.

create_clock -period 2 -name CLOCK [get_ports CK1]
This is valid, but the name of the clock will be CK1 and not

CLOCK

Invalid Command Examples

create_clock -period 10 (no name is supplied)

create_clock -period 3 [get_ports {CK1 CK2}]
This command is invalid because more than one name is used in
the port_pin_list

create_clock -period 7 -name CK [get_ports {CLK11
CLK2}]

create_clock clk -name CLK1 -period 20 -waveform 3 13

Design Constraints

139

set_max_delay
The set_max_delay constraint sets the path delay of the specified ports to a

restricted value.

Syntax

set_max_delay [-from from_list] [-to to_list]
delay_value

Arguments

from_list

Mandatory

to_list

Mandatory

delay_value

Specify in nano seconds

Valid Command Examples:

set_max_delay -from [get_ports data2] -to [get_ports {out1 out2}] 9

Invalid Command Examples

set_max_delay -from [get_ports {IN10 IN11}]5 (The to_list is not supplied.)

SDC Command limitations
Not all object and design constraint commands are supported in Designer. There are

limitations on SDC support. Refer to the latest Designer series Release Notes for latest

supported Object Access, Design Constraints, and Supported Features.

Naming Conventions
No wild cards. The * and ? characters cannot be used in the object names. The timing

graphical interface, Timer, displays internal Actel port names. While the internal Actel

netist prevents special characters from being used, in the case where the internal name is

different from the “user” netlist, there may be discrepancies in the GUI. These could also

be different from the names in the SDC files.

Libero IDE User's Guide

140

Multiple Files
All the constraints have to be imported from a single SDC file. If a second file is

imported, the previous constraints are discarded.

Design Constraints

141

GCF Files
GCF files can import timing constraints information. Timing constraints are used to

ensure that a design meets the required timing performance. Constraints can be entered

using a ProASIC constraints file (.gcf) or using an SDF path constraints file. These

forward SDF files are generated by synthesis tools. The two formats cannot be combined

in one file. However, SDF files and ProASIC (.gcf) constraint files can be used for the

same design. Place and Route considers timing constraints and attempts to meet them.

After routing, Designer displays messages to identify the constraints that cannot be met.

Importing GCF files
Import GCF files as you would any source file.

To import a GCF file:

1. In the File menu, click Import Source Files.

2. Click Add. The Add Source Files dialog appears.

3. Select ProASIC Constraint Files (.gcf) from Files of type.

4. Select your .gcf file and click Import. The File is added to the Import Source Files

dialog box.

5. Add any more source files to the list. All files added to the Import Source Files

dialog box are imported at the same time.

• Modifying:If you need to modify a selection, select the file row and click

Modify

• Deleting:If you need to delete a file, select the file row and click Delete.

Libero IDE User's Guide

142

• Ordering:Ordering your source files. Select and drag your files to specify

the import order. Specifying a priority is useful if you are importing

multiple netlist files, .gcf files, or .pdc files. When importing multiple

EDIF or structural HDL files, the top-level file must appear last in the list

(at the bottom).

6. After you are done adding all your source files, click OK. Your source files are

imported. Any errors appear in the Designer Log Window.

Design Constraints

143

Timing Constraints Guidelines
To understand the complexity of a design and its performance, perform placement and

routing with no constraints to see if routing can complete without constraints. If routing

completes successfully, create the timing annotation files and back-annotate the post-

layout delays to see if the physical design meets timing requirements. If you are using a

synthesis tool such as Synopsys Design Compiler, Actel recommends that you use it to

generate a forward SDF file containing path constraints only.

If these requirements are not met, you can guide timing driven place and route by

forward annotating the SDF generated by the synthesis tool. Timing constraints must be

reasonable. Over constraining a design may result in increased place and route run times,

while not improving circuit performance.

Highlevel Timing Constraints
create_clock
Use this statement to define clocks for the design. Multiple clocks can be specified for a

given design.

create_clock -period <period_value> {netname|portname}

Where “period_value” is the clock period in nanoseconds and “netname|portname” is the

name of the net through which the clocks gets propagated or name of the external port.

For example, the following statement creates a clock on external port “clk” with a period

of 25.0 nanoseconds.

create_clock -period 25.0 clk;

Libero IDE User's Guide

144

generate_paths
Use this statement to modify the way Designer generates internal path constraints for the

placer to do timing driven placement.

generate_paths [-cover_design] [-max_paths <maxpaths>
[-top <percentage>];

Where “-cover_design” indicates to Designer to use the “cover design” algorithm instead

of the default worst paths algorithm, “-max_paths” is the maximum number of paths that

will be generated (default is 20% of the number of nets with minimum of 1000 or if

cover_design is specified twice the number of nets with a minimum of 1000), “-top”

indicates the top percentage of worst paths that will be generated (default is 20%).

For example, the following statement generates 4000 maximum paths using the -

cover_design algorithm.

generate_paths -cover_design -max_paths 4000;

Design Constraints

145

set_false_path
Use this statement to define false paths in the design. These paths are not considered in

the timing driven place and route system.

set_false_path [-from from_port] [-through any_port] [-to to_port];

Where “from_port” must be an input port of the design or a register or memory instance

output pin, “to_port” must be an output port of the design or a register or memory

instance input pin, “any_port” must be any instance pin. Wildcards are permitted.

For example, the following statement sets all paths starting from “resetd” which are going

through instance “const2” as false paths.

set_false_path -from resetd -through const2/*;

Libero IDE User's Guide

146

set_input_to_register_delay
Use this statement to define the timing budget for incoming signals to reach a register:

set_input_to_register_delay <delay> [-from inp_port];

Where “delay” is the timing budget for this input path, “inp_port” is a register or memory

instance output pin. Wildcards are permitted.

For example, the following statement specifies that the timing budget is 22 nanoseconds

to the register from all inputs who’s names are starting with letter “I”.

set_input_to_register_delay 22 -from I*;

set_multicycle_path
Use this constraint to define how many clock cycles a signal has to travel through these

paths. The budget of these paths will be a multiple of the period of the clock controlling

the from port.

set_multicycle_path <num_cycles> -from reg_port [-through_any_port] [-
to_port];

Where “num_cycles” is the number of clock cycles in which the signal needs to propagate

through the path, “reg_port” is a register of memory instance, “to_port” must be an

output port of the design or a register or memory instance input pin, “any_port” must be

any instance pin. Wildcards are permitted.

For example, the following statement specifies it takes two clock cycles to reach signals

from instance pins /us/u1/dff*.q to instance pins /u4/ mem1/*.D.

set_multicycle_path 2 -from /us/u1/dff*.q -to /u4/mem1/*.D;

Design Constraints

147

set_register_to_output_delay
Use this statement to define the timing budget for outgoing signals to be clocked out.

set_resgister_to_output_delay <delay> -to out_port;

Where “delay” is the timing budget for this output path, “out_port” must be an output

port of the design. Wildcards are permitted.

For example, the following statement specifies the timing budget for clocking out signals

on output ports starting with “O” is 22 nanoseconds.

set_register_to_output_delay 22 -to O*;

Libero IDE User's Guide

148

Timing Constraints
net_critical_ports
Use this statement to specify a specific subset of critical ports on a net.

For example, the following statement identifies two inputs of the net “/u1/u2/net1” that

are more critical than all other connections on that net. All other connections on the net

will be buffered with a “BUF” cell that will be placed in a tile to reduce fanout delay on

the specified inputs:

net_critical_ports /u1/u2/net1 nandbk1.A sigproc.C;

Design Constraints

149

set_critical
Use this statement to specify critical nets and their relative criticality over other critical

nets.

set_critical criticality_number hier_net_name
[,hier_net_name …];

Where “criticality_number” is from 1 to 5 (1 being the default criticality for every net and

5 the highest). “hier_net_name” is the full hierarchical net name.

For example, the statements below set the timing of “u1/u2/ net1” more critical than

“u1/u2/net5 and u1/u2/net3”:

set_critical 5 /u1/u2/net1;
set_critical 2 /u1/u2/net5, u1/u2/net3;

Libero IDE User's Guide

150

set_critical_port
Use this statement to identify design I/O ports that have above-normal criticality. The

criticality number scales is the same for the “set_critical” statement.

set_critical_port criticality_number signal_name
[,signal_name …];

Where “signal_name” is the name of a user-defined signal associated with a specific I/O

pin on the part.

For example, the following statement sets all nets associated with device ports IOBus[3]

and IOBus[5] to have criticality 3:

set_critical_port 3 IOBus[3], IOBus[5];

Design Constraints

151

set_max_path_delay
Use this statement to constrain the maximum delay on paths. The calculate timing task

will report a note in the timing report file if this delay is not met.

set_max_path_delay delay_value
hier_inst_name_.inst_port_name
[,hier_inst_name .inst_port_name , …];

Where “delay_value” is a floating integer for delay in nanoseconds, “hier_inst_name” is

the hierarchical path to a cell instance, and “inst_port_name” is a port name of a cell

instance.

For example:

set_max_path_delay 12.5 "mult4/mult/nand2_2".Y, "mult4/mult/
nand3_1".A,"mult4/mult/nand3_1".Y,"mult4/mult/nor2_2".A;

Libero IDE User's Guide

152

set_switch_threshold
Use this statement to specify the number of switches the router is allowed to route a net

through, before it has to insert an active repeater while routing the specified net. The

default for all nets is 8.

set_switch_threshold <threshold> <net_name>;

Where “threshold” is a integer for the threshold, range 4 to 16, and “net_name” is the

name of the net(s) the threshold should be used for. Wildcards are permitted.

For example:

set_switch_threshold 6 core/fsm/state_1;
set_switch_threshold 6 core/fsm/state_*;

153

Design Implementation
The Designer interface offers both automated and manual flows, with the push-button

flow achieving the optimal solution in the shortest cycle.

Actel's Designer software is integrated with Libero IDE. Use the Designer software to

implement your design.

To implement your design:

1. Start Designer. Right-click the top level module in the Design Hierarchy and

select Run Designer, or double click Designer in the Process window. Designer

starts and loads your files from Libero.

2. Set up your device. From the Tools menu, click Device Selection. In the Device

Selection Wizard, select your device type, device package, speed grade, voltage,

and operating conditions. Make your selections and click Next to complete the

steps

3. Compile your design. In Designer, click Compile in the design flow window. The

log window displays the utilization of the selected device. When compile has

completed, the Compile box in the Design Flow window turns green.

4. Designer's User Tools. Once you have successfully compiled your design, you can

use Designer’s User's tool to optimize your design. To start a tool, simply click it

in the flow tree. The tools include:

Tool Function Supported Families

PinEditor Package level floorplanner and I/O

attribute editor

All

Libero IDE User's Guide

154

ChipPlanner Logic viewer, placement and

floorplanning tool

Axcelerator,Flash

ChipEditor Logic viewer and placement tool All

NetlistViewer Design schematic viewer All

SmartPower Power analysis tool Axcelerator, Flash

Timer Static timing analysis and constraints

editor

All

5. Layout your design. Click Layout in the Design Flow Window to place-and-

route your design.

6. Back-Annotate your design. Click Back-Annotate in the Design Flow Window.

Choose SDF as CAE type and appropriate simulation language. Select Netlist in

the Export Additional Files area and Click OK. If you are exporting files post-

layout, Designer exports <top>_ba.vhd and <top>_ba.sdf to your Libero project.

The “_ba” is added by Libero to identify these for back-annotation purposes.

<top> is the top root name. Pre-layout exported files do not contain “_ba” and are

exported simply as *.vhd and *.sdf. The files are visible from the File Manager,

under Implementation Files.

7. Generate a programming file. Click Fuse or Bitstream in the design flow tree if

you wish to create a programming file for your design. This step can be performed

later after you are satisfied with the back-annotated timing simulation.

8. Save and Exit. From the File menu, click Exit. Select Yes to save the design

before closing Designer. Designer saves all of the design information in an *.adb

file. The <project>.adb file is visible in Libero’s File Manger, in the

Implementation Files folder. To re-open this file at any time, simply double-click

it.

Design Implementation

155

Starting Designer

To start Designer from Libero IDE:

In the process window, click Designer Place-and-Route.

Libero IDE User's Guide

156

Designer

Starting a new design
To begin a new design session, you must start a new design or open an existing design.

To start a new design:

1. Click Start New Design in the Designer main window, or in the File menu, click

New. This displays the Setup Design dialog box.

2. Setup Design:

Design Implementation

157

• Enter a Design Name. The design name is used in reports and as the

default name when saving or exporting files.

• Select an Actel Family from the drop down menu list.

• Specify a working directory. Click Browse to locate a directory.

3. Click OK. The Designer custom design flow window appears. All tools and

commands are activated.

Designer:New Design

Libero IDE User's Guide

158

Opening an existing design

To open an existing design:

1. Click Open Existing Design or in the File menu, click Open. This displays the

Open dialog box

2. Select File. Type the full path name of the .adb file in the File Name box, or

select the file from the list.

3. Click Open. Designer’s custom design flow window appears and all tools and

commands are activated. When you open an existing design, Designer checks to

see if you have modified your netlist since the last time you imported the netlist

into this design. If you have, Designer prompts you to re-import your netlist.

Opening designs created in previous versions
Designer can directly open designs created with previous versions of the Designer

software.

If your design was created in version 3.1 or earlier, contact Applications or go to

http://www.actel.com/support for information on converting your design.

All existing die, package, pin assignments, and place-and-route information is read and

maintained. Designs created in previous versions of software may need library conversions

when loaded into the Designer environment. If your design requires this conversion,

Designer prompts you to allow the software to update the design to the new library

before you attempt to start any of the Designer features.

Opening locked files
Designer notifies you if a lock has been established on your file. You might get a warning

or an error message when opening a design with a lock.

Warning
Designer warns you when opening a design that was not closed properly or may be open

Design Implementation

159

somewhere else. You can choose to recover the unsaved edits.

Warning: Locked File

Error
When opening a design, an error might notify you that the file can't be opened because

the lock file is old. You can't recover any unsaved edits.

Error: Locked File

To open a design with an old lock file:

1. Go to the design directory.

2. Locate the design .adb file and corresponding .lok file.

3. Delete the .lok file.

4. Return to Designer and open the design.

Libero IDE User's Guide

160

Starting other applications from Designer (PC only)
You can start any application from Designer that you have added to the Tools menu.

To add an application to the Tools menu:

1. From the Tools menu, click Customize.

2. Enter the application name in the Menu Text area. This text will appear in the

Tools command menu.

3. Enter the command to execute, or click the Browse button to select an executable

filename. If the location of the command to execute is not in your path, you must

include the absolute path when specifying the command.

4. In the Arguments text box, enter the command-line arguments that will be passed

to the command when executing.

5. In the Initial Directory field, type the absolute path of the directory in which the

application will initially be executed.

6. Click Add.

7. When you are finished adding tools, click OK. The application name you added

appears in the Tools menu.

To remove an application from the Tools menu:

1. From the Tools menu, click Customize.

2. Select the application to remove and click Remove.

Design Implementation

161

3. When you are finished removing applications, click OK.

To order applications in the Tools menu:

1. From the Tools menu, click Customize.

2. Reorder the tools by selecting one at a time and clicking the Move Up or Move

Down buttons.

3. Click OK when you are finished. The tools will appear in the Tools menu in the

same order as they do in the Menu Contents list box.

License details

To display information about your license:

1. Open your project or start a new one.

2. From the help menu, click License Details. The License Details dialog box

appears. This information cannot be edited, it is for display purposes only.

Preferences

Directory preferences
When executing a command or function such as Open or Save, Designer uses the

directory you specify as the start-up directory.

To specify your directory preferences:

1. From the File menu, click Preferences.

2. Click the Directory tab.

3. Specify your Startup directory.

4. Select your working directory options:

• To design file's directory when opening design: Select to automatically

change directories when opening a design.

Libero IDE User's Guide

162

• To design file's directory when saving design: Select to automatically

change directories when saving a design.

• To script file's directory when executing script: Select to automatically

change directories when executing a script.

• Add design name to working directory when creating design: Select to

enable a design name folder to be automatically created in the working

directory when creating a new design.

5. Click OK.

Updates
The Updates tab in the Preferences dialog box allows you to set your automatic software

update preferences.

To set your automatic software update preferences:

1. From the File menu, click Preferences and Updates.

2. Choose one of the following options and click OK.

• Automatically check for updates at startup: Select to be notified of updates when

you start Designer.

• Remind me to check for updates at startup: Select to be asked if you want to

check for a software update when you start Designer.

• Do not check for updates or remind me at startup: Select if you do not want to

check for software updates at startup.

To manually check for software updates, from the Help menu, click Check for

Software Updates.

Note:

• This feature requires an internet connection.

Design Implementation

163

Proxy
A Proxy improves access to the Actel server.

To enable the proxy:

1. Select I use a proxy.

2. Type the proxy name in the text field.

3. Click OK.

File association
Several programs, including Designer, create files with the .adb extension.

Use the File Association tab in the Preferences dialog box to specify Designer as the

default program for files with the .adb extension. Doing so starts Designer whenever a

file with the .adb extension is double clicked.

To associated .adb files with the Designer application:

1. From the File menu, click Preferences.

2. Select Check the default file association (.adb) at startup to Check the box to

associate .adb files with the Designer application. Un-check the box if you do not

want Designer to start when clicking a file with the .adb extension.

3. Click OK.

Setting your Log Window preferences
Errors, Warnings, and Informational messages are color coded in the log window. You

can change the default colors by using the log Window tab in the Preferences dialog box.

To change colors in the log window:

1. From the File menu, choose Preferences.

Libero IDE User's Guide

164

2. Click the Log Window tab in the Preferences Dialog Box.

3. Select your new default colors and click OK.

The default color settings for the log window are:

Message Type Colors

Errors Red

Warnings Light Blue

Informational Black

Linked Dark Blue

PDF Reader (UNIX Only)
Use the PDF Reader tab to bring up the Designer online manuals. Enter the default

reader’s name with the full path or click browse.

Device Selection

Device Selection Wizard
After you import your source files, the Device Selection Wizard helps you specify the

device, package, and other operating conditions. You must complete these steps before

your netlist can be compiled.

The wizard steps include:

• Selecting die, package, speed, and voltage

• Selecting variations (reserve pins and I/O attributes)

Design Implementation

165

• Setting operating conditions

Setting die, package, speed, and voltage
The first screen in the Device Selection Wizard allows you to set die, package, speed,and

voltage.

1. In the Tools menu, click Device Selection to start the Device Selection Wizard.

2. Select die and package. Select a die from the Die list. Available packages are

listed for each die.

3. Specify speed.

4. Select die voltage. Select from the available settings in Die Voltage drop-down

menu. Two numbers separated by a “/” are shown if mixed voltages are supported.

If two voltages are shown, the first number is the I/O voltage and the second

number is the core (array) voltage

5. Click Next to set reserve pins and I/O Attributes.

Device variations
The second screen in the Device Selection Wizard enables you to set reserve JTAG and

probe pins and the default I/O standard.

To select reserve pins and default I/O standard:

1. Select your reserve pins:

• Check the Reserve JTAG box to reserve the JTAG pins “TDI,” “TMS,”

"TCK,” and “TDO” during layout.

• Check the Reserve JTAG Reset box to reserve the JTAG reset Pin

“TRST” during layout.

• Check the Reserve Probe box to reserve the Probe pins “PRA,” “PRB,”

“SDI,” and “DCLK” during layout.

Libero IDE User's Guide

166

Reserve Pins are not selectable for the Axcelerator, ProASIC, and ProASIC PLUS

families.

2. Select an I/O attribute. The I/O Attributes section notifies you if your device

supports the programming of I/O attributes on a per-pin basis. For the

Axcelerator family, the I/O Attribute section allows you to set the default I/O

standard for the I/O banks.

3. Click Next to set operating conditions.

Setting Operating Conditions
Operating Conditions, step 3 of the Device Selection Wizard, enables you to define the

voltage and temperature ranges a device encounters in a working system. The operating

condition range entered here is used by Timer, the timing report, and the back-

annotation function. These tools enable you to analyze worst, typical, and best case

timing.

Junction Temperature
Select a junction temperature. Supported ranges include:

• Commercial (COM)

• Industrial (IND)

• Military (MIL)

• Automotive

• Custom

Consult the Actel Data Sheet, available at http://www.actel.com/techdocs/ds/index.html

to find out which temperature range you should use.

If you select Custom, edit the Best, Typical, and Worst fields. Modify the range to the

desired value (real) such that Best < Typical < Worst.

Design Implementation

167

Voltage
Select a voltage:

• Commercial (COM)

• Industrial (IND)

• Military (MIL)

• Automotive

• Custom

You can calculate junction temperature from values in the Actel Data Sheet, available at

http://www.actel.com/techdocs/ds/index.html.

The temperature range represents the junction temperature of the device. For commercial

and industrial devices, the junction temperature is a function of ambient temperature, air

flow, and power consumption.

For military devices, the junction temperature is a function of the case temperature, air

flow, and power consumption. Because Actel devices are CMOS, power consumption

must be calculated for each design. For most low power applications (e.g. 250mW), the

default conditions should be adequate.

Performance decreases approximately 2.5% for every 10 degrees C that the temperature

values increase. Refer to the SmartPower User’s Guide for more information about power

consumption.

Libero IDE User's Guide

168

Radiation Derating
Conservative post radiation performance estimates are available for some radiation

tolerant devices based upon the number of KRads the device is expected to be subjected

to. Radiation effects vary by device lot and may not be completely representative of the

lot you are using. Post radiation timing numbers are only meant to be a guide and are

not a guarantee of performance. Customers must consult the specific radiation

performance report for the specific lot used. Post radiation exposure estimates currently

only affect timing numbers. The SmartPower power analysis tool is not affected by

changing the radiation exposure value.

Changing Design name and family
Design name and family are set when you import a netlist and compile a new design.

However, you can change this information for existing designs. If you change the family,

Designer notifies you that you must re-import the netlist and automatically prompts you

when you select the next Designer function. Use the following procedure to change the

name of a design and the targeted Actel family for the design.

To change the design name or family:

1. In the Tools menu, click Setup Design. This displays the Setup Design dialog

box.

2. Specify the design name and family.

3. Click OK. Refer to the Actel FPGA Data Book for Actel Family specifications.

Changing device information
Device and package information, device variations, and operating conditions are set when

you import a netlist and compile a new design. However, you can change this

information for existing designs.

To change design information for existing designs:

1. In the Tools menu, click Device Selection. The Device Selection Wizard appears.

Design Implementation

169

2. Select Die, Package, and Speed Grade and click Next. (You must select die and

package to continue.)

3. Select Device Variations and click Next.

4. Select Operating Conditions and click Finish.

Refer to the Actel FPGA Data Book or call your local Actel Sales Representative for

information about device, package, speed grade, variations, and operating conditions.

Changing Device, Package, and Speed Grade
Use the Device Selection dialog box to specify or change the device and package type and

the speed grade based on your design needs. Refer to the Actel website for the latest

information (http://www.actel.com). If you select a device, available packages are then

displayed in the Package list box. If you select a package, specify a speed grade in the

Speed Grade pull-down menu.

Devices that are no longer available from the Device Selection dialog box can be selected

using Designer Script. Because these parts may no longer be available, do not use these

devices unless approved by Actel.

Compatible Die Change

When you change the device, some design information can be preserved depending on

the type of change.

Changing Die Revisions

If you change the die from one technology to another, all information except timing is

preserved. An example is changing an A1020A (1.2um) to an A1020B (1.0um) while

keeping the package the same.

Device Change Only

Constraint and pin information is preserved, when possible. An example is changing an

A1240A in a PL84 package to an A1280A in a PL84 package.

Repackager Function (Non-Axcelerator families only)

When the package is changed (for the same device), the Repackager automatically

Libero IDE User's Guide

170

attempts to preserve the existing pin and Layout information by mapping external pin

names based on the physical bonding diagrams. This always works when changing from a

smaller package to a larger package (or one of the same size). When changing to a smaller

package, the Repackager determines if any of the currently assigned I/Os are mapped

differently on the smaller package. If any of the I/Os are mapped differently, then the

layout is invalidated and the unassigned pins identified.

Importing Files

Importing source files
Source files include your netlist and constraint files.

Source Files File Type Extension

EDIF *.ed*

Verilog *.v

VHDL *.vhd

Actel ADL Netlist *.adl

Criticality *.crt

ProASIC Constraint File *.gcf

Physical Design Constraint File *.pdc

The choice of source files is family dependent. Only supported source files are displayed

in the Import Source dialog box. If you are working on a new design or if you have

changed your netlist, then you must re-import your netlist into Designer.

To import a source file:

1. In the File menu, click Import Source Files.

Design Implementation

171

Import Source Files Dialog Box

2. Click Add. The Add Source Files dialog appears.

Add Source Files Dialog Box

3. Select the file you want to import and click Import. The File is added to the

Import Source Files dialog box.

4. Add more source files to the list. All files added to the Import Source Files dialog

box are imported at the same time. To modify a file, select the file and click

Modify. To delete a file, select the file and click Delete.

Libero IDE User's Guide

172

5. Specifying a priority is useful if you are importing multiple netlist files, .gcf files,

or .pdc files. When importing multiple EDIF or structural HDL files, the top-

level file must appear last in the list (at the bottom). Drag your files to specify the

import order.

6. (ProASIC and ProASIC PLUS designs only) Select Keep existing physical

constraints to preserve all existing physical constraints that you have made using

ChipPlanner, PinEditor, or the I/O Attribute Editor. If you import a GCF file

and you have this box selected, the existing physical constraints take precedents

over the physical constraints in the GCF file.

7. To set the audit options for these source files, click Audit options and follow the

directions in the Audit Options dialog box.

8. When you are done adding all your source files, click OK. Your source files are

imported. Any errors appear in the Designer log window.

Note:

• File names or paths with spaces may not import into Designer. Rename the file or

path, removing the spaces, and re-import.

Auditing files
Designer audits your source files to ensure that your imported source files are current. All

imported source files are date and time stamped. Designer notifies you if the file is

changed. When notified, select the appropriate action and click OK.

To change your audit settings:

1. From the File menu, click Audit Settings. The Audit Settings dialog box appears.

Audit Timestamp reflects the last time and day that the import source or audit

update was successfully done.

Design Implementation

173

2. Select the audit check box next to the file to enable auditing.

3. Click Change Location to move the file to another directory.

4. Click Reset to Current Date Time to associate the file with the current day and

time.

Importing Constraint (Auxiliary) Files
The following constraint file types can be imported into Designer:

 Auxiliary Files File Type Extension

Family

Criticality *.crt ACT1, ACT2, ACT3,

MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

SDC *.sdc SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Physical Design Constraint *.pdc Axcelerator

Value Change Dump *.vcd

Axcelerator, ProASIC,

ProASIC PLUS

Switching Activity

Intermediate File/Format

*.saif

Axcelerator, ProASIC,

ProASIC PLUS

Design Constraint File *.dcf

ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

To import an auxiliary file:

Libero IDE User's Guide

174

1. From the File menu, click Import Auxiliary Files. The Import Auxiliary Files

dialog appears,

2. Click the Add button. The Add Auxiliary Files dialog box appears.

3. Select your file and click Import. The file is added to the Import Auxiliary Files

dialog box. Continue to add more auxiliary files to the list.

• Modifying:If you need to modify a selection, select the file row and click

Modify

• Deleting:If you need to delete a file, select the file row and click Delete.

• Ordering:Ordering your source files. Select and drag your files to specify

the import order. Specifying a priority is useful if you are importing

multiple netlist files, .gcf files, or .pdc files.

4. After you are done adding all your Auxiliary files, click OK. Your auxiliary files

are imported. Any errors appear in Designer’s Log Window.

Note:

1. .vcd and .saif are used by SmartPower for power analysis.

2. .crt for backwards compatibility with existing designs only.

3. File names or paths with spaces may not import into Designer. Rename the

file or path, removing the spaces, and re-import.

Importing PDC files (Axcelerator family only)
The Physical Design Constraint (PDC) file can specify:

• I/O standards and features

• VCCI and VREF for all or some of the banks

• Pin assignments

Design Implementation

175

• Placement locations

• Net criticality

The Axcelerator family of devices supports multiple I/O standards (with different I/O

voltages) in a single die. You can use ChipEditor and PinEditor to set I/O standards and

attributes, or alternatively you can export and import this information using a PDC file.

PDC files are only supported for the Axcelerator family of devices.

To import a PDC file:

1. From the File menu, click Import Auxiliary Files. The Import Auxiliary Files

dialog appears.

2. Click the Add button. The Add Auxiliary Files dialog box appears. Filter for your

PDC file by selecting Physical Design Constraint Files (*.pdc) from the Files of

Type drop-down list box.

3. Select the PDC file and click Import. The file is added to the Import Auxiliary

Files dialog box.

4. Click OK. The PDC file is imported into Designer. Any errors appear in the Log

Window.

Note:

• File names or paths with spaces may not import into Designer. Rename the file or

path, removing the spaces, and re-import.

• If the PDC file has commands to combine I/O Registers with I/Os this file must

be imported before compile

Importing Synopsys Design Constraint files
SDC is a Tcl-based format-constraining file. The commands of an SDC file follow the

Tcl syntax rules. Designer accepts an SDC constraint file generated by a third-party tool.

Libero IDE User's Guide

176

To import an SDC file:

1. From the File menu, click Import Auxiliary Files. The Import Auxiliary Files

dialog box is displayed.

2. Click Add. The Add Auxiliary Files dialog box appears.

3. Select your SDC file. Filter for SDC files by selecting SDC Files in the Files of

Type drop-down list box.

4. Click Import. The SDC file is added to the Import Auxiliary Files dialog box.

5. Click OK. The SDC file is imported into your design. Any errors appear in the

Log Window.

When Compile and Layout complete and Timer starts, the constraints from the SDC file

are incorporated in the timing of the design and are reflected in Timer.

Note: File names or paths with spaces may not import into Designer. Rename the file

or path, removing the spaces, and re-import.

Compile

Compiling your design
After you import your netlist files and select your device, you must compile your design.

Compile contains a variety of functions that perform legality checking and basic netlist

optimization. Compile checks for netlist errors (bad connections and fan-out problems),

removes unused logic (gobbling), and combines functions to reduce logic count and

improve performance. Compile also verifies that the design fits into the selected device.

There are three ways to select the compile command:

• In the Tools menu, click Compile.

• Click the Compile button in the Design Flow.

Design Implementation

177

• Click the Compile icon in the toolbar.

If you have not already done so, Designer’s Device Selection Wizard prompts you to set

the device and package.

During compile, the message window in the Main window displays information about

your design, including warnings and errors. Designer issues warnings when your design

violates recommended Actel design rules. Actel recommends that you address all

warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors in your input files (netlist, constraints, etc.),

you must modify the design to remove the errors. You must then re-import and re-

compile the files.

After you compile the design, you can run Layout to place-and-route the design or use

the User Tools (PinEditor, ChipEditor, ChipPlanner, Timer, SmartPower, or

NetlistViewer) to perform additional optimization prior to place-and-route.

Compile Options
The compile options are specific to each family. Compile options are not available for the

ProASIC and ProASIC PLUS families.

To set compile options:

1. From the Options menu, click Compile. The compile option dialog box opens.

Options available are family specific.

2. Select your options and click OK.

Netlist Pin Properties Overwrite Existing Properties

During the Compile process, Designer checks the netlist properties. If the netlist file

specifies a pin assignment for a pin that was also assigned in PinEditor session, there is a

conflict. How this conflict is resolved is determined by your selection in this box.

Libero IDE User's Guide

178

If this option is off, or unchecked, then Designer uses the assignment made in PinEditor

and the assignment in the netlist file for the conflicting pin is ignored.

If this option is on, or checked, then Designer uses the assignment in the netlist file for

that pin and the PinEditor assignment is ignored. If you edit pin assignments in

PinEditor, this option is automatically set to "off."

Combine Registers into I/Os (Axcelerator Family)

The Axcelerator family includes an optional register on the input path, an optional

register on the output path, and an optional register on the 3-state control pin.

Select the option Combine Registers into I/Os where possible to take advantage of these

registers.

Abort on PDC Error (Axcelerator Family)

Setting Abort on PDC Error aborts the PDC import when an error is encountered.

When this box is checked, the PDC file is either imported fully or the design is left

untouched.

Fanout Messages (ACT1, ACT2, ACT3, DX, MX, SX, SX-A, eX)

Use the control slider in the Messages area to control the warning level. Use the control

slider to specify the fanout limit that the Compile step checks against. Setting the control

slider to '0' informs the system to use the system defaults. Any non-zero value replaces

the system default value for the fanout limit with the user-specified value. Typically, this

value range is 1 to 24.

This does not adjust the fanout of the design and it has no effect on the netlist. This only

adjusts the warning level, by controlling what level of fanout checking you want to be

warned about during Compile. Changing this fanout limit option does not invalidate the

Compile design state

Running Layout
Use Layout to place and route your design.

To run Layout:

Design Implementation

179

1. Click the Layout button in the Design Flow Window.

2. Layout Options. Select your Layout options and Click OK. Layout options are

family specific.

Layout options

Axcelerator Layout Options
When running Layout, use the Layout dialog box to set your Layout options.

Timing-driven

Select this option to run timing-driven Layout. The primary goal of timing-driven layout

is to meet timing constraints, with a secondary goal of producing high performance for

the rest of the design. timing-driven Layout is more precise and typically results in higher

performance.

When not checked, standard layout runs. Standard layout maximizes the average

performance for all paths. Each part of a design is treated equally for performance

optimization. Standard layout uses net weighting (or criticality) to influence the results.

Delay constraints that have been set for a design during place-and-route are not

considered, however a delay report based on delay constraints entered in Timer can still

be generated for the design. This is helpful to determine if timing-driven Layout is

required.

Run Place

Select this option to run the placer during Layout. By default, it reflects the current

Layout state. If you have not run Layout before, Run Place is checked by default. If your

design has already been placed, this box is not checked. You can also select the following

incremental placement options.

Libero IDE User's Guide

180

• Incrementally: Select to use previous placement data as the initial placement for

the next placement run.

• Lock Existing Placement (fix): Select to use and fix previous placement data for

the next incremental placement run.

Effort Level

Use the Effort Level slider to increase the effort Layout uses to place and route your

design. The range is 1 to 5 with a default of 3. A higher level of effort generally improves

the quality of results, but runs longer.

Run Route

Select to run the router during Layout. By default, it reflects the current Layout state. If

you have not run Layout before, Run Route is checked. Run Route is also checked if your

previous Layout run completed with routing failures. If your design has been routed

successfully, this box is checked.

Use Multiple Passes

Select to run layout multiple times with different placement seeds. Multiple Pass Layout

attempts to improve layout quality by selecting from a greater number of layout results.

Click Configure to set your Multiple Pass Configuration.

Note: To run Multiple Passes, you must check both Run Place and Run Route.

Flash Layout Options
When running layout, use the Layout dialog box to set your layout options.

Timing-driven

Select this option to run timing-driven Layout. The primary goal of timing-driven layout

is to meet timing constraints, with a secondary goal of producing high performance for

the rest of the design. Timing-driven Layout is more precise and typically results in

higher performance.

Design Implementation

181

When not checked, standard layout runs. Standard layout maximizes the average

performance for all paths. Each part of a design is treated equally for performance

optimization. Standard layout uses net weighting (or criticality) to influence the results.

Delay constraints that have been set for a design during place-and-route are not

considered, however a delay report based on delay constraints entered in Timer can still

be generated for the design. This is helpful to determine if timing-driven Layout is

required.

Run Place

Select this option to run the placer during Layout. By default, it reflects the current

Layout state. If you have not run Layout before, Run Place is checked by default. If your

design has already been placed but not routed, this box is not checked by default. You can

also select the following incremental placement options.

• Incrementally: Select to use previous placement data as the initial placement for

the next place run.

• Lock Existing Placement (fix): Select to preserve previous placement data during

the next incremental placement run.

Run Route

Select to run the router during Layout. By default, it reflects the current Layout state. If

you have not run Layout before, Run Route is checked. Run Route is also checked if your

previous Layout run completed with routing failures. If your design has been routed

successfully, this box is checked.

Libero IDE User's Guide

182

• Incrementally: Select to fully route a design when some nets failed to route during

a previous run. You can also use it when the incoming netlist has undergone an

E.C.O. (Engineering Change Order). Incremental routing should only be used if

a low number of nets fail to route (less than 50 open nets or shorted segments). A

high number of failures usually indicates a less than optimal placement (if using

manual placement through macros, for example) or a design that is highly

connected and does not fit in the device. If a high number of nets fail, relax

constraints, remove tight placement constraints, or select a bigger device and

rerun routing.

Use Multiple Passes

Select to run layout multiple times with different seeds. Multiple Pass Layout attempts

to improve layout quality by selecting from a greater number of layout results. Click

Configure to set your Multiple Pass Configuration.

eX, SX, SX-A Layout Options
When running layout, use the Layout dialog box to set your layout options.

Timing-Driven

Select to run Timing-Driven Layout. The primary goal of Timing-Driven layout is to

meet timing constraints, while still producing high performance for the rest of the design.

Timing-Driven Layout is more precise and typically results in higher performance. This

option is available only when timing constraints have been defined.

When not checked, standard layout runs. Standard layout maximizes the average

performance for all paths. Each part of a design is treated equally for performance

optimization. Standard layout uses net weighting (or criticality) to influence the results.

Delay constraints that have been set for a design during place-and-route are not

considered, however a delay report based on delay constraints entered in Timer can still

be generated for the design. This is helpful to determine if Timing-Driven Layout is

Design Implementation

183

required.

Place Incrementally

Select to use previous placement data as the initial placement for the next place run.

• Lock Existing Placement: Select to preserve previous placement data during the

next incremental placement run.

Use Multiple Passes (eX and SX-A only)

Select to run layout multiple times with different seeds. Multiple Pass Layout attempts

to improve layout quality by selecting from a greater number of layout results. Click

Configure to set your Multiple Pass Configuration.

Advanced

Click the Advanced button to set Extended Run and Timing-Driven options.

eX, SX, and SX-A Advanced Layout Options
To set these advanced options during Layout, click the Advanced button in the Layout

dialog box.

Extended Run

Select this to run a greater number of iterations during optimization within a single

layout pass. An extended run layout can take up to 5 times as long as a normal layout.

Effort Level

This setting specifies the duration of the timing-driven phase of optimization during

timing-driven Layout. Its value specifies the duration of this phase as a percentage of the

default duration. This option is available only when timing constraints have been defined

The default value is 100 and the selectable range is within 25 - 500. Reducing the effort

level also reduces the run time of timing-driven place-and-route (TDPR). With an effort

Libero IDE User's Guide

184

level of 25, TDPR is almost four times faster. With fewer iterations, however,

performance may suffer. Routability may or may not be affected. With an effort level of

200, TDPR is almost two times slower. This variable does not have much effect on

timing.

Timing Weight

Setting this option to values within a recommended range of 10-150 changes the weight

of the timing objective function, thus influencing the results of timing-driven place-and-

route in favor of either routability or performance. This option is available only when

timing constraints have been defined

The timing weight value specifies this weight as a percentage of the default weight (i.e. a

value of 100 has no effect). If you use a value less than 100, more emphasis is placed on

routability and less on performance. Such a setting would be appropriate for a design that

fails to route with TDPR. In case more emphasis on performance is desired, set this

variable to a value higher than 100. In this case, routing failure is more likely. A very high

timing value weight could also distort the optimization process and degrade performance.

A value greater than 150 is not recommended.

Restore Defaults

Click Restore Defaults to run the factory default settings for advanced options.

ACT, MX, and DX Layout Options
Timing-driven

Select this option to run Timing-Driven Layout. The primary goal of timing-driven

layout is to meet timing constraints, with a secondary goal of producing high

performance for the rest of the design. timing-driven Layout is more precise and typically

results in higher performance. This option is available only when timing constraints have

been defined.

Design Implementation

185

When not checked, standard layout runs. Standard layout maximizes the average

performance for all paths. Each part of a design is treated equally for performance

optimization. Standard layout uses net weighting (or criticality) to influence the results.

Delay constraints that have been set for a design during place-and-route are not

considered, however a delay report based on delay constraints entered in Timer can still

be generated for the design. This is helpful to determine if Timing-Drive Layout is

required.

Place Incrementally

Select to use previous placement data as the initial placement for the next place run.

• Lock Existing Placement:Select to preserve previous placement data during the

next incremental placement run.

Advanced
Click Advanced to set Extended Run options.

ACT, MX, and DX Advanced Layout Options
To set these advanced options during Layout, click the Advanced button in the Layout

dialog box.

Extended Run

Select this to run a greater number of iterations during optimization. An extended run

layout can take up to 5 times as long as a normal layout

Restore Default

Click Restore Defaults to run the factory default settings for advanced options.

Libero IDE User's Guide

186

Incremental Placement
In either standard or timing-driven mode, use incremental placement to preserve the

timing of a design after a successful place and route, even if you change part of the netlist.

Incremental placement has no effect the first time you run layout. During design

iteration, incremental placement attempts to preserve the placement information for any

unchanged macros in a modified netlist.

As a result, the timing relationships for unchanged macros approximate their initial

values, decreasing the execution time to perform Layout. By forcing Designer to retain

the placement information for a portion of the design, some flexibility for optimal design

layout may be lost. Therefore, do not use incremental placement to place your design in

pieces. You should only use it if you have successfully run Layout and you have minor

changes to your design.

Incremental placement requires prior completion of place. Do not use incremental

placement if the previous Layout failed to meet performance goals.

Locking Existing Placement (Fix)
When this option is selected in the Layout dialog box, all unchanged macros are treated

as fixed placements during an incremental placement. This is the strongest level of

control, but it may be too restrictive for the new placement to successfully complete. The

default ON setting treats unchanged macro locations as placement hints, but alters their

locations as needed to successfully complete placement. Refer to ChipEditor for details

on fixing macros.

Design Implementation

187

Flash Placement Constraint File (GCF)
For Flash designs, the Designer software always produces a placement constraints file in

the design directory called: <design>.dtf/Last_placement.gcf. This file contains all the

information about the latest placement. Blocks with fixed placement constraints generate

fixed placement constraints, while the others generate initial placement constraints. The

existing constraint files can be edited to remove any prior placement constraints. The

GCF command

read ”last_placment.gcf”;

can be added to an existing constraint file to indicate that the latest placement is to be

used as the initial placement.

Move or copy “last_placment.gcf” to use it as an input constraint file. Otherwise, it is

overwritten by any subsequent placement if it is left in its original location.

Multiple Pass Layout
Multiple Pass Layout attempts to improve layout quality by selecting from a
greater number of Layout results. This is done by running individual place and
route multiple times with varying placement seeds and measuring the best
results with a specified criteria.

Note:

• Before running Multiple Pass Layout, you need to save your design.

• Multiple Pass Layout is supported in the following families: Axcelerator,

ProASIC, ProASICPLUS, SX-A, and eX.

• Multiple Pass Layout saves your design file with the pass that has the best layout

results. A corresponding timing report file for the best result, named design-

name_timing.rpt is also saved to disk. If you want to preserve your existing design

state, you should save your design file with a different name before proceeding.

To do this, from the File menu, click Save As.

Libero IDE User's Guide

188

• A timing report for each pass will be written out to the working directory to assist

you in later analysis. The report files will be named design-

name_timing.rpt.pass-number. Look at the design-name _iteration_summary.rpt

for details of the saved files.

To configure your multiple pass options:

1. When running Layout, se;ect Use Multiple Passes in the Layout Options dialog

box.

2. Click Configure. The Multi-Pass Configuration dialog box appears.

3. Set the options and click OK.

Maximum Number of Passes: Set the number of passes (iterations) using the
slider. 3 is the minimum and 25 is the maximum. The recommended number of
passes is 5.

Measurement: Select the measurement criteria you want Layout to meet. If
Slowest Clock or Specific Clock is selected as your criterion, then the Layout runs
all passes. If Timing Violations is selected as your criterion, Layout stops once the
timing constraints are met. If the constraints are not met, then all of the Layout
passes run.

Slowest Clock Select to use the slowest clock in the design in a given

pass as the performance reference for the layout pass.

Specific Clock Select to use a specific clock as the performance

reference for all Layout passes.

Timing Violations Select to use the pass that best meets the slack or

timing-violations constraints. NOTE: You must

enter your own timing constraints through the Timer

or SDC.The ‘best’ case is calculated by determining

the total negative slack for all constraints.

Design Implementation

189

Save Results from All Passes: Select to save the design file (.adb) for each
pass. By default, only the best result is saved to your design. With this option, for
every pass, the individual .adb is stored as filename_pass-number.adb in the
name. The ‘best’ pass design will still also be written back to the original .adb
filename. Saving all results does take more disk space, but allows you to later
analyze the result of each pass in more detail. Look at the design-name
_iteration_summary.rpt for details of the saved files.

Back-Annotation

Back-Annotation
The back-annotation functions are used to extract timing delays from your post layout

data. These extracted delays are put into a file to be used by your CAE package’s timing

simulator. If you wish to perform pre-layout back-annotation, select Export and Timing

Files from the File menu.

The Back-Annotation program creates the files necessary for back-annotation to the

CAE file output type that you chose. Refer to Actel Interface Guides or the

documentation included with your simulation tool for information about selecting the

correct CAE output format and using the back-annotation files.

To back-annotate your design:

1. From the Tools menu, click Back-Annotate, or click the Back-Annotate button

in the Design Flow window.

2. Make your selections in the Back-Annotated dialog box and click OK.

Extracted Files Directory: The file directory is your default working directory. If

you wish to save the file elsewhere, click Browse and specify a different directory.

Extracted File Names: This name is used as the base-name of all files written out

for back-annotation. Do not use directory names or file extensions in this field.

The file extensions will be assigned based on your selection of which file formats to

export. The default value of this field is <design>_ba.

Libero IDE User's Guide

190

Output Formats: Select SDF or STF (not supported for SX-A, eX, Axcelerator,

ProASIC, and ProASIC PLUS.

Simulator Language: Select either Verilog or VHDL93.

Export Additional Files: Check Netlist or Pin to export these files at the same

time.

Exporting files

Exporting files

Designer supports the exporting of the following file types:

 Files File Extension Family

Actel Flattened Netlist

.afl All

Actel Internal Netlist .adl All

Standard Delay Format .sdf All

Standard Timing File .stf ACT1, ACT2, ACT3,

MX, XL, DX, SX

STAMP .mod, .data SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Tcl Script File .tcl All

Verilog Netlist .v All

VHDL Netlist .vhd All

EDIF Netlist File .edn All

Log File .log All

STAPL .stp ProASIC, ProASIC PLUS

Bitstream .bit ProASIC, ProASIC PLUS

Design Implementation

191

Data I/O Programming

File (Legacy)

.dio ACT1, ACT2, ACT3,

XL, DX

Programming File (Legacy) .fus ACT1, ACT2, ACT3,

MX, XL, DX

Actel Programming File .afm ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Routing Segmentation File .seg ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

Silicon Explorer Probe File .prb ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Placement Location File .loc ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

ProASIC Constraints File .GCF ProASIC, ProASIC PLUS

Combiner Info .cob ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Boundary Scan File .bsd DX, 42MX, SX, SX-A,

eX, Axcelerator,

ProASIC, ProASIC PLUS

Criticality *.crt ACT1, ACT2, ACT3,

MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

SDC *.sdc SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Libero IDE User's Guide

192

Physical Design Constraint *.pdc Axcelerator

Value Change Dump *.vcd

Axcelerator, ProASIC,

ProASIC PLUS

Switching Activity

Intermediate File/Format

*.saif

Axcelerator, ProASIC,

ProASIC PLUS

Design Constraint File *.dcf

ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

Designer does not support VHDL 87 in export.

To export a file:

1. In the File menu, click an export option from the Export sub-menu. Select the

type of file you wish to export.

2. Specify file name and file type and click OK.

Generating Reports

Available Report Types
Select from Report Type & Options on the dialog box when invoking a report.

Status Report provides information about Designer, Device Data, and variable settings

for the design.

Timer Report displays summarized timing delays for paths. When Timing Report is

selected and "OK" clicked, an additional dialog box prompts the user to select Timing

Report Options.

Timing Violations Report summarizes timing violations.

Design Implementation

193

Pin Report can be sorted by Name or Number. Select Pin Report, then click "OK" to set

the List order.

FlipFlop Report can be Summary or Extended. Both reports include the Flip-Flop type,

sequential (Seq) or combinatorial (CC), the Library name, and the Total number of Seq

and CC Flip-Flops in the design. The Summary Report also includes the Number of

instances of each unique type. The Extended Report provides the Macro name. All

Reports are output to an editable window for viewing, modification, saving, and printing.

Power Reports allow you to quickly determine if any consumptions problems exist in

your design.

Status Reports
The status report enables you to create a report containing device and design information,

such as die, package, percentage of the logic and I/O modules used, etc.

To generate a status report:

1. In the Tools menu, click Reports.

2. Choose Status from the drop-down list in the Report Type dialog box. The status

report opens in a separate window. You can save or print the report.

Timing reports
The timing report enables you to quickly determine if any timing problems exist in your

design. The timing report lists the following information about your design:

• maximum delay from input I/O to output I/O

• maximum delay from input I/O to internal registers

• maximum delay from internal registers to output I/O

• maximum delays for each clock network

• maximum delays for interactions between clock networks

Libero IDE User's Guide

194

To generate a timing report:

1. In the Tools menu, click Reports.

2. Choose Timing from the Report Type drop-down list. This displays the Timing

Report dialog box.

3. Specify the Slack Threshold. If you select “Slack” as the sort method, you can

limit the number of delays displayed based upon a slack threshold. For example, if

you only want to see delays that have a slack less than 5ns, enter 5 in the Slack

Threshold box.

4. Setup-hold Timing Check. Selection of this box enables you to configure the

timing report to calculate external setup and hold information for device inputs in

addition to the standard information.

5. Expand Failed Paths. If a path does not meet your timing specifications, and you

would like to see the incremental delay of each macro within that path, select the

Expand Failed Paths box.

6. Options. Clicking Options brings up the Timing Preferences dialog box, where

you can set additional display and report options.

Sort by Actual Delay

The actual delay is the path delay between two points in your design. This is the

only way to sort your data if you do not have any timing constraints entered (for

information on setting timing constraints, see the Timer User’s Guide). If you have

entered timing constraints, the actual delay report will automatically display the

slack - even if you don’t ask for it - but the data will always be listed from longest

to shortest actual delay.

Actual delay measurements may be calculated before or after layout (that is, pre-

layout or post-layout).

Sort by Slack Delay

Slack delay is the delay difference between a timing constraint entered in Timer

and the actual delay of a path. For example, if a signal takes 20 ns to get from point

Design Implementation

195

A to point B, and you entered a timing constraint of 15 ns, the Timing Report

would list -5 ns slack for that path. Thus, if the slack negative, then the actual

delay did not meet the desired timing by the absolute value of the slack (in ns).

Conversely, if the slack value is positive, then the timing constraint was met, with

the slack value (in ns) to spare. In a slack report, the data will be sorted (by default)

from longest to shortest slack.

When displaying slack, all the paths without timing constraints are filtered from

the reported data. This allows you to quickly determine how well your design

meets your timing requirements. This is especially useful for viewing critical delays

like register-to-register, clock-to-out, and input-to-register.

Path Selection

Normally, only the longest path between any of the starting points (terminals) and each

ending terminal is displayed. If you would like to see the timing of all paths between any

of the starting terminals and any of the ending terminals, select Paths Between Any Pair

in the Path Selection box.

Break Path at Register

The default timing paths break at all clock, gate, clear, and preset pins. If you would like

to generate a timing report that passes through these pins, unselect the appropriate pins

in the Break Path at Register options.

7. Click OK. This displays a timing report based upon your timing and display

preferences. The format and content of the report is determined by the family

Pin reports
The pin report allows you to create a text list of the I/O signal locations on a device. You

can generate a pin report sorted by I/O signal names or by package number.

To generate a pin report:

1. In the Tools menu, click Reports.

Libero IDE User's Guide

196

2. Choose Pin from the drop-down list in the Report Type dialog box. This displays

the Pin Report dialog box.

3. Specify the type of report to generate. Select Number or Name from the List By

pull-down menu, then click OK. This displays a pin report.

Flip-flop reports
The flip-flop report enables you to create a report that lists the number and type of flip-

flops (sequential or CC, which are flip-flops made of 2 combinatorial macros) used in a

design.

There are two types of reports you can generate, Summary or Extended:

A Summary report displays whether the flip-flop is a sequential, I/O sequential, or CC

flip-flop, the macro implementation of the flip-flop, and the number of times the

implementation of the flip-flop is used in the design.

An Extended report individually lists the names of the macros in the design.

To generate a flip-flop report:

1. In the Tools menu, click Reports. This displays the Reports dialog box.

2. Select Flip-Flop from the drop-down menu. The Flip-Flop Report dialog box

appears.

3. Specify the type of report to generate. Select Summary or Extended from the

Type pull-down menu, then click OK. This displays the report in a separate

window.

Power reports
The power report enables you to quickly determine if any power consumption problems

exist in your design. The power report lists the following information:

Design Implementation

197

• Global device information and SmartPower Preferences selection information

• Design level static power summary

• Dynamic power summary

• Hierarchical detailed power report (including gates, blocks, and nets), with a

block by block, gate by gate, and net by net power summary SmartPower results

To create a power report:

1. In the Tools menu, click Reports. This displays the Reports dialog box.

2. Choose Power in the Report list and click OK. The Power Report dialog appears.

3. Choose from the following options:

• Static Power: Returns static power information

• Dynamic Power: Returns dynamic power information

• Report Style: Specifies report style

For additional Power Report Options, click the Options to open the Power

Preferences dialog box, as shown in Figure 2-45.

Power Preferences Dialog Box

Select analysis preferences:

• Units: Sets units preferences for power and frequency

• Operating Conditions: Sets preferences for operating conditions

• Block Expansion Control: Filters reported power values returned in the report.

This box does not control which values are included, rather it specifies which

blocks are detailed/expanded. You may specify which blocks are expanded using a

minimum power value, a minimum power ratio (with regards to the total power of

the design) and a maximum hierarchical depth; a filtered value is not include in

displayed lists, but still counted for upper hierarchical levels.

4. Once you are satisfied with your selections, click OK in the Preferences dialog

box and then click OK in the Power Report dialog box. SmartPower displays the

report in a separate window.

Timing Violations Reports
For families that use the pin-to-pin timing model, the Violations report enables you to

Libero IDE User's Guide

198

obtain constraint results sorted by slack. You can now view Max Delay violations as well

as Min Delay violations in the report.

To generate a timing violations report:

1. From Tools menu, click Reports.

2. In the Report Types dialog box, select Timing Violations.

3. Click OK.

Saving and Exiting

Saving your design
Once you have imported a netlist and compiled a design, you can save the design as an

ADB file.

To save your design as an ADB file:

1. In the File menu, click Save or click the save icon in the toolbar.

2. Enter the File name and click Save. The default file name is the name you

previously entered in the setup dialog box. The default format is adb. Make sure

your save in the “.adb” format.

Once you have saved your compiled design as an ADB file, during any future Designer

sessions, you can open the ADB file, skipping the compile step, and perform

optimization on the design, including updating netlist and auxiliary file information.

Exiting Designer
To end a Designer session, from the File menu, click Exit.

Design Implementation

199

If the information has not been saved to disk, you are asked if your want to save the

design before exiting. If you choose YES, the "<design_name>.adb” file is updated with

information entered the current session. If you choose NO, the information is not saved

and the “<design_name>.adb” file remains unchanged.

Libero IDE User's Guide

200

Tcl Scripting
Tcl Documentation Conventions
The Actel command syntax conventions are as follows.

Syntax Notation Description

command Commands or keywords are shown in courier typeface.

Variable Variables appear in italic. You must substitute an

appropriate value for the variable.

?argument? Optional argument. Do not use the question marks when

entering the argument.

arg1 | arg2 | … | argN

Alternative arguments. You can use exactly one of these

arguments.

… The ellipsis indicate items that precede the ellipsis may be

repeated. The ellipsis should not be entered.

Tcl Command Reference
Designer supports the following Tcl scripting commands.

• backannotate

• close_design

• compile

Design Implementation

201

• export

• get_defvar

• get_design_filename

• get_design_info

• is_design_loaded

• is_design_modified

• is_design_state_complete

• layout (advanced options for the SX family)

• new_design

• open_design

• pin_assign

• pin_commit

• pin_fix

• pin_fix_all

• pin_unassign

• pin_unassign_all

• pin_unfix

• save_design

• set_defvar

• set_design

• set_device

• smartpower_add_pin_in_domain

Libero IDE User's Guide

202

• smartpower_commit

• smartpower_create_domain

• smartpower_remove_domain

• smartpower_remove_pin_frequency

• smartpower_remove_pin_of_domain

• smartpower_restore

• smartpower_set_domain_frequency

• smartpower_set_pin_frequency

• timer_add_clock_exception

• timer_add_pass

• timer_add_stop

• timer_commit

• timer_get_path

• timer_get_clock_actuals

• timer_get_clock_constraints

• timer_get_maxdelay

• timer_get_path_constraints

• timer_remove_clock_exception

• timer_remove_pass

• timer_remove_stop

• timer_restore

• timer_setenv_clock_freq

Design Implementation

203

• timer_setenv_clock_period

• timer_set_maxdelay

• timer_remove_all_constraints

Libero IDE User's Guide

204

backannotate
The backannotate command is equivalent to executing the Back-Annotate

command within the Tools menu. You can export an SDF file, after layout, along

with the corresponding netlist in the VHDL or Verilog format. These files are

useful in backannotated timing simulation.

Supported Family and Format
Family: All

Format: Tcl

Syntax
Backannote ?Option Option …?

-name file_name
-format format_type
-language
-simlang
-dir dir
-netlist
-pin

Arguments
?-name file_name?

Use a valid file name with this option. You can attach the file extension .sdf
to the File_Name, otherwise the tool will append .sdf for you.

?-format format_type?
Only SDF format is available for back annotation

?-language language?

The supported Languages are options are

 VHDL93 – For VHDL-93 style naming in SDF

 VERILOG – For Verilog style naming in SDF

?-dir directory_name?

Specify the directory in which all the files will be extracted.

?-netlist?
Forces a netlist to be written. The netlist will be either in Verilog or VHDL
depending on the

-language option.

Design Implementation

205

The netlist file name will have the appropriate extension .v or .vhd appended to

reflect the netlist format.

?-pin?
Designer exports the pin file with this option. The .pin file extension is
appended to the design name to create the pin file.

Notes
We advise you to export both SDF and the corresponding VHDL/Verilog files. This
will avoid name conflicts in the simulation tool.

Designer must have completed layout before this command can be invoked,
otherwise the command will fail.

Exceptions
-pin is not supported for ProASIC and ProASICPLUS families.

Example
Example 1:

backannotate
Uses default arguments and exports SDF file for back annotation

Example 2:
backannotate -dir \
 {..\my_design_dir} -name "fanouttest_ba.sdf" -format "SDF" –
language \ "VHDL93" –netlist
This example uses some of the options for VHDL

Example 3:
backannotate -dir \
 {..\design} -name "fanouttest_ba.sdf" -format "SDF" -language
"VERILOG" \
-netlist
This example uses some of the options for Verilog

Example 4:
If { [catch { backannotate -name "fanouttest_ba" -format "SDF"
}]} {
 Puts “Back annotation failed”
 # Handle Failure
} else {
 Puts “Back annotation successful”
 # Proceed with other operations
}

You can catch exceptions and respond based on the success of
backannotate operation

Libero IDE User's Guide

206

close_design
The close_design command closes the current design and brings Designer to a
fresh state to work on a new design.

Supported Family and Format
Family: All
Format: Tcl

Syntax
close_design

Arguments
None.

Notes
This is equivalent to selecting the Close command in the File menu.

Exceptions
None.

Example
if { [catch { close_design }] {
 Puts “Failed to close design”
 # Handle Failure
} else {
 puts “Design closed successfully”
 # Proceed with processing a new design
}

See Also
open_design, close_design, new_design

Design Implementation

207

compile
The compile command performs design rule check on the input netlist. If the
compile is successful, Designer reaches the compiled state. Compile also
performs some optimizations on the design through logic combining and buffer
tree modifications.

Supported Family and Format
Family: All

Format: Tcl

Syntax
compile ?argument argument …?

Arguments
?-combine_register value?.
Combines registers at the IO into IO-Registers. The value should be 1 for this
optimization to take effect.

?-nl_pins_overwrite?
This option is used to overwrite the imported netlist with the changes made in
PinEditor.

Notes
 -combine_register option is available only for Axcelerator family.
 -nl_pins_overwrite option is not available for Axcelerator, ProASIC and
ProASICPLUS.

Exceptions
There are no compile options available for ProASIC and ProASICPLUS

Example
Example 1:

compile –combine_register

Example 2:

if { [catch { compile –nl_pins_overwrite }] {
 Puts “Failed compile”
 # Handle Failure
} else {
 puts “Compile successful”
 # Proceed to Layout
}

Libero IDE User's Guide

208

export
The export command can be used to create a variety of files from Designer. The user through appropriate format and
options can select these files for export. The basic types of files supported are listed in the following table.

 Files File Type Extension Family

Actel Flattened Netlist

.afl All

Actel Internal Netlist .adl All

Standard Delay Format .sdf All

Standard Timing File .stf ACT1, ACT2, ACT3,

MX, XL, DX, SX

STAMP .mod, .data SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Tcl Script File .tcl All

Verilog Netlist .v All

VHDL Netlist .vhd All

EDIF Netlist File .edn All

Log File .log All

STAPL .stp ProASIC, ProASIC PLUS

Bitstream .bit ProASIC, ProASIC PLUS

Data I/O Programming

File (Legacy)

.dio ACT1, ACT2, ACT3,

XL, DX

Programming File (Legacy) .fus ACT1, ACT2, ACT3,

MX, XL, DX

Actel Programming File .afm ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Routing Segmentation File .seg ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

Design Implementation

209

Silicon Explorer Probe File .prb ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Placement Location File .loc ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

ProASIC Constraints File .GCF ProASIC, ProASIC PLUS

Combiner Info .cob ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX, Axcelerator

Boundary Scan File .bsd DX, 42MX, SX, SX-A,

eX, Axcelerator,

ProASIC, ProASIC PLUS

Criticality *.crt ACT1, ACT2, ACT3,

MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

SDC *.sdc SX-A, eX, Axcelerator,

ProASIC, ProASIC PLUS

Physical Design Constraint *.pdc Axcelerator

Value Change Dump *.vcd

Axcelerator, ProASIC,

ProASIC PLUS

Switching Activity

Intermediate File/Format

*.saif

Axcelerator, ProASIC,

ProASIC PLUS

Design Constraint File *.dcf

ACT1, ACT2, ACT3,

MX, XL, DX, SX, SX-A,

eX

Supported Family and Format
Family: All

Libero IDE User's Guide

210

Format: TCL

Syntax
export -format edif \
 -edif_flavor (generic | viewlogic | mgc | orcad | workview) \
 {filename}
export -format (afm | dio | fus) [-signature value] {filename}
export -format log -diagnostic (filename}
export -format sdf [-prelayout] {filename}
export -format (adl | afl | cob | crt | dcf | design_script | loc |
pin | session_script | stf | tcl | verilog | vhdl | crt | dcf)
{filename}

Design Implementation

211

get_defvar
The get_defvar command provides access to the internal variables within
Designer and returns it’s value.

Supported Family and Format
Family: All

Format: Tcl

Syntax:
get_defvar variable

Arguments
The variable is the Designer internal variable.

Notes
This command also prints the value of the Designer variable on the log window.

Exceptions
None.

Example
Example 1: Prints the design name on the log window.

 get_defvar “DESIGN”
set variableToGet "DESIGN"
set valueOfVariable [get_defvar $variableToGet]
puts "The value is $valueOfVariable"

See Also
set_defvar

Libero IDE User's Guide

212

get_design_filename
The get_design_filename command can be used to retrieve the full qualified path
of the design file.

Supported Family and Format
Family: All
Format: Tcl

Syntax
get_design_filename

Arguments
None.

Notes

• The result will be an empty string if the design has not been saved to disk.

• This command is equivalent to the command “get_design_info

DESIGN_PATH.” This command predates get_design_info and is supported

for backward-compatibility.

Exceptions

• The command will return an error if a design is not loaded.

• The command will return an error if arguments are passed.

Example

if { [is_design_loaded] } {
 set design_location [get_design_filename]
 if {$design_location != "" } {
 puts “Design is at $design_location.”
 } else {
 puts “Design has not been saved to a file on disk.”
 }
} else {
 puts "No design is loaded."
}

See Also
get_design_info

is_design_loaded

is_design_modified

Design Implementation

213

is_design_state_complete

Libero IDE User's Guide

214

get_design_info
The get_design_info command can be used to retrieve some basic details of your
design.

Supported Family and Format
Family: All
Format: Tcl

Syntax
get_design_info name | family | design_path | cwdir | die | package
| speed | design_state

Arguments
The single argument must be one of the valid string values.

name
Design name.The result is set to the design name string.

family

Silicon family. The result is set to the family name.

design_path

Full qualified path of the design file. The result is set to the location of the
.adb file. If a design has not been saved to disk, the result will be an
empty string. This command replaces the command get_design_filename.

design_folder

Directory (folder) portion of the design_path.

design_file

Filename portion of the design_path.

cwdir

Current working directory.The result is set to the location of the current
working directory

die

Die name.The result is set to the name of the selected die for the design.
 If no die is selected, this is an empty string.

Package

Package name.The result is set to the name of the selected package for the
design. If no package is selected, this is an empty string.

Speed

Speed grade.The result is set to the speed grade for the design. If no
speed grade is selected, this is an empty string.

Design Implementation

215

Notes
The result value of the command will be a string value.

Exceptions

• The command will return an error if a design is not loaded.

• The command will return an error if more than one argument is passed.

• The command will return an error if the argument is not one of the valid values.

Example
The following example uses get_design_info to display the various values to the
screen.

if { [is_design_loaded] } {
 puts "Design is loaded."
 set bDesignLoaded 1
} else {
 puts "No design is loaded."
 set bDesignLoaded 0
}
if { $bDesignLoaded != 0 } {
 set var [get_design_info NAME]
 puts " DESIGN NAME:\t$var"
 set var [get_design_info FAMILY]
 puts " FAMILY:\t$var"
 set var [get_design_info DESIGN_PATH]
 puts " DESIGN PATH:\t$var"
 set var [get_design_info DESIGN_FILE]
 puts " DESIGN FILE:\t$var"
 set var [get_design_info DESIGN_FOLDER]
 puts " DESIGN FOLDER:\t$var"
 set var [get_design_info CWDIR]
 puts " WORKING DIRECTORY: $var"
 set var [get_design_info DIE]
 puts " DIE:\t$var"
 set var [get_design_info PACKAGE]
 puts " PACKAGE:\t'$var'"
 set var [get_design_info SPEED]
 puts " SPEED GRADE:\t$var"
 if { [is_design_modified] } {
 puts "The design is modified."
 } else {
 puts "The design is unchanged"
 }
}
puts "get_design.tcl done"

See Also
get_design_filename

is_design_loaded

Libero IDE User's Guide

216

is_design_modified

is_design_state_complete

Design Implementation

217

is_design_loaded
The is_design_loaded returns a Boolean value (0 for false, 1 for true) indicating if
a design is loaded in the Designer software. True is returned if a design is
currently loaded.

Supported Family and Format
Family: All
Format: Tcl

Syntax
is_design_loaded

 Arguments
None

Notes
Some Tcl commands are valid only if a design is currently loaded in Designer.
 Use the ‘is_design_loaded’ command to prevent runtime errors by checking for
this before invoking the commands.

Exceptions
The command will return an error if arguments are passed.

Example
The following code will determine if a design has been loaded.

set bDesignLoaded [is_design_loaded]
if { $bDesignLoaded == 0 } {
 puts “No design is loaded.”
}

See Also
get_design_filename

get_design_info

is_design_modified

is_design_state_complete

Libero IDE User's Guide

218

is_design_modified
The is_design_loaded returns a Boolean value (0 for false, 1 for true) indicating if
a design is loaded in the Designer software. True is returned if a design is
currently loaded.

Supported Family and Format
Family: All
Format: Tcl

Syntax
is_design_loaded

Arguments
none

Notes
Some Tcl commands are valid only if a design is currently loaded in Designer.
 Use the is_design_loaded command to prevent runtime errors by checking for
this before invoking the commands.

Exceptions
The command will return an error if arguments are passed.

Example
The following code will determine if a design has been loaded.

set bDesignLoaded [is_design_loaded]
if { $bDesignLoaded == 0 } {
 puts “No design is loaded.”
}

See Also
get_design_filename

get_design_info

is_design_modified

is_design_state_complete

Design Implementation

219

is_design_state_complete
The is_design_state_complete command returns a Boolean value (0 for false, 1
for true) indicating if a specific design state is valid. True is returned if the
specified design state is valid.

Supported Family and Format
Family: All
Format: Tcl

Syntax
is_design_state_complete SETUP_DESIGN | DEVICE_SELECTION |
NETLIST_IMPORT | COMPILE | LAYOUT | BACKANNOTATE | PROGRAMMING_FILE

Arguments
The single argument must be one of the valid string values.

SETUP_DESIGN
The design is loaded and the family has been specified for the design.

DEVICE_SELECTION
The design has completed device selection (die and package). This corresponds
to having successfully called the set_device command to set the die and package.

NETLIST_IMPORT
The design has imported a netlist.

COMPILE
The design has completed the compile command.

LAYOUT
The design has completed the layout command.

BACKANNOTATE
The design has exported a post-layout timing file (e.g. SDF).

PROGRAMMING_FILE
The design has exported a programming file (e.g. AFM).

Notes
1. Certain commands can only be used after Compile or Layout has been completed.

2. The is_design_state_complete command allows a script to check the design state

before calling one of these state-limited commands.

Exceptions
1. The command will return an error if a design is not loaded.

Libero IDE User's Guide

220

2. The command will return an error if more than one argument is passed.

3. The command will return an error if the argument is not one of the valid values.

Example
The following code runs layout, but checks that the design state for layout is
complete before calling backannotate.
layout –timing_driven
set bLayoutDone [is_design_state_complete LAYOUT]
if { $bLayoutDone != 0 } {
 backannotate -name {mydesign_ba} -format "SDF" -language "verilog"
 }
}

See Also
compile

get_design_filename

get_design_info

is_design_loaded

is_design_modified

layout
set_design
set_device

Design Implementation

221

layout (advanced options for the SX family)
This is equivalent to executing commands within the Advanced Layout Options
dialog box.

Supported Family and Format
Family: SX

Format: Tcl

Syntax
layout [-timing_driven] [-incremental inc_mode] [-extended_run
ext_mode] [-effort_level enumber] [-timing_weight tnumber]
 where inc_mode = “on” | “off” | “fix” , ext_mode =”on” | ”off” ,
enumber is 25 to 500, tnumber is 10-150

Libero IDE User's Guide

222

new_design
The new_design command creates a new design.

Supported Family and Format
Family: All

Format: TCL

Syntax
new_design -name design_name -family family_name –path pathname

Arguments
-name design_name .

The name of the design. This is used as the base name for most of the files
generated from Designer.

-family family_name.
The Actel device family for which the deisgn is being targeted.

-path path_name.
The physical path of the directory in which the design files will be created.

Notes
You need all the 3 arguments for this command. This command will setup the
Designer software for importing design source files.

Exceptions
None.

Example
Example 1: Creates a new ACT3 design with the name “test” in the current
folder.

new_design -name "test" -family "ACT3" -path {.}

Example 2: These set of commands create a new design through variable
substitution.

set desName “test
set famName “ACT3”
set path {d:/examples/test}
new_design -name $desName -family $famName -path $path

Example 3: Design creation and catch failures
if { [catch { new_design -name $desName -family $famName -path
$path }] {
 Puts “Failed to create a new design”

Design Implementation

223

 # Handle Failure
} else {
 puts “New design creation successful”
 # Proceed to Import source files
}

See Also
open_design, save_design, close_design, set_design

Libero IDE User's Guide

224

open_design
The open_design command opens an existing design into the Designer software.

Supported Family and Format
Family: All

Format: Tcl

Syntax
open_design file_name

Arguments
file_name is the complete adb file path. The complete path is not provided then
the directory is assumed to be the current working directory.

Notes
All previously open designs must be closed before opening a new design.

Exceptions
None.

Example
Example 1: Opens an existing design from the file “test.adb” in the current
folder.

open_design {test.adb}

Example 2: Design creation and catch failures.

set designFile {d:/test/my_design.adb}
if { [catch { open_design $designFile }] {
 Puts “Failed to open design”
 # Handle Failure
} else {
 puts “Design opened successfully”
 # Proceed to further processing
}

See Also
new_design, save_design, close_design

pin_assign
The pin_assign command assigns the pin, but does not fix its assignment.

Supported Family and Format
Family: All
Format: Tcl

Design Implementation

225

Syntax:
pin_assign [-nofix] -port <portname> -pin <pin number>
pin_assign -port <port name> [-iostd <i/o standard>]
[-iothresh <i/othreshold>][-outload <output load>]
 [-slew <High | Low>][-res_pull <None | High | Low>]

Arguments
-iostd

Allows to set the I/O Standard

-iothresh

Allows to set the I/O Threshold

-outload

Allows to set the Output Load, also called Loading for some
families

-slew

Allows to set the Slew

-res_pull
Allows to set the Resistor Pull, also called Power Up State for
some families.

Notes
 Must use pin_commit after this command.

Exceptions
None.

Libero IDE User's Guide

226

pin_commit
The pin_commit command saves the pin assignments to the .adb file.

Supported Family and Format
Family: ALL
Format: Tcl

Syntax:
pin_commit

Arguments
None.

Notes
 This is needed after all pin commands to save changes.

Exceptions
None.

Example
Example 1:

 pin_commit

See Also
pin_fix, pin_unfix, pin_assign, pin_unassign

Design Implementation

227

pin_fix
This is equivalent to fixing a pin assignment.

Supported Family and Format
Family: All
Format:Tcl

Syntax:
pin_fix -port port_name

Arguments
-port port_name

specifies the port name for which the pin needs to be fixed at its placed
location.

Notes
Fixed pins cannot be moved during place-and-route. Must use pin_commit after
this command.

Exceptions
None.

Example
Example 1:

Pin_fix –port {clk}
Pin_commit

See Also
pin_commit, pin_unfix, pin_assign, pin_unassign

pin_fix_all
The pin_fix_all commands fixes all the placed pins on the device.

Supported Family and Format
Family: All
Format: TCL

Syntax:
pin_fix_all

Arguments
None.

Notes
 Must use pin_commit after this command exceptions

Libero IDE User's Guide

228

Example
Example 1:

 Pin_fix_all

 Pin_commit

See Also
pin_fix, pin_unfix, pin_commit, pin_unassign

Design Implementation

229

pin_unassign
The pin_unassign command unassigns a specific pin.

Supported Family and Format
Family: All
Format: Tcl

Syntax:
pin_unassign -port port_name

Arguments
-port port_name

specifies the port for which the pin must be unassigned.

Notes
The unassigned pin location is now available for other ports. Must use
pin_commit after this command.

Exceptions

Example
Example 1:

Pin_unassign –port “clk”
Pin_commit

See Also
pin_fix, pin_unfix, pin_commit, pin_unassign

Libero IDE User's Guide

230

pin_unassign_all
The pin_unassign_all command unassigns all the pins.

Supported Family and Format
Family: All
Format: Tcl

Syntax:
pin_unassign_all

Arguments
None.

Notes
Now all the pin locations are available for assignment. Must use pin_commit after
this command.

Exceptions
None.

Example
Example 1:

pin_unassign_all

pin_commit

See Also
pin_fix, pin_unfix, pin_commit, pin_unassign

Design Implementation

231

pin_unfix
The pin_unfix command unfixing a pin assignment, allowing it to be moved
during place-and-route.

Supported Family and Format
Family: All
Format: Tcl

Syntax:
pin_unfix -port port_name

Arguments
-port port_name

specifies the port name that must be unfixed.

Notes
 Pin_commit command must be used for this command to take effect.

Exceptions
None.

Example
Example 1:

 Pin_unfix –port “rst”

 Pin_commit

See Also
pin_fix, pin_commit, pin_assign, pin_unassign

Libero IDE User's Guide

232

report
The report command gives the user the ability to generate the Power report using
TCL

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
report -type "power" -sortby "Power Values" | “Alphabetical” -
sortorder "Descending"| “Ascending” -style "Hierarchical" -opcond
"Typical" -stat_pow "TRUE"|”FALSE” -dyn_pow "TRUE"|”FALSE” -domains
"TRUE"|”FALSE” -annotated_pins "TRUE"|”FALSE” -min_ratio "number" -
max_depth "number" -min_power "number mW" {.\report_name.rpt}

Arguments
-type “power”

Specifies that the type for the report to be generated is a power report

?-sortby "Power Values" | “Alphabetical”?
Specifies the method of sorting the values in the report

?-sortorder "Descending"| “Ascending”?
Specifies the sort order of the values in the report

?-style "Hierarchical" ?

Specifies the style of displaying the results in the report

?-opcond "Typical" ?

Specifies what operating conditions to be used

?-stat_pow "TRUE"|”FALSE”?

Specifies whether to include the Static Power value in the report.

?-dyn_pow "TRUE"|”FALSE”?

Specifies whether to include the Dynamic Power in the report.

?-domains "TRUE"|”FALSE”?

Specifies whether to include the modifies domains into the power report

?-annotated_pins "TRUE"|”FALSE”?

Specifies whether to include the annotated pins into the report or not

?-min_ratio "number" ?

Specifies which block to be expanded based on the minimum power ratio of
a block with respect to the overall power value.

?-max_depth "number" ?

Specifies the maximum hierarchy depth to be included in the report.

?-min_power "number mW" ?
Specifies which block to be expanded based on the minimum power value of a
block.

Design Implementation

233

{.\report_name.rpt}
Specifies the name and destination of the report

Notes
None

Exceptions
None

Example
report -type "power" -sortby "Power Values" -sortorder "Descending" -
style "Hierarchical" -opcond "Typical" -stat_pow "TRUE" -dyn_pow
"TRUE"
-domains "TRUE" -annotated_pins "TRUE" -min_ratio "10" -max_depth "2"
 -min_power "2 mW" {e:\SmartPower\report.rpt}

Libero IDE User's Guide

234

save_design
The save_design command saves the current design in Designer to a file.

Supported Family and Format
Family: All

Format: Tcl

Syntax
save_design filename

Arguments
The design is written to a file denoted by the variable filename as an ADB file.

Notes
If filename is not a complete path name, the ADB file is written into the current
working directory.

Exceptions
None.

Example
Example 1: Saves the design to a file “test.adb” in the current folder.

save_design {test.adb}

Example 2: Save design and check if it saved successfully.

set designFile {d:/test/my_design.adb}
if { [catch { save_design $designFile }] {
 Puts “Failed to save design”
 # Handle Failure
} else {
 puts “Design saved successfully”
 # Proceed to make further changes
}

See Also
open_design, close_design, new_design

Design Implementation

235

set_design
This set_design command specifies the design name, family and path in which
Designer will process the design. This step is absolutely required before importing
the source files.

Supported Family and Format
Family: All

Format: Tcl

Syntax
set_design -name design_name -family family_name –path path_name

Arguments
-name design_name .

The name of the design. This is used as the base name for most of the files
generated from Designer.

-family family_name.
The Actel device family for which the design is being targeted.

-path path_name.
The physical path of the directory in which the design files will be created.

Notes
You need all 3 arguments for this command to setup your design.

Example
Example 1: Sets up the design and checks if there are any errors

set_design -name "test" -family "Axcelerator" -path {.}
set desName “test
set famName “ACT3”
set path {d:/examples/test}

if { [catch { set_design -name $desName -family $famName -path $path
}] {
 Puts “Failed setup design”
 # Handle Failure
} else {
 puts “Design setup successful”
 # Proceed to Import source files
}

See Also
new_design, set_device

Libero IDE User's Guide

236

Design Implementation

237

set_device
The set_device command specifies the type of device and its parameters.

Supported Family and Format
Family: All

Format: Tcl

Syntax
set_device Option1 ?Option2 Option3 …?

Options:
 ?-family family_name?
 ?-die die_name?
 ?-package package_name?
 ?-speed speed_grade?
 ?-voltage voltage?
 ?-voltrange volt_range?
 ?-temprange temp_range?
 ?-pci yes|no?
 ?-jtag yes|no?
 ?-probe yes|no?
 ?-itol 3.3|5.0?
 ?-io_trip pci|ttl?
 ?-trst yes|no?
 ?-scope “session”|…?
 ?-iostd “PCIX|…?

Arguments
-family family_name

Specifies the name of the FPGA device family.

-die die_name
Specifies the part name.

-package package_name

Specifies the selected package for the device.

-speed speed_grade

Specifies the speed grade of the part.

-voltage voltage

Specifies the core voltage of the device.

-voltrange volt_range
Specifies the voltage range to be applied for the device. It is generally MIL,
COM and IND denoting Military, Commercial and Industrial respectively.

-temprange temp_range

Libero IDE User's Guide

238

Specifies the voltage range to be applied for the device. It is generally MIL,
COM and IND denoting Military, Commercial and Industrial respectively.

-pci yes|no
Specified if the device needs to configure the IO for PCI specification.

-jtag yes|no
Specifies if pins need to be reserved for JTAG.

-probe yes|no
Specifies if the pins need to be preserved for probing.

-trst yes|no
Specifies if the pins need to be reserved for JTAG test reset.

Notes
At least one option must be specified for this command. Some of the options may
not apply for certain families that do not support the features.

Example
Example 1: Setting up a PA design.

set_device -die "APA075" -package "208 PQFP" -speed "STD" -voltage
"2.5" \
-jtag "yes" -trst "yes" -temprange "COM" -voltrange "COM"

See Also
new_design, set_design

Design Implementation

239

set_defvar
The set_defvar command sets an internal variable in the Designer system.

Supported Family and Format
Family: All

Format: Tcl

Syntax
set_defvar variable value

Arguments
Variable must be a valid Designer internal variable and could be accompanied by
an optional value. If the value is provided, the variable is set the value. If the
value is null the variable is reset.

Notes
Must have at least one argument.

Exceptions
None.

Example
Example 1:

set_defvar “FOREMAT” “VHDL”
Sets the FORMAT internal variable to VHDL.

Example 2:
set variableToSet "DESIGN"
set valueOfVariable “VHDL”
set_defvar $variableToSet $valueOfVariable

These commands set the FORMAT variable to VHDL, shows the use of varables
for this command.

See Also
get_defvar

Libero IDE User's Guide

240

smartpower_add_pin_in_domain
smartpower_add_pin_in_domain adds a pin into a Clock or Set domain.

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_add_pin_in_domain -pin_name {pin_name} -pin_type {clock} |
{set} – domain_name {domain_name} -domain_type {clock} | {set}

Arguments
-pin_name {pin_name}

 Specifies the name of the pin to be added to the domain

-pine_type {clock} | {data}
 Specifies the type of the pin to be added. The pin added will be either a
 clock pin or a data pin.

-domain_name {domain_name}
 Specifies the name of the domain to be added

-domain_type {clock} | {set}
 Specifies the type of the domain to be added.

Notes

• The domain_name must be a name of an existing domain.

• The pin_name must be a name of a pin that exists in the design.

Exceptions
None

Example
 Example 1: To a pin to an existing Clock domain

smartpower_add_pin_in_domain -pin_name { XCMP3/U0/U1:Y } -
pin_type {clock} –domain_name {clk1} -domain_type {clock}

Example 2: To add a data pin to an existing Set domain

smartpower_add_pin_in_domain -pin_name {XCMP3/U0/U1:Y} -pin_type
{data} -domain_name {myset} -domain_type {set}

See Also
smartpower_remove_pin_of_domain

Design Implementation

241

smartpower_commit
The smartpower_commit command saves the changes made to the Designer
database.

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
Smart_power_commit

Arguments
None

Notes
None

Exceptions
None

Example
Smart_power_commit

See Also
smartpower_restore

Libero IDE User's Guide

242

smartpower_create_domain
The smartpower_create_domain creates a new clock or set domain

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_create_domain -domain_type {clock}| {set} -domain_name
{domain_name}

Arguments
-domain _type {clock}| {set}
Specifies that the domain that is being created is either a clock domain or set
domain
-domain_name {domain_name}
Specifies the domain name to be created.

Notes
The –domain_type must be either “clock” or “set”
The domain name must not be a name of an existing domain.

Exceptions
None

Example
smartpower_create_domain -domain_type {clock} -domain_name {clk2}
smartpower_create_domain -domain_type {set} -domain_name {myset}

See Also
smartpower_remove_domain

Design Implementation

243

smartpower_remove_domain
The smartpower_remove_domain removes and existing domain

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_remove_domain -domain_type {clock}| {set} -domain_name
{domain_name}

Arguments
-domain _type {clock}| {set}

Specifies that the domain that is being removed is either a clock domain or
a set domain

-domain_name {domain_name}

Specifies the domain name to be removed.

Notes

• The –domain_type must be either “clock” or “set”

• The domain name must be a name of an existing domain.

Exceptions
None

Example
smartpower_remove_domain -domain_type {clock} -domain_name {clk2}
smartpower_remove_domain -domain_type {set} -domain_name {myset}

See Also
smartpower_create_domain

Libero IDE User's Guide

244

Design Implementation

245

smartpower_remove_pin_frequency
smartpower_remove_pin_frequency command removes the frequency of a pin

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICplus
Format: Tcl

Syntax:
smartpower_remove_pin_frequency -pin_name {pin_name}

Arguments
-pin_name {pin_name}

 Specifies the name of the pin for which the frequency will be removed

Notes

• The pin_name must be the name of a pin that already exists in the design and

already belongs to a domain.

Exceptions
None

Example
smartpower_remove_pin_frequency -pin_name {count8_clock}

See Also
smartpower_set_pin_frequency

Libero IDE User's Guide

246

smartpower_remove_pin_of_domain
smartpower_remove_pin_of_domain removes a clock pin or a data pin from a Clock or Set domain respectively.

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_remove_pin_of_domain -pin_name {pin_name} -pin_type {data} |
{clock} -domain_name {domain_name} -domain_type {set}| {clock}

Arguments
-pin_name {pin_name}

 Specifies the name of the pin to be removed

-pin_type {data} | {clock}

Specifies the type of the pin to be removed .The pin could be either a data
 pin or a clock pin.

-domain_name {domain_name}

Specifies the domain name from which to delete the pin

-domain_type {set}| {clock}

Specifies the type of the domain from which a pin is being removed.

Notes

• The pin_name must be a name of a pin that already exists in the design

• The domain_name must be a name of an existing domain

Exceptions
None

Example
Example 1: Removes a pin from a Clock domain

smartpower_remove_pin_of_domain -pin_name {XCMP3/U0/U1:Y}
-pin_type {clock} -domain_name {clockh} -domain_type {clock}

Example 2: Removes a data pin from a Set domain

smartpower_remove_pin_of_domain -pin_name {count2_en} -pin_type
{data} -domain_name {InputSet} -domain_type {set}

See Also
smartpower_add_pin_in_domain

Design Implementation

247

smartpower_restore
The smartpower_restore command restores previous committed constraints

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
Smart_power_restore

Arguments
None

Notes
None

Exceptions
None

Example
Smart_power_restore

See Also
smartpower_commit

Libero IDE User's Guide

248

Design Implementation

249

smartpower_set_domain_frequency
The smartpower_set_domain_frequency sets the frequency of a domain

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_set_domain_frequency –domain_type {clock}| {set} –
domain_name {domain_name} –clock_freq {clock_frequency} –data_freq
{data_frequenc}

Arguments
-domain _type {clock}| {set}

Specifies that the domain to set the frequency for is either a Clock domain
or a Set domain

-domain_name {domain_name}

 Specifies the domain name

-clock_freq {clock_frequency}

 Specifies the frequency values in positive decimal number. Units in MHz.

-data_freq {data_frequenc}

Specifies that data frequency of the domian

Notes

• The –domain_type must be either “clock” or “set”

• The domain name must be a name of an existing domain.

• The clock frequency must be a positive decimal number. Specifying the unit as

part of the frequency value is optional. There must be a space between the

frequency value and the unit. The clock frequency needs to be set only for the

clock domains.

• The data frequency must be a positive decimal number. Specifying the unit as

 part of the data frequency value is optional. There must be a space between the

data frequency value and the unit.

Exceptions
None

Libero IDE User's Guide

250

Example
Example 1: Setting the clock frequency and the data frequency of a clock
domain.

smartpower_set_domain_frequency –domain_type {clock} –domain_name
{clk1} –clock_freq {32} or {30 MHZ} –data_freq {3} or {3 Mhz}

Example 2: Setting the data frequency of a set domain.

smartpower_set_domain_frequency –domain_type {set} –domain_name
{set1} –data_freq {10}.

See Also
smartpower_create_domain

smartpower_remove_domain

Design Implementation

251

smartpower_set_pin_frequency
The smartpower_set_pin_frequency command sets the frequency of a pin.

Supported Family and Format
Family: Axcelerator, ProASIC, and ProASICPLUS
Format: Tcl

Syntax:
smartpower_set_pin_frequency -pin_name {pin_name} -pin_freq
{frequency_value}

Arguments
-pin_name {pin_name}

 Specifies the name of the pin for which the frequency will be set

-pin_freq {frequency_value}

 Specifies the values of the frequency. The frequency can be any positive
decimal number. Units in MHz

Notes

• The pin_name must be the name of a pin that already exists in the design and

already belongs to a domain.

• When specifying the unit, a space must be between the frequency value and the

unit.

Exceptions
None

Example
smartpower_set_pin_frequency -pin_name {count8_clock} -pin_freq {100}

See Also
smartpower_remove_pin_frequency

Libero IDE User's Guide

252

timer_add_clock_exception
The timer_add_clock_exception adds an exception to or from a pin with respect
to a specified clock.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_add_clock_exception -clock clock_name -pin pin_name -dir
{from}|{to}

Arguments
-clock clock_name

Specifies the clock name.

-pin pin_name
Specifies the exception on the pin in a synchronous network that should be
excluded from the specified clock period.

-dir {from}|{to}
Specifies direction. <Need to explain more>

Notes
None.

Exceptions
None.

Example
Example 1: Adding a clock exception from the pin reg_q_a_10_/U0:CLK with
respect to the clock clk.

timer_add_clock_exception -clock {clk} -pin {reg_q_a_10_/U0:CLK}
-dir {from}

Example 2: Adding a clock exception to the pin reg_q_a_10_/U0:E with respect
to the clock clk.

timer_add_clock_exception -clock {clk} -pin {reg_q_a_10_/U0:E} -
dir {to}

Design Implementation

253

timer_add_pass
The timer_add_pass command adds the pin to the list of pins for which the path
must be shown passing through, in the timer.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_add_pass

-pin pin_name

Arguments
-pin pin_name

Specifies the name of the pin to be included for displaying the timing path
through it.

Notes
Setting a pass on a module pin enables you to see a path through individual pins.

Example
Example 1: Adding pass through the pin reg_q_a_0_:CLK

timer_add_pass -pin {reg_q_a_0_:CLK}

Example 2: Adding pass through a clear pin reg_q_a_0_:CLRin the design

timer_add_pass -pin {reg_q_a_0_:CLR}

See Also
timer_add_stop

Libero IDE User's Guide

254

timer_add_stop
The timer_add_stop command adds the specified pin to the list of pins through
which the paths will not be displayed in the timer.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_add_stop -pin pin_name

Arguments
-pin pin_name
specifies the name of the pin to be excluded from displaying the path.

Notes
Without stop points, you see all the paths from pad to pad in the design. If you
do not want to see the paths going through registers clock pins, you could specify
these as stop points. The path going through those pins would not be displayed.

Exceptions
None.

Example
 Example 1: Adding stop to the pin a<2>

timer_add_stop -pin {a<2>}

 Example 2: Adding a stop to a clock and a clear pin in the design

timer_add_stop -pin {reg_q_a_0_:CLK}

timer_add_stop -pin {reg_q_a_0_:CLR}

See Also
Timer_add_pass

Design Implementation

255

timer_commit
The timer_commit command saves the changes made to constraints into the
Designer database.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_commit

Arguments
None.

Notes
None.

Exceptions
None.

Example
Example 1:

timer_commit

Libero IDE User's Guide

256

timer_get_path
The timer_get_path command obtains the path information from the timer and
reports it to the log window.

Supported Family and Format
Family: All
Format: Tcl

Syntax:
timer_get_path -from source_pin -to destination_pin

?-exp no | yes ?
?-sort actual | slack?
?-order long | short ?
?-case worst | typ | best ?
?-maxpath maximum_paths ?
?-maxexpath maximum_paths_to_expand?
?-mindelay minimum_delay?
?-maxdelay maximum_delay?
?-breakatclk no | yes ?
?-breakatclr yes | no ?

Arguments
-from source_pin

specifies the source pin of the path.

-to destination_pin

specifies the destination pin for the path.

?-exp no | yes ?

specifies if the path needs to be expanded.

?-sort actual | slack?

specifies if the paths need to be sorted based on actual delay or the slack
value.

?-order long | short ?

specifies if the maximum list size is based on longest or shortest paths.

?-case worst | typ | best ?

specifies if the report must consider timing values for the worst, typical or
best cases.

?-maxpath maximum_paths ?

specifies the maximum number of paths to be reported.

?-maxexpath maximum_paths_to_expand?

specifies if number of maximum paths to be expanded.

?-breakatclk no | yes ?

specifies if the paths must be broken at the register clock pins

?-breakatclr yes | no ?

specifies if the paths must be broken at the register clear pins

Design Implementation

257

Notes
None.

Exceptions
None.

Example
Example1:

timer_get_path -from "headdr_dat<31>" \
-to "u0_headdr_data1_reg/data_out_t_31/U0:D" \
-case typ \
-exp "yes" \
-maxpath "100" \
-maxexpapth "10"

Libero IDE User's Guide

258

timer_get_clock_actuals
The timer_get_clock_actuals finds and reports the actual clock frequency when
timer is initiated.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_get_clock_actuals -clock “name”

Arguments
List supported arguments here with an explanation of each argument.

Notes
 The actual clock frequency is reported in the log window.

Exceptions
None.

Example
Example 1: Reports the actual clock frequency on the clock clk1

timer_get_clock_actuals -clock clk1

Design Implementation

259

timer_get_clock_constraints
The timer_get_clock_constraints? <No idea what this does. No info anywhere>

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_get_clock_constraints -clock clock_name

Arguments
-clock clock_name

specifies the clock for which the constraint needs to be reported.

Notes
None

Exceptions
None.

Example
Example 1: Reports the clock constraint on the clock clk1

timer_get_clock_constraints -clock clk

Libero IDE User's Guide

260

timer_get_maxdelay
The timer_get_maxdelay command obtains maximum delay constraint between 2
pins of a path.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_get_maxdelay -from source_pin -to destination_pin

Arguments
-from source_pin

Specified the source pin of the path.

-to destination_pin
Specifies the destination pin of the path.

Notes
 You can use the following macros in the command:

$in()
to specify all inputs.

$out()

to specify all output pins.

$reg(clock_name)

to specify all registers relates to clock_name..

Exceptions
None.

Example
Example 1: Get the max delay constraint from all registers of clk166 to all
outputs

timer_get_maxdelay -from {$reg(clk166)[*]} -to {$out()[*]}

Example 2: Get the max delay constraint from the pin clk166 to the pin
reg_q_a_9_/U0:CLK

timer_get_maxdelay -from {clk166} -to {reg_q_a_9_/U0:CLK}

Example 2: Get max delay constraint from all inputs to all registers of clock166
and also check for errors in the command.

if [catch {timer_get_maxdelay -from {$in()[*]} -to
{$reg(clk)[*]}}] {

Design Implementation

261

 puts "Error getting max_delay information"
} else {
 puts "Successfully obtained max_delay information"
}

See Also
timer_set_maxdelay

Libero IDE User's Guide

262

timer_get_path_constraints
The timer_get_path_constraints reports the path constraints that were set as
max delay in the timer.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_get_path_constraints

Arguments
None.

Notes
 If no max delay constraints are set this command will not report any delay
values. <Can report “No valid path constraints found”>. The information is
displayed in the log window.

Exceptions
None.

Example
Timer_get_path_constraints.

Design Implementation

263

timer_remove_clock_exception
The timer_remove_clock_exception command removes the previously set clock
constraint.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_remove_clock_exception -clock clock_name -pin pin_name -dir
{from}|{to}

Arguments
-clock clock_name

Specifies the clock name.

-pin pin_name
Specifies the exception to be removed on the pin in a synchronous
network.

-dir {from}|{to}
Specifies the direction <Need to explain more>

Notes
None.

Exceptions
None.

Example
Example 1: Removing a clock exception from the pin reg_q_a_10_/U0:CLK with
respect to the clock clk.

timer_remove_clock_exception -clock {clk} -pin {reg_q_a_10_/U0:CLK} -
dir {from}

Example 2: Removing a clock exception to the pin reg_q_a_10_/U0:E with
respect to the clock clk.

timer_remove_clock_exception -clock {clk} -pin {reg_q_a_10_/U0:E} -
dir {to}.

See Also
timer_add_clock_exception

Libero IDE User's Guide

264

Design Implementation

265

timer_remove_pass
The timer_remove_pass command removes the path pass constraint that has
been previously entered.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_remove_pass -pin pin_name

Arguments
-pin pin_name
specifies the pin for which the path pass constraint must be removed.

Notes
 None.

Exceptions
None.

Example
Example1 : removes the pass constraint from the clock pin reg_q_a_0_:CLK.
timer_remove_pass -pin {reg_q_a_0_:CLK}

See Also
timer_add_pass

Libero IDE User's Guide

266

timer_remove_stop
The timer_remove_stop command removes the path stop constraint on the specified pin

that has been previously entered.

Supported Family and Format
Family: All
Format: TCL

Syntax
timer_remove_stop -pin pin_name

Arguments
-pin pin_name, specifies the pin for which the path stop constraint must be
removed..

Notes

• Export of script writes the constraint wrong with timer_remove_pass instead of

timer_remove_stop

Exceptions
None.

Example
Example 1: Removes the path stop constraint on the clear pin reg_q_a_0_:CLR.

timer_remove_stop -pin {reg_q_a_0_:CLR}

See Also
Timer_add_stop

Design Implementation

267

timer_restore
The timer_restore command restores previous committed constraints.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_restore

Arguments
None.

Exceptions
None.

Libero IDE User's Guide

268

timer_setenv_clock_freq
The timer_setenv_clock_freq command sets a required clock frequency for the
specified clock, in MHz.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_setenv_clock_freq -clock clock_name -freq frequency_value

Arguments
-clock clock_name

Specifies the clock for which the constraint is intended.

-freq frequency_value
Specifies the frequency in MHz.

Notes
None.

Exceptions
None.

Example
Example 1: Sets a clock frequency of 100MHz on the clock clk1

timer_setenv_clock_freq -clock {clk1} -freq 100.00

Design Implementation

269

timer_setenv_clock_period
The timer_setenv_clock_period command sets the clock period constraint on the
specified clock.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_setenv_clock_period -clock clock_name ?-unit {ns}|{ps}? -period
period_value

Arguments
-clock clock_name

specifies the clock name for which the constraints in intended.

?-unit “ns”|”ps”?
optional argument specifies the unit for the clock period constraint. Default
is “ns”

-period period_value
specifies the period in the specified unit.

Notes
 None.

Exceptions
None.

Example
Example 1: Sets a clock period of 2.40ns on the clock clk1

timer_setenv_clock_period -clock {clk1} -unit {ns} -period 2.40

Libero IDE User's Guide

270

timer_set_maxdelay
The timer_set_maxdelay adds a maximum delay constraint for the path.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_set_maxdelay -from source_pin -to destination_pin ?-unit
{ns}|{ps}? -delay delay_value

Arguments
-from source_pin

Specifies the source pin of the path.

-to destination_pin
Specifies the destination pin of the path.

?-unit “ns”|”ps”?
Specifies if the delay unit.

-delay delay_value
Specifies the actual delay value for the path.

Notes
You can use the following macros in the command:
 $in(), to specify all inputs.
 $out(), to specify all output pins.
 $reg(clock_name), to specify all registers relates to
clock_name.

Exceptions
None.

Example
Example 1: Set 20ns delay from all registers of clk166 to all outputs

timer_set_maxdelay -from {$reg(clk166)[*]} -to {$out()[*]} -unit {ns} -delay 20.00

Example 2: Set delay value of 30ns from all inputs to all outputs

timer_set_maxdelay -from {$in()[*]} -to {$out()[*]} -unit {ns} -delay 30.00

Design Implementation

271

timer_remove_all_constraints
The timer_remove_all_constraints command removes all the timing
constraints that have already been entered in the Designer system.

Supported Family and Format
Family: All
Format: Tcl

Syntax
timer_remove_all_constraints

Arguments
None.

Notes
None.

Exceptions
None.

Example
 Example 1: Remove all constraints and commit the changes.

timer_remove_all_constraints
timer_commit

See Also
timer_commit

273

SmartPower
Welcome to SmartPower
Welcome to SmartPower, the Actel power analysis tool. SmartPower supports only
Flash and Axcelerator devices at this time; if you are not using a Flash or Axcelerator
device, the SmartPower button disappears from your toolbar. For information on
future support for other device families, visit the Actel website at
http://www.actel.com.

When you launch SmartPower, you must first input your target clock and
data frequencies before you evaluate your power consumption. There is no
way to accurately measure the power consumption of your design without
first entering your target clock and data frequencies.

For a complete description of the SmartPower tool, please refer to the SmartPower
User's Guide, included with your user documentation.

Invoking SmartPower

You can only use SmartPower after you open a compiled design (*.adb file), or after
compiling and layout of your netlist in Designer. If you invoke SmartPower before
compiling your netlist, Designer guides you through the compile and layout.

There are three ways to invoke the SmartPower analysis tool:

1. Choose SmartPower from the Tools menu

2. Click the SmartPower icon in the Designer toolbar

3. Click the SmartPower button in Designer design flow

When you launch SmartPower for the first time, all clocks are assigned a frequency
of 10 MHz by default. In addition, SmartPower sets all data frequencies to 1 MHz. In
order for you to accurately measure the power consumption of a design, you must
specify the target clock and data frequencies.

Steps to Calculate Power
Use the steps below to calculate your power consumption. The steps are identified by the

tabs you must view (in the order you must view them) so that you may analyze your

power accurately. Click the various tab names for a description of each tab. See the

Power Analysis section of the online help for a complete explanation of each step.

1. Domains tab - Define clock domains, and specify a clock frequency and a data

frequency for each clock domain.

Libero IDE User's Guide

274

2. Activity tab - Advanced specification of frequencies. This step is optional, but

gives you a pin-by-pin control of the frequency.

3. Summary tab - View global power at the design level and view its impact on

Junction temperature.

4. Dynamic tab - View detailed hierarchical analysis of your power consumption.

This step is also optional. But if your power consumption exceeds your budget,

this step will help you to understand where there is room for improvement.

SmartPower Interface

Summary tab
The Summary tab is divided into two sections: Power Consumption and
Temperatures.

SmartPower Summary Tab

Power Consumption

Displays the total static and dynamic power of the design. (Accurate only after you
have entered your target clock and data frequencies!)

SmartPower

275

Temperatures

Displays the impact of the power consumption on the junction temperature for a
given cooling scenario. You can specify a cooling scenario using the drop-down menu
(available scenarios are: Still Air, 300 ft/min, Custom, and Case Cooling; default is
still air). SmartPower also reports the thermal resistance, θJA.

The junction temperature estimation T is dependent on the thermal resistance (θJA)
(which is itself package and cooling-style dependent), and also on the ambient
temperature TA and the total dynamic power consumption of your design P. The
formula is:

where:

Domains tab
The Domains tab consists of two windows: the Domain Management window and the
Pin Management window. You can use these windows to add or remove domains. In
addition, you can change the clock and/or data frequency of a selected domain.

SmartPower Domains Tab

Libero IDE User's Guide

276

Domain Management

The Domain Management window displays a list of existing domains with their
corresponding frequencies.

The Domain Management window enables you to create new CLK domains or Set-Of-
Pins. Also, You can delete or modify existing CLK or Set-Of-Pins domains.

To create a new CLK domain or Set-Of-Pins, click Add Domain and choose to add a
new Clock Domain or Set-Of-Pins. Input the relevant information (potential clock
pin, clock and data frequency for a clock domain; name and frequency for a pin) and
click Create.

Pin Management

Any pins that do not belong to a domain are listed in the Unclassified Pins list box
in the Pin Management window. You can select a pin from the Unclassified Pins list
box and add it to the current domain. You may also select a pin from the current
domain and remove it from the domain (this pin will appear in the Unclassified
Pins list box).

Use the filter boxes to narrow your search for a specific pin. The boxes are text
filters, * is a wildcard.

Dynamic tab
The Dynamic tab enables you to inspect detailed hierarchical reports of the dynamic
power consumption. The Dynamic tab consists of two windows: the hierarchy of
instances window, and the report window.

SmartPower Dynamic Tab

SmartPower

277

Hierarchy of Instances Window

SmartPower displays the hierarchy of instances in a list in the hierarchy window.
Sub-blocks of a block are shown in the tree when you click the plus sign (+) next to
the block. Only hierarchical blocks are displayed in this list (no gates or nets).

When you select a block of the hierarchical tree, SmartPower displays its name and
its dynamic power consumption in the report window.

Report Window

SmartPower displays the list of sub-elements of the selected block in the Report
window. By default, this list includes all sub-elements. The dynamic power
consumption of each sub-element is displayed with useful information like the fanout
and the driver-name for a net, or the macro model-name for a gate.

You may limit the list of sub-elements to a list of sub-blocks, or gates, or nets, or
any combination of these 3 classes of sub-elements. You may also sort the list
according to different criteria (double-click a column label to sort the list based on
this column, or change the sort-order).

You can export (to a text file) and print the grid that details your design’s power
consumption. To do so, select the elements of the grid that you wish to export or
print, and then from the File menu select Export Grid or Print Grid, respectively.

Activity tab
Use the Activity tab to attach switching activity information on interconnects of the
design. The Activity tab is divided into the Select A Domain drop-down menu, the
Frequency Estimation area, and the Switching Activities Annotation area.

Libero IDE User's Guide

278

SmartPower Activity Tab

Select a Clock Domain Drop Down Menu

Specifies the clock domain (or set of pins). Use the drop-down menu to select a
different domain.

You can create your own unique set of pins in the Domains tab.

Average Frequencies

Includes the average frequency of the clock-pins and data-pins of the selected clock
domain. Use the Select a Domain drop-down menu to choose another clock domain.
If you wish, you may select a set of pins rather than a clock domain. If you select a
set of pins instead of a clock domain, SmartPower reports only one average
frequency (the average frequency of all the pins of the selected set).

Average Frequencies are useful when you import a VCD file or SAIF file. Since these
files enable you to specify the frequency of each pin individually, it is often useful to
know the average clock-pin or data-pin frequency for a particular clock domain.

To view the Average Frequencies of a clock domain:

SmartPower

279

1. Select a clock domain. Click the Activity tab, and select a specific domain in the

list.

2. Verify the average clock frequency. If you did not specify a frequency annotation

for any clock-pin in this clock domain, the average value is equal to the default

clock-frequency of the clock domain. If you annotated one or several clock-pins,

SmartPower takes these specific annotations into account to compute an average

value.

3. Verify the average data frequency. If you did not specify a frequency annotation

for any data-pin in this clock domain, the average value is equal to the default

data-frequency of the clock domain. If you annotated one or several data-pins,

SmartPower takes these specific annotations into account to compute an average

value.

Default Frequencies

Enables you to specify the global clock frequency and data frequency for the given
clock domain (or set of pins). For designs with multiple clocks, SmartPower defaults
to the first clock in alphabetical order. If you wish, you may select a set-of-pins
rather than a clock-domain. In this case, you can modify only one frequency (this
frequency is used for all the pins of the selected set).

Switching Activities Annotation Area

Enables you to specify the switching activities for individual pins in the Clock
Domain. SmartPower displays the pins that have not been annotated in the Not
Annotated list box.

Select a pin and specify a different frequency for this pin using the text-box and the
Set To button. When you select a pin and specify a frequency, SmartPower removes
the pin from the Not-Annotated list-box and adds it to the Annotated list-box.
Hold down the CTRL key and click with the mouse to select multiple pins.

Use the Select All button to select all the pins in a list-box. Filter boxes are provided
below the list boxes to limit the size of each list of pins. Enter text in these boxes
and click Set to apply this text as a filter (the * character is a wildcard). It is also
possible to limit the type of each list of pins using a drop-down menu that enables
you select All-Pins, Data-Pins or Clock-Pins.

SmartPower Preferences
Enables you to set options that affect the graphical and textual reports. To open the
SmartPower - Preferences dialog box, from the File menu choose Preferences.
Alternatively, you can click Options in the Power Report dialog box.

Libero IDE User's Guide

280

SmartPower Preferences Dialog Box

There are four sections: Maximum List Size Control, Default Sort Control,
Units, and Operating Conditions.

• Maximum List Size Control: Enables you to limit the size of all lists displayed in

the SmartPower tab screens (option unavailable at this time).

• Default Sort Control: Modifies the default sort for all the lists in SmartPower

(available sort keys are Alphabetical or Power values, in either ascending or

descending order).

• Units: Sets unit preferences for power and frequency.

• Operating Conditions: Displays operating conditions; Typical is the only option

available at this time.

Use Toggle Rates

When toggle rates are active (Toggle Rates box is checked), the data frequency of all
the Clock Domains are defined as a function of the percentage of the clock
frequency. This updates the data frequency automatically when you update the clock
frequency. Toggle Rates enable you to specify the data frequency as a percentage of
clock frequency, but you can no longer specify the actual data frequency, only a
percentage value.

Set the data frequency percentage when you create a new clock domain with Toggle

Rates active. Also, when toggle rates are active you can set the data frequency
percentage in the Domain and Activity tabs.

SmartPower

281

Create Clock Domain - Toggle Rates Enabled

Power Reports
The power report enables you to quickly determine if any power consumption
problems exist in your design. The power report lists the following information:

1. Global device information and SmartPower Preferences selection information

2. Dynamic power summary

3. Design-level static power summary

4. Hierarchical detailed power report (including gates, blocks, and nets), with a

block by block, gate by gate, and net by net power summary

Click the Report button to open the Report dialog box. Specify which results you
want to display (static or dynamic Power).

SmartPower Report Dialog Box

Libero IDE User's Guide

282

The SmartPower report returns a complete list of all the blocks, gates, and nets and
the related power consumption in the device (it returns the same information
displayed in the Dynamic tab, but it is more printer friendly).

Set the options in the Textual Report Control to customize your power report.
Click the checkboxes to include information on Static Power, Dynamic Power,
Domains, and Annotated Pins (Actual Values are included in all power reports;
Breakdown information is not available at this time).

SmartPower Report

The report fully expands all the info included in the Dynamic tab by default; use the
Block Expansion Control to expand only the blocks you are interested in.

The Block Expansion Control options filter the values returned in the report. Block
Expansion does not control which values are included (the Textual Report Control
options determine content), rather it specifies which blocks are detailed or expanded.

You may specify which blocks are expanded using a Minimum Power value, a Minimum

Ratio (with regards to the total power of the design) and a Maximum (hierarchical)

Depth; a value filtered by Block Expansion Control is not included in displayed lists, but

it is still included in the upper hierarchical analysis of the design. In other words,

SmartPower still includes filtered values in the power analysis.

SmartPower

283

SmartPower toolbar / menu commands
The SmartPower toolbar contains commands for performing common SmartPower
operations on your designs. Roll the mouse pointer over the toolbar button to view a
description of the button. Click the button to access the command.

SmartPower Toolbar

The PC and workstation versions of SmartPower have the same menus. However,
some dialog boxes may look slightly different on the two platforms due to the
different window environments. The functionality is the same on both platforms,
though the locations of the fields and buttons on the dialog boxes may vary. The
names of some fields may also vary between the PC and workstation versions.

File Menu

Commit: Commits power information to Designer. You must commit your changes if
you wish to save your settings in SmartPower. If you commit your changes, the
information is stored in the .adb file, and your settings are restored the next time
you open your design in SmartPower.

Export Grid (enabled in Dynamic tab): Exports the selected area of the Report
Window to a text (.txt) file.

Print Grid (enabled in Dynamic tab): Prints the selected area of the Report
Window.

Preferences: Invokes Preferences dialog box, where you can set analysis and
display preferences

Close: Closes SmartPower

Edit Menu

Add Domain (enabled in the Domains tab): Adds a clock domain or set of pins.

Remove Domain (enabled in the Domains tab): Removes a domain.

Copy Grid: Copies the selected cells of the dynamic grid onto the clipboard

Tools Menu

Libero IDE User's Guide

284

Report Power: Generates power report

Importing a VCD file in Designer
The VCD (value change-dump) file is a file format specified in the IEEE 1364
standard. It is an ASCII file that contains header information, definition of variables,
and the values of variables.

You can generate a pre- or post-layout VCD file using ModelSim or any other
simulation tool that supports VCD file generation. Please refer to the user manual of
your simulation tool for more information on how to generate a VCD file.

To import a VCD file:

1. From the File menu in Designer, select Import Auxiliary Files. Click Add to

browse to your VCD file and select it. When you have selected a VCD file, click

OK to continue.

If you have not yet completed the layout of the design, the design software guides

you through place-and-route so that you can import the VCD file. In order to

successfully annotate your VCD values to the design, Designer must complete

place-and-route even if you generated your VCD file using timing simulation

(post-layout).

You may wish to import multiple VCD files. If these files conflict (attempt to set

a different frequency for the same net of your design, for example), the latest

imported value takes precedence.

2. Specify your VCD import options. Use the VCD Import Options window to

specify the instance name of your design in the simulation testbench (the instance

name is the instance name of your design instantiated in the simulation

testbench). For example, the instance name of the design “top_comp” in the

following verilog test-bench is “inst”.

module test;
reg [3:0] DataA, DataB;
wire AGEB;
top_comp inst(DataA, DataB, AGEB);

SmartPower

285

initial
begin
……………………………
end;
endmodule;

It also possible to identify the instance name of your design in the VCD file. You

have to look for a line starting with the keyword $scope. For example, the

instance name of the design “top_comp” in the following VCD file is “inst”.

$date
Oct 18, 2001 16:02:16
$end
$version
VERILOG-XL 3.30.p001
$end
$timescale
100ps
$end
$scope module inst $end
……………………………

Click OK to continue.

3. Check the Log window for notification that you successfully imported the VCD

file (“The Import command succeeded...”). Even if the Import command

succeeds, Actel recommends that you use SmartPower to verify which of the pins

have been affected after you import the file.

4. Verify results of the imported file in the Activity tab screen in SmartPower. To

view the results of your imported VCD file, launch SmartPower and navigate to

the Activity tab screen to view pins with annotated switching activities. If your

file was imported successfully, you will see a long list of pins with annotated

switching activity and specific individual frequencies.

It may be that some pins of your design are not annotated by a VCD import
command. This happens if you simulate a pre-synthesis netlist; it is normal because
not all logic elements are in the pre-synthesis netlist. Thus, for accurate power
estimation it is better to run post-layout simulation with a back-annotated netlist.

Libero IDE User's Guide

286

Importing a SAIF file in Designer
The following instructions are meant only as a guide. For an explanation of the
complete flow (including screenshots), please refer to the SmartPower User's Guide
included with your software.

To import a SAIF file:

1. From the File menu in Designer, select Import Auxiliary Files. Click Add to

browse to your SAIF file and select it. When you have selected a SAIF file, click

OK to continue.

If you have not yet completed the layout of the design, the design software guides

you through place-and-route so that you can import the SAIF file. In order to

successfully annotate your SAIF values to the design, Designer must complete

place-and-route even if you generated your SAIF file using timing simulation

(post-layout).

You may wish to import multiple SAIF files. If these files conflict (attempt to set

a different frequency for the same net of your design, for example), the latest

imported value takes precedence.

2. Specify your SAIF import options. Use the SAIF Import Options window to

specify the instance name of your design in the simulation testbench (the instance

name is the instance name of your design instantiated in the simulation

testbench). You must include the hierarchy with the instance name.

The example below example shows how to identify the instance name of your

design in the SAIF file. For example, the instance name of the design in the

following SAIF file is “TEST_BENCH/UUT”.

(SAIFILE
(SAIFVERSION "1.1")
(DESIGN 2ff)
(DATE "Fri May 10 14:48:46 2002")
……………………………

SmartPower

287

(TIMESCALE 1ns)
(DURATION 50000)
(INSTANCE TEST_BENCH/UUT (PORT (OUT_PORT (TC 26) (IG
0) (T1 25994)
(T0 22000) (TX 2006))))
(INSTANCE TEST_BENCH/UUT/\outpad/U0/U1\ (PORT (Y (TC
26) (IG 0)
(T1 25995) (T0 22000) (TX 2005))))
(INSTANCE TEST_BENCH/UUT/\ff1/U0\ (PORT (Q (TC 27) (IG
0) (T1 26000)
(T0 22997) (TX 1003))))
(INSTANCE TEST_BENCH/UUT/\clkpad/U0/U0\ (PORT (Y (TC
99) (IG 0)
(T1 25000) (T0 24999) (TX 1))))
……………………………

Click OK to continue.

3. Check the Log window for notification that you successfully imported the SAIF

file (“The Import command succeeded...”). Even if the Import command

succeeds, Actel recommends that you use SmartPower to verify which of the pins

have been affected after you import the file.

4. Verify results of the imported file in the Activity tab screen in SmartPower. To

view the results of your imported SAIF file, launch SmartPower and navigate to

the Activity tab screen to view pins with annotated switching activities. If your

file was imported successfully, you will see a list of pins with annotated switching

activity and specific individual frequencies.

It may be that some pins of your design are not annotated by a SAIF import
command. This sometimes happens if you simulate a pre-synthesis netlist. It is
normal; not all logic elements are in the pre-synthesis netlist. Thus it is better to do
a post-layout simulation with a back-annotated netlist for the most accurate power
estimation.

Steps to calculate power
Use the steps below to calculate your power consumption. The steps are identified by
the tabs you must view (in the order you must view them) so that you may analyze
your power accurately.

Libero IDE User's Guide

288

1. Domains tab - Define clock domains, and specify a clock frequency and a data

frequency for each clock domain.

2. Activity tab - Specify individual pin frequencies, this step is optional, but gives

you a pin-by-pin control of the frequency.

3. Summary tab - View global power at the design level and view its impact on

Junction temperature.

4. Dynamic tab - View detailed hierarchical analysis of your power consumption.

This step is also optional. But if your power consumption exceeds your budget,

this step will help you to understand where there is room for improvement.

Define clock domains and Set-Of-Pins
When you run SmartPower, it researches your existing clock domains and partitions your

design automatically. You may wish to review the list of clock domains in the Domains

tab to ensure that all the clocks of your design are included in the list. Add or remove

clocks as necessary.

To add a new clock domain:

1. Click the Domains tab, and click the Add Domain button. Select Clock Domain

from the drop-down menu. This opens the Create Clock Domain dialog box.

Create Clock Domain Dialog Box - Toggle Rates Disabled

2. To create a new clock, select a Potential Clock Pin, specify a clock and data

frequency, and click Create. The new clock domain appears in the Domains

window. If you select an existing clock-pin from the drop-down menu, the lists of

SmartPower

289

clock-pins and data-pins of this new clock domain are computed automatically

based on the netlist topology.

Note: Select Use Toggle Rates in the SmartPower Preferences, to define your

data frequency as a percentage of your clock frequency. If your data frequency is

20% of your clock frequency, type "20" in the Data Frequency text box.

Create Clock Domain Dialog Box - Toggle Rates Enabled

You may wish to create an empty clock domain and fill the lists of clock-pins and

data-pins manually. If so, do not select a clock-pin, just type a new name for your

clock domain.

Beyond the verification of the list of clock domains, you may also wish to verify that
the lists of clock-pins and data-pins computed for each clock domain are correct.

To verify the lists of clock-pins and data-pins of a clock domain:

1. To select a Clock Domain, click the Domains tab, and select a specific Domain

in the list.

2. Display the list of clock-pins or data-pins of this Domain. A drop-down menu in

the Domain tab enables you to select clock-pins or data-pins. SmartPower

displays the list of pins corresponding to your selection below the drop-down

menu. You can add or remove clock-pins and data-pins as necessary.

3. Remove a pin from a clock domain. Highlight the selected pin and click the

Remove button. The pin is removed from the clock domain, and is made available

in the list of pins that you can add in another clock domain.

4. Highlight the selected pin in the list of pins that are not yet in a domain and click

the Add button to add a pin in a clock domain. This pin is added to the clock

domain. It is a clock-pin or a data-pin, depending on the specification of the

Libero IDE User's Guide

290

drop-down menu when you click the Add button.

Note: You cannot add a pin that exists in another domain until you free it from the

existing domain. The pin is unavailable until you remove it from the existing

domain.

After you have verified that all the clocks of your designs are correctly identified and
constructed, you must specify the correct clock and data frequency for each clock

domain.

To add a new set of pins:

1. Open the Create Clock Domain dialog box. Click the Domains tab, and click the

Add Domain button. Select Set-Of-Pins from the drop-down menu.

Create Set of Pins Dialog Box

2. Create a Set-Of-Pins. Name your new Set-Of-Pins, specify a data frequency, and

click Create. The new Set-Of-Pins appears in the Domains window.

Specify clock and data frequencies in SmartPower
To specify a clock and data frequency, highlight the Clock/Data frequency cell and
type in a new value.

SmartPower defaults to 10 MHz for each clock frequency, and 1MHz for the data
frequency. Input your target for each clock and data frequency (5% of your clock
frequency is a typical guideline for your data frequency - this corresponds to a
toggle-rate of 10%.)

SmartPower

291

Not all the pins/gates/nets of your design are associated with a specific Clock. For
example, the frequency of a design input port is not always correlated to a clock
frequency. By extension, all pins that are upstream of the first level of sequential
elements are not associated with any clock. SmartPower creates an InputSet by
default that it uses to group all the pins that are controlled by design inputs (instead
of sequential elements). You may wish to view and verify the InputSet to further

evaluate your design.

View and verify the InputSet in SmartPower

To verify the InputSet:

1. Select the InputSet. Click the Domains tab, and select the domain named

InputSet in the list.

2. Verify the list of pins of this Domain. All the input ports of your design (except

the clocks) belong in the InputSet. Also, all the pins that are between these input

ports and the first level of sequential elements belong in the InputSet. You can

add or remove pins as necessary.

3. Specify an average input frequency. SmartPower uses the same frequency for all

pins of the InputSet. The default InputSet frequency is 1 MHz. Type in a new

value to change it.

You may wish to split the InputSet into several sets in order to specify different
frequencies. A classic example is to create a ResetSet, a reset-tree with a very low
frequency.

To split the InputSet into several sets:

1. Create a new Set of Pins. In the Domains tab, click the New button, and select

Set-of-Pins from the drop down menu. In the Create Set Of Pins dialog-box type

a name and a frequency for the new set and click Create. The new set of pins

appears in the Domains window. You can only create an empty set of pins, but it

is possible to add pins in this Domain latter.

2. Remove a group of pins from the InputSet. Click the Domains tab, and select the

domain named InputSet in the list. Highlight the pins that you want to remove

and click the Remove button.

Libero IDE User's Guide

292

3. Add this group of pins in the new Set of Pins. Click the Domains tab, and select

the newly created set of pins in the list. Highlight the pins in the list of pins that

are not yet in a domain, and click the Add button. Repeat these 3 steps as

necessary to create multiple inputs sets.

Specify individual pin frequencies
The Activity enables you to specify an average clock and data frequency for each clock

domain, and also an average frequency for each set of pins. This gives you an initial

estimate of the power consumption of your design. However, if this estimate is not

accurate enough, you may refine it with a pin-by-pin annotation of the frequency.

To specify a frequency annotation for an individual pin:

1. Locate the pin in the Activity tab. You may need to select different clock domains

from the drop-down menu on the Activity tab, then search in the Not-

Annotated Pins list to find the specific pin. You can use filters to facilitate this

search.

2. Highlight the pin in the list of Not Annotated pins, enter a new frequency value,

and click the Set To button. This specifies a new frequency for the selected pin.

The pin with this new frequency appears in the list of Annotated pins. Repeat

these 2 steps as necessary to annotate the frequency of several pins.

Note: This annotation procedure enables you to set the frequency of an individual

pin, but this does not mean that the pin is removed from its clock-domain.

A frequency annotation just overrides the domain-level frequency.

You may wish to change or remove a frequency annotation of an individual pin. This
may be useful when you import a VCD (value change-dump) file or a SAIF (Switching

Activity Interchange Format) file.

To change the frequency annotation of an individual pin:

SmartPower

293

1. Locate the pin in the Activity tab. You may need to select different clock domains

from the drop-down menu on the Activity tab, and then search in the Annotated

Pins list to find the specific pin. You can use filters to facilitate the search.

2. Highlight the pin in the list of Annotated pins, enter a new frequency value, and

click the Set To button. This specifies a new frequency for this pin. The pin

appears in the list of annotated pins with this new frequency. Repeat these 2 steps

as necessary to change the frequency annotation of several pins.

To remove the frequency annotation of an individual pin:

1. Locate the pin in the Activity tab. You may need to select different clock domains

from the drop-down menu on the Activity tab, and then search in the Annotated

Pins list to find the specific pin. You can use filters to facilitate the search.

2. Highlight the pin in the list of Annotated pins and click the Remove button.

This removes the specified frequency from the Annotated pin. The pin appears in

the list of Not Annotated pins. Repeat these 2 steps as necessary to remove the

frequency annotation of several pins.

View results (design level)

Click the Summary tab to view global power consumption at the design level. The

Summary tab shows your designs' estimated Power Consumption and
Temperature information.

The power estimation reported in the Summary tab is the total static and dynamic
power consumption of your design. For a more detailed view of this power
consumption, click the Dynamic tab.

To estimate the junction temperature:

1. Verify your package. You cannot change your package directly in SmartPower,

because it may obsolete your place-and-route information (and thus it may

severely impact the total power consumption). If you wish to choose another

package, you have to do it in Designer -> Tools -> Device Selection.

2. Click the Summary tab, and select a Cooling style in the list. Thermal resistance

changes automatically when you update the cooling style.

Libero IDE User's Guide

294

3. Specify an ambient temperature. Enter an ambient temperature (default value is

25ºC), and click the Set button.

Note: The junction temperature value changes according to the package, cooling

style, and ambient temperature values you choose.

Analyze results
The Dynamic tab displays the estimated power consumption of individual blocks,
gates, and nets and enables you to make a hierarchical analysis of your power
consumption. The Dynamic tab may also help you to improve your power
consumption by identifying the blocks, gates and nets consuming a significant
amount of power.

You can export (to a text file) and print the grid that lists your design’s power
consumption. To do so, select the elements of the grid that you wish to export or
print, and then from the File menu select Export Grid or Print Grid, respectively.

To identify the blocks, gates, or nets that are consuming the most power:

1. Use the Dynamic tab to expand the design hierarchy. The Dynamic tab enables

you to expand your design hierarchy and view a complete list of the blocks in your

design. Click the '+' next to your design to view the hierarchy. Click the '+' next to

a sub-block to view its sub-elements. Consider the figure below, which shows an

example of a clock pin with high fanout.

SmartPower

295

2. Click to select a block. By default SmartPower selects the design-level block, but

you can always select another block in the hierarchical tree. The report window

displays the list of sub-elements of the selected block. By default, this list includes

all sub-elements. SmartPower displays the dynamic power consumption of each

sub-element with useful information like the fanout and the driver-name for a

net, or the macro model-name for a gate.

3. Sort and filter the sub-elements to find the block, gate, or net that is using the

most power. Double-click a column heading to sort by that column (or to change

the sort order). By default SmartPower sorts the sub-elements according to their

power consumption. The top of the list of sub-elements gives you the main

sources of dynamic power consumption at the hierarchical level. Click a checkbox

to limit the list of sub-elements to a list of gates, nets or blocks.

Cross probing with SmartPower
SmartPower supports cross probing with the other Designer tools. You must calculate
your designs power consumption before you can cross probe effectively. See the
Calculating Power section for more information.

To cross probe with the SmartPower tool:

1. View the detailed results of your power analysis in the Dynamic tab of the

SmartPower tool.

2. Open the ChipPlanner or the PinEditor tool in Designer.

3. Click a block, net, or gate in the Dynamic tab to highlight the corresponding

component in the ChipPlanner or PinEditor tool.

Click the Macro/Driver or Name column to cross probe gates.

Click an object in the Name column to select individual nets; click an object in

the Macro/Driver column to select the object connected to the net.

Libero IDE User's Guide

296

Cross Probing with SmartPower

Power Reports
The power report enables you to quickly determine if any power consumption
problems exist in your design. The power report lists the following information:

1. Global device information and SmartPower Preferences selection information

2. Dynamic power summary

3. Design-level static power summary

4. Hierarchical detailed power report (including gates, blocks, and nets), with a

block by block, gate by gate, and net by net power summary

Click the Report button to open the Report dialog box. Specify which results you
want to display (static or dynamic Power).

SmartPower

297

SmartPower Report Dialog Box

The SmartPower report returns a complete list of all the blocks, gates, and nets and
the related power consumption in the device (it returns the same information
displayed in the Dynamic tab, but it is more printer friendly).

Set the options in the Textual Report Control to customize your power report.
Click the checkboxes to include information on Static Power, Dynamic Power,
Domains, and Annotated Pins (Actual Values are included in all power reports;
Breakdown information is not available at this time).

Libero IDE User's Guide

298

SmartPower Report

The report fully expands all the info included in the Dynamic tab by default; use the
Block Expansion Control to expand only the blocks you are interested in.

The Block Expansion Control options filter the values returned in the report. Block
Expansion does not control which values are included (the Textual Report Control
options determine content), rather it specifies which blocks are detailed or expanded.

You may specify which blocks are expanded using a Minimum Power value, a Minimum

Ratio (with regards to the total power of the design) and a Maximum (hierarchical)

Depth; a value filtered by Block Expansion Control is not included in displayed lists, but

it is still included in the upper hierarchical analysis of the design. In other words,

SmartPower still includes filtered values in the power analysis.

Power Calculation Theory

SmartPower equations
SmartPower calculates two power values for your design:

SmartPower

299

1. Static Power - This value is family and die-size dependent and is estimated at the

design level (at this time all die sizes for each family have the same static power).

2. Dynamic Power: This value is a summation of the dynamic power consumed by

each element of the design (nets, modules, IOs, RAM, FIFO, PLL, etc.).

Note: The examples below are for general evaluation purposes only. They are not a

precise representation of the actual calculations, since each calculation takes into

account family-specific information.

• For a net,

where C is the total capacitive loading of the net (extracted from the routing

topology), V is the net's voltage swing, and F is the average switching frequency.

• For a module, the power is computed using a characterized library (by family and

die-size) describing a specific power model for each type of module. For example,

the power model of a flip-flop is given by

where FCK is the average clock-input frequency for this flip-flop, FDOUT is its

average data-output frequency, and PCK, PDOUT, and PDin are three constants

estimated by electrical simulation and silicon characterization for this flip-flop

module.

• For an I/O, the formula used for computing the power consumption depends on

the I/O technology and the family. For example, for a TTL output, the dynamic

power is given by

where C is the output load of the port (35 pf for TTL), V is the output's voltage

swing (3.3 V for TTL), PINT represents an internal power contribution dissipated

in the pad, and F is the average switching frequency of the IO.

• For a complex block, like a RAM, a FIFO, or a PLL, SmartPower uses a high-

level power model that integrates design parameters.

Libero IDE User's Guide

300

SmartPower automatically computes all the constant parameters of these equations.

However, the frequencies depend on the target frequencies of your design. Since it is

impractical to enter each frequency manually, SmartPower has several flows that help you

to estimate the frequencies and calculate the power consumption.

301

Timing Analysis
Welcome to Timer
Timer is Actel’s static timing analysis tool. Timing analysis is a convenient and
thorough method of analyzing, debugging and validating the timing performance of a
design. This is achieved by breaking down the design into sets of paths. Delays for
each path are then calculated and every path is checked for timing violations.

You can only use Timer after you open a compiled design (*.adb file), or after
compiling a netlist in designer. If you invoke Timer before compiling your netlist,
Designer guides you through the compile.

There are three ways to start Timer:

1. Choose Timer from the Tools menu, or

2. Click the Timer icon in Designer’s toolbar, or

3. Click the Timer button in Designer’s design flow.

Timer Interface

Timer user interface
Timer’s four tab screens organize and display static timing information according to
the timing analysis preferences you set in the Preferences dialog box.

Timer consists of four tab screens: Summary, Clocks, Paths, and Breaks (Timer does

not display the Clocks tab screen if the device you are using has no clock).

Timer Toolbar

The Timer toolbar contains commands for performing common Timer operations on
your designs. Tool tips are available for each button.

Libero IDE User's Guide

302

Timer Toolbar

Status Bar

Timer’s status bardisplays information on menu commands, error messages, your
selected temperature, voltage, and speed grade. In addition, Timer displays the
following:

• Temp: Displays the temperature consistent with the operating conditions

selected.

• Volt: Displays the voltage consistent with the operating conditions selected.

• Speed Grade: The speed grade of the selected device.

Summary tab
By default, Timer’s Summary tab screen displays the maximum frequency for the
current clock selected in the Select Clock drop-down list box. If you have multiple
clock groups or gated clocks, please add timing constraints in Timer to get the
correct frequency of your design.

Timing Analysis

303

Timer Summary Tab Screen - PC Only

To change the default clock, select one from the Select Clock list.

Click the Expand button Timer to display the details of the path that determined the
maximum clock frequency in the Expanded Path window.

The Summary tab displays the actual longest/shortest delay between all Input ports
to registers, Registers to Output Ports, and Input Ports to Output Ports.

Enter your new delay values in the Required input boxes and click Set to recalculate
your delays.

IMPORTANT:By adding constraints to the set of paths listed in this tab, be careful
that you do not over-constrain the design. This may degrade the quality of the
Timing Driven Layout and increase the overall run time.

Timer Expanded Path Window
The Expanded Paths window is comprised of three components:

Libero IDE User's Guide

304

Expanded Paths Grid - Shows all delay components for the selected path
(Instance, Net, Macro, Delay, Type, Total Delay and Fanout details). For Delay, (r)
stands for rising edge and (f) for falling edge. If you expand a register to register
path, the Expanded Path window displays relevant register setup timing information.
Click a component to select the corresponding element in the schematic.

Setup Check / Hold Check window - Set the Show option (in Preferences) to
“Longest” to view a detailed analysis of the Setup Check. Set the Show option to
“Shortest” to view a detailed analysis of the Hold Check. (These analyses include
clock insertion delay information.)

Expanded Paths Schematic - Displays a schematic view of the expanded path.

The Expanded Path window includes a toolbar that enables you to Save, Print, Copy,
and Zoom in the schematic.

Timer Expanded Path Toolbar

Save: Save the contents of the Grid as a .txt file

Print Grid Window: Print the contents of the Grid window

Print Chart Window: Print the contents of the Chart window

Copy (Grid to Clipboard): Copy the contents of the Grid window to the clipboard

Zoom In: Click to zoom on the Chart window

Zoom Out: Click to zoom out on the Chart window

Zoom to Fit: Click the Zoom to Fit button to automatically fit the entire path in the
Chart window

Note:
The expanded paths window for eX, SX-A, Axcelerator, and Flash devices shows the
expanded path on a pin-to-pin basis rather than an input-to-input basis. There is a
separation between the module delay and the net delay.

Anything you select in the Expanded Paths grid or Schematic window is reflected in
both windows.

Clocks tab
The Clocks tab allows you to enter constraint information and set clock exceptions.
Select the default clock from the Select Clocks list.

Timing Analysis

305

Clocks Tab

Enter constraint information in the Constraints area and click Set.

Clock exceptions are terminals in a synchronous network that should be excluded
from the specified clock analysis.

Paths tab
The Paths tab displays timing analysis information for categories of paths, known as
“sets,” and the paths within each set. The Paths tab displays the sets in the set
spreadsheet (at top) and the paths within each set (at bottom).

Libero IDE User's Guide

306

Paths Tab

The Paths tab default setting displays four path sets:

From All Inputs TO All Registers / CLK

All paths from the input ports of the design to the input pins of all the registers in the
current clock domain. In this instance, CLK is an example of the current clock
domain.

From All Registers / CLK TO All Registers / CLK

All paths from the clock, clear, and pre pins of registers in the current clock domain
to the input pins of all the registers in the current clock domain; in this instance, CLK
is an example of the current clock domain. To view the register setup and clock
skew, right-click the desired path in the paths grid and select Expand Path from the
shortcut menu, or click the Expand Path button.

From All Registers / CLK TO All Outputs

All paths from the clock pin of registers in the current clock domain to the primary
outputs of the design.

All Inputs TO All Outputs

All input ports to all output ports in the design. This set is completely asynchronous
(independent of the clock).

Timing Analysis

307

All the sets default to display the longest path in the category. You can change this
default setting by selecting Preferences from the File menu. When you select a set,

Timer displays the paths within the set in the lower spreadsheet labeled “Paths.” The
spreadsheet displays a sorted list of paths (the number of paths it displays is
controlled in the Preferences dialog box). Double-click the column headings to sort
the columns.

Note: The run-time required to compute the content of the spreadsheet is a
function of the number of paths you wish to display. Select Preferences from the File
menu to change the default settings.

The timing information displayed for sets and paths includes:

• Actual: The actual delay calculated by Timer for each path.

• Slack: The difference between the maximum required delay and the actual delay.

• Max Delay: The maximum required delay specified. Do not interpret this value as

the clock frequency. To set clock frequency, input on the Summary tab, or on the

Clocks tab.

• ID: The constraint ID for the path.

Breaks tab
Use the Breaks tab to enter global stops and pass pins. A global stop is a defined
intermediate point in a network that forces all paths through the defined point to be
“don’t care” paths regardless of any constraint assignment. Setting a pass pin on a
module pin enables you to see a path through individual pins, which you are not
normally allowed to view a path through.

Note: If you are not careful when you set a pass pin on a module pin, you may set

a false path in your design.

Libero IDE User's Guide

308

Breaks Tab

Timer Menu Commands
The PC and workstation versions of Timer have the same menus. However, some
dialog boxes may look slightly different on the two platforms due to the different
window environments. The functionality is the same on both platforms, though the
locations of the fields and buttons on the dialog boxes may vary. The names of some
fields may also vary between the PC and workstation versions.

File Menu

Commit: Commits timing information to Designer

Export Set Grid: Exports selected cells in the sets grid to a file

Export Path Grid: Exports selected cells in the path grid to a file

Print Set Grid: Prints selected cells in the sets grid

Print Path Grid: Prints selected cells in the paths grid

Operating Conditions: Displays the operating conditions Timer uses to calculate
delays. Operating conditions change depending on your Worst, Typical, or Best case
selection in the Preferences dialog box.

Preferences: Invokes Preferences dialog box, where you can set analysis and
display preferences

Close: Closes Timer

Edit Menu

Timing Analysis

309

Copy Set Grid: Copies set grid to clipboard

Copy Path Grid: Copies path grid to clipboard

Remove Selected Constraints: Removes selected constraints, not all

Remove All Constraints: Removes all constraints in Timer

Expand Paths: Expands path in new window

Add Set of Paths: Defines and adds new path set to Paths tab

Edit Set of Paths: Edit added path set

Remove Set of Paths: Removes added path sets

Tool Menu

Report Paths: Generates Timing report

Report Violations: Generates a Timing report, timing violations only

Calculate delays: Calculates delays for the current clock

Calculate all delays: Calculates delays for all clocks and selects the worst (clock
with greatest delay)

Help Menu

Help Topics: Lists of Help Topics

Reference Manuals: Opens Timer’s User’s Guide

Timing report dialog box
External Setup-hold Timing Check: Selecting the External Setup hold timing
checkbox adds specific sections to the timing report, including External setup and
hold as well as clock-to-out timing information.

Slack Threshold (ns): Sets the maximum slack threshold for all the paths included
in the report. Use this value in conjunction with the Sort by: Slack option in the
Timer Preferences dialog box.

Sort by slack (in Preferences): If you select Sort By Slack in the Preferences
dialog box, you can also limit the number of delays displayed based upon the Slack
threshold.

Libero IDE User's Guide

310

For example, if you want to see only the delays which have a slack less than 5 ns,
select Slack in the Sort by drop-down list box in the Preferences dialog box and then
enter 5 in the Slack Threshold text box in the Timing Report dialog box. The timing
report displays all the timing paths that have a slack of 5 ns or less (that is, all paths
that met the timing constraints by <5 ns as well as all the paths that failed to meet
constraints).

If you wish to display the timing paths that failed by 10 ns or more, enter -10 in the
Slack Threshold box; the timing report displays the paths that failed to meet the
timing constraints by 10 ns or more.

Calculating Delays

Delays, PLLs, RAMs, and FIFOs
Actel Timer uses two different timing models, "pin-to-pin" and "input-to-input". The
first type uses a “pin-to-pin" timing model, because Timer reports a pin-to-pin delay.
The second type uses an “input-to-input” timing model, because Timer reports the
delays from an input gate to the input of the next gate by lumping the gate and net
delays together.

ACT1, ACT2, ACT3, DX, MX, and SX devices use the input-to-input timing model,
while the 54SX-A, RTSX-S, eX, Axcelerator, and Flash devices use the pin-to-pin
timing model. Some timing analysis features are specific to the different timing
models; exceptions are noted in the help.

The delay for pin-to-pin devices is reported until the input pins of the registers.
Therefore, setup time is not included in the delay. However, the register setup and
hold, as well as the clock skew, are taken into account during the analysis of setup
check and hold check when identifying timing violations. Setup, hold, and clock skew
are also taken into account during clock frequency estimation.

For information on the setup and hold process in Timer, see the Expanded Paths

window. It enables you to view clock network insertion delay and clock skew

information.

PLLs

The timing tool sees a PLL as a register and a clock generator. Any clock output port
in a PLL is a potential clock (and appears in the list of potential clocks for the
design). Like all other potential clocks, you can constrain these PLL output clocks by
setting any clock constraint independently. The input clock of the PLL on which you
set the constraint is not the clock input port of the PLL but the clock driving this clock
input port. The driving clock will be a Primary port of the design, a register’s output,
or another PLL’s output.

Timing Analysis

311

PLLs for Axcelerator

By default, when you set a clock constraint on the clock source connected to the
clock input of the PLL, Timer automatically computes the clock constraints on the
outputs of the PLL (according to the PLLs configuration). Thus, the value of the clock
output is equivalent to the clock input multiplied, divided, or shifted by the value of
your static configuration.

If you specify a clock constraint for the output clock(s), the PLL ignores the static
configuration value and delivers a clock frequency according to your constraints.
Timer reports this value accurately. In addition, if you remove your constraints on
the output clock(s), the Timer tool recalculates your output frequency according to
your static configuration value. For more information on generating PLLs and their
logic characteristics, please refer to the ACTgen Macros Reference Guide in the online
help or in .pdf format.

Note: For ProASICPLUS devices, the PLL is only considered as a register; there is no
output clock computation.

RAMs and FIFOs

The Timer tool displays blocks of RAM and FIFO as a single “black box,” (you have as
many black boxes as you have instantiations of RAMs and FIFOs in your design).
Thus, if you construct a RAM or FIFO cell out of several RAM blocks, Timer sees and
treats the cell as a single black box. Timer does not display timing information within
individual black boxes, because all the delays are reported using the interface of the
RAM. Timer displays timing information between black boxes and other logic in the
design.

Timer treats RAMs and FIFOs as registers, and like any register, they have clock
signals. For more information about RAMs and FIFOs, please refer to the ACTgen
Macros Reference Guide, in the online help or in .pdf format.

FIFO: Timer displays the paths to the FIFO flags depending on their clock. Timer
shows paths to Empty and Almost Empty with respect to the Read clock; paths to
Full and Almost Full are displayed with respect to the Write clock.

Libero IDE User's Guide

312

Using Timer
Determining your clock frequency
Because a design’s performance is often measured through the clock frequency,

determining the clock frequency is the most common use of static timing analysis.

To obtain a specific clock frequency:

1. Click the Summary tab in the Timer window.

2. Select a clock from the Select Clock list. The selected clock becomes your current

clock. The frequency is displayed under the speedometer.

The clocks listed in the pull-down menu are defined as signals which drive the

clock or gated input of two or more adjacent registers. For pin-to-pin delay

families, one register is enough to have the clock listed as a potential clock. Timer

does not support virtual clocks.

In frequency calculations, values for latency is assumed to be 0, the duty cycle is

50%, and the clock edge is rising. (You can set the duty cycle in the Clocks tab.)

For pin-to-pin timing model families, Timer takes into account the register setup

and the clock skew when estimating the maximum clock frequency. However, the

setup value is not included in the actual delay reported between the clock pin of a

source register and the data pin of a sink register. For more information on

calculating delays, please refer to Calculating Delays.

Adding and Removing Break Points
The Timer default behavior is to break paths at clocks. You can change this default

behavior in the Timer Preferences dialog box. Without stop points (or break points),

Timer reports all the paths from pad to pad in the design. If you do not want to see the

paths going through registers clock pins, you could specify these as break points. The

path running through those pins is not displayed.

Timing Analysis

313

Setting a pass on a module pin enables you to see a path through individual pins.

Additionally, you can set a global pass on all Clk/G and Clr/Pre pins in the Preferences

dialog box, which is available by choosing Preferences from the File menu.

To add break points:
1. Click the Breaks tab.

2. Select Global Stops or Pass Pins. The All Pins list box displays the pins.

3. Select the pin(s). The All Pins list box defaults to show all pins. Text boxes are

provided below the list boxes to help you limit the list for consideration. Enter a

value and click Set. The * character is used as a wildcard. To select multiple pins,

hold down the CTRL key while selecting with your mouse. Click Select All to

select all pins displayed in the All Pins list box.

4. Click Add. The Stops or Pass Pins will be added to the Global list box as break

points.

Breaks Tab - Stops Selected

To remove break points:

1. Click the Breaks tab.

Libero IDE User's Guide

314

2. Select Global Stops or Pass Pins. The break points are displayed in the Global list

box.

3. Select break Points to remove. To select multiple breaks, hold down the CTRL

key while selecting with your mouse. Click Select All to select everything

displayed in the Globals list box.

4. Click Remove. The pin(s) will be removed from the Globals list box.

Setting Preferences in Timer

Delay preferences
The Preferences dialog box controls your delay and timing analysis preferences. If
you are using UNIX, consult the UNIX Command Summary for a list of the

commands related to preferences.

You may wish to prevent Timer from calculating delays when the tool starts. (By
default, Timer estimates all potential clock frequencies, as well as the 4 delays
corresponding to the 4 primary sets (All inputs to All outputs, All inputs to registers,
registers to All outputs, registers to registers) associated with the slowest clock when
the tool opens.)

Preferences - Precalculate Delays Selected

Timing Analysis

315

To change your option for pre-calculating delays, from the File menu, select
Preferences and deselect “Precalculate delays.” Alternatively, you may choose to
modify the related variables. To do so, from the Designer GUI, in the Options menu,
select “Set Variable.” In the Variable Name dialog box, enter:

TIMER_PRECALCULATE_DELAYS

And in the Value dialog box, enter

0

(default is “1”).

Changing and displaying paths
Use the Preferences dialog box to control the number of paths displayed in the Paths tab,

Expanded Paths window, and Timing Report.

To change the number of paths that Timer displays:

1. In the File menu, click Preferences. The Preferences dialog box appears.

2. In the Maximum List Size area, enter your default preferences for the maximum

number of Longest/Shortest Path(s) and Expanded Path(s) that you want to

display

The value for Longest/Shortest Path(s) is set to 100 by default; you can modify

the value if you wish to see more paths in your report. However, the higher the

value the longer it takes to invoke Timer.

3. Click OK.

Libero IDE User's Guide

316

Displaying the Shortest Paths First

By default, Timer displays the first 100 paths from longest to shortest in the Paths
tab and Expanded Paths window. When Timer displays paths from longest to
shortest, it reports setup times for registers. To view hold times in the Expanded
Path window, you must set the Preferences to Show the Shortest paths.

To display the shortest paths first:

1. In the File menu, click Preferences. The Preferences dialog box appears.

2. Select Shortest from the Show drop-down menu.

3. Click OK.

Timing Analysis

317

Setting Preferences in Timer to Display Shortest Paths

Delay filters (max. or min.) / Sorting by actual or
slack delays
Setting Minimum or Maximum Delay Filters
Use the Preferences dialog box to filter paths for delays above, below, or between a

specified value. Enter your display preferences in the Maximum Delay and Minimum

Delay boxes and click OK.

Sorting and Displaying by Actual or Slack Delays
Timer can display delay information in two ways:

• Actual delay values

• Slack, which is the difference between actual delay and a user-specified delay (that

is, user-specified constraint)

Displaying by Actual Delay

The actual delay is the path delay between two points in your design. This is the only
way to sort your data if you do not have any timing constraints entered (for
information on setting timing constraints, see Constraint Guidelines). If you have

entered timing constraints, the actual delay report automatically displays the slack -
even if you don’t ask for it - but the data will always be listed from longest to
shortest actual delay.

Actual delay measurements may be calculated before or after layout.

To display Actual delay:

1. In the File menu, click Preferences. This displays the Preferences dialog box

2. Select Actual in the Sort By pull-down menu.

3. Click OK.

Libero IDE User's Guide

318

Displaying by Slack Delay

Slack delay is the delay difference between a timing constraint entered in Timer and
the actual delay of a path. For example, if a signal takes 20 ns to get from point A to
point B, and you entered a timing constraint of 15 ns, the Timing Report would list -5
ns slack for that path. Thus, if the slack is negative, then the actual delay did not
meet the desired timing by the absolute value of the slack (in ns). Conversely, if the
slack value is positive, then the timing constraint was met, with the slack value (in
ns) to spare. In a violations report, Timer sorts the data (by default) from longest to
shortest slack.

When displaying slack, all the paths without timing constraints are filtered from the
reported data. This enables you to quickly determine how well your design meets
your timing requirements. This is especially useful for viewing critical delays like
register-to-register, clock-to-out, and input-to-register.

Best\Typical\Worst Case Analysis
By default, Timer displays the worst case analysis.

To display the best or typical case analysis:

1. In the File menu, click Preferences. The Preferences dialog box appears.

2. Select Best, Typical, or Worst from the Case drop-down menu. If you change

the setting, timing is recalculated for the entire design; this may take a few

minutes.

3. Click OK.

Selecting paths - Adding or removing break paths
Normally, Timer displays only critical paths. Critical paths are the longest path between

any of the starting points (terminals) and each ending terminal. If you would like to see

the timing of all paths between any of the starting terminals and any of the ending

terminals, select Paths Between Any Pair (input-to-input timing model families only) in

the Path Selection area of the Preferences dialog box. Selecting Critical Paths displays

only critical paths.

Adding and Removing Break Paths
Asynchronous feedback paths in a design can cause paths to be reported as having

excessive delays. The most common example is feedback paths through asynchronous Set

or Reset pins to banks of flip-flops, like a state machine or a counter.

Timing Analysis

319

To exclude paths:

1. In the File menu, click Preferences. The Preferences dialog box appears

2. Break Paths at Register. Choose Clk/G Pins, Clr/Pre Pins (Async) or Data Pins

of Latches to prevent displaying paths that pass through either clock, gated, clear,

preset, or data pins of flip-flops or latches.

Note: The Break Paths at Register option is selected by default, and the paths are

excluded. Deselect the checkboxes in the Timer Preferences menu to display

these paths.

3. Click OK.

Timer UNIX Preferences
For UNIX users, the summary of commands for Timer is as follows:

report -type timer
[-sortby {actual,slack}]
[-maxpaths <num>]
[-case {worst,typical,best}]
[-path_selection {critical,any_pair}]
[-setup_hold {on,off}]
[-expand_failed {on,off}]
[-clkpinbreak {on,off}]
[-clrpinbreak {on,off}]
[-latchdatapinbreak {on,off}]
[-slack <num>]

Path Analysis
Timer organizes and displays data based on your timing analysis preferences. Timer

assists you in analyzing critical paths, paths with the greatest delay, and by expanding

paths so you can trace delays along paths. The Expanded Path window provides delay

information for the path that is in greatest violation.

You can change your preferences to control how you display paths, add path sets, and

expand paths.

Libero IDE User's Guide

320

Display paths
Path sets (groups) and paths within each set are displayed on the Paths tab. You can

create your own sets and add them to the paths tab (see Adding path sets). Also, Timer

displays all previously entered sets that have a constraint in the Set grid.

To display paths:

1. Click the Paths tab. By default, Timer displays four path sets in the set grid.

2. Click a set. Timer displays the paths in the path grid.

Timer Paths Tab

When you set a clock constraint for a pin-to-pin timing model family, it is mapped
into specific register to register max delay values; these values appear in the max
delay of each specific path in the spreadsheet. Timer takes into account register
setup and clock skew when computing max delay values for these pin-to-pin model
families.

The register-to-register selections are based on the clock domain selected in the
Clocks tab. (To select another clock, choose the Select Clock menu from the
Toolbar.) See the index for a list of Paths tab information.

Timing Analysis

321

All delays shown are worst-case by default. To change this setting, see Case Analysis

in the index.

Expanding paths
Each path has one or more logic macros and nets that contribute to its total delay.
By expanding the path, you can view detailed delay information for parallel paths.
Note that with the exception of parallel edges, parallel paths are not available for
families that use the pin-to-pin timing model.

To expand a path:

1. Click the Paths tab.

2. Select a path set. Paths within that set are displayed in the path grid.

3. Select the path you wish to expand.

4. Expand the path by double-clicking the path, right-click and select Expand Path

from the shortcut menu, or in the Edit menu, click Expand Path. The Expanded

Path window opens and displays a single path in the Expanded Path Grid and a

graphical representation of the paths in the Schematic Window.

Libero IDE User's Guide

322

Timer Expanded Path Window

Clock frequency should be the inverse of reg-reg delay plus setup time. However,
this is not true with clock skew.

For pin-to-pin timing model families (54SX-A, eX, Axcelerator, and Flash devices),
Timer takes into account the register setup and the clock skew (starting in R1-2003)
when estimating the maximum clock frequency. However, the setup value is not
included in the actual delay reported between the clock pin of a source register and
the data pin of a sink register. The Timer Expanded Path window shows Setup Check
/ Hold Check information. Set the Show option (in Preferences) to “Longest” to view
a detailed analysis of the Setup Check and set the Show option to “Shortest” to view
a detailed analysis of the Hold Check. (These analyses include clock insertion delay
information.)

The images below show the correlation between the Expanded Path Grid (at top), the
Setup Check or Hold Check report (at middle) and the Schematic window (at
bottom).

Timing Analysis

323

Note that the values displayed in the Setup Check / Hold Check report are

affected by rounding in calculations, so you may see a very slight discrepancy

in the difference between the data required time and the data arrival time

(the slack time).

Libero IDE User's Guide

324

Clock Skew Analysis
The difference in the arrival times of the clock signals between two sequentially-adjacent

registers (clock skew) may cause a design to malfunction with short data paths. The most

efficient method to eliminate the short data path problem is to minimize the clock skew

by using the low-skew global routing resources for clock signals.

Please refer to the Actel website (http://www.actel.com) for an application note on

clock skew analysis.

To measure clock skew:

1. Specify clock frequency. In order to obtain hold margin calculations, Timer

requires that you specify a clock frequency. Timer uses the frequency to calculate

the period, which it needs to evaluate the margin for adjacent flip-flops with

alternate clock edges. If you do not enter a clock frequency in the summary tab,

you will not get any results.

To enter a frequency, select the desired clock under “select clock”, and enter a

frequency under “required” in the Summary tab. Click Set when you are done.

Timing Analysis

325

2. Set operating conditions. To measure clock skew, perform hold time analysis for

BEST case in Shortest path mode. Set the Case in File -> Preferences.

3. Run Violations Report. A report is available from Timer that provides a

summary of timing margins for all paths in the design. In Timer, go to Tool ->

Report Violations. This report lists the following categories:

· Section Clock constraints violation
· Section Max Delay constraints violation
· Section Min Delay constraints violation

To find a summary of hold time margin in your design for the given operating

conditions, refer to the timing paths listed under Section Min Delay constraints

violation.

The first column defines the slack for each path. Positive values represent

margin, negative values represent a violation.

4. Detailed analysis. To see the details of a given path, go to the Paths tab in

Timer. You can look for a specific path by creating a new path set for the specific

path(s) you are interested in. To create a path set, go to Edit -> Add set of paths.

 Refer to the Paths tab for information on how to add a set of paths.

Once you have defined the new path set, click the set to display the path list in

the lower spreadsheet. Then highlight the path you are interested in, right click

and select Expand Path.

5. Review Expanded Path window. The expand path window shows details of the

calculations performed in the clock skew analysis.

The margin is calculated by adding the clock propagation delay of the master

register to the data path delay between the two registers. This is the data arrival

time. Then the clock propagation to the slave register is subtracted from the sum,

giving the final slack value. If alternate clock edges are used for adjacent registers,

Timer considers the clock period accordingly.

Libero IDE User's Guide

326

Adding path sets
Create and add path sets to the Paths tab to determine delay information and enter

constraints. User-defined sets enable you to customize the sets that are available for

analysis. By creating custom sets, you can simplify timing analysis and constraint setting

for specific blocks or paths in your design.

For example, if you are concerned about timing of the lower-level block “sub_block_1” in

your design, you can create a set that only includes timing paths in that block.

To add a set:

1. Click the Paths tab.

2. From the Edit menu, select Add Set of Paths. The Add Path Set dialog box

consists of two screens, Default and Advanced. The Advanced tab enables you to

use keywords to create a set. For more information on using keywords consult the

Index.

Timing Analysis

327

Add Path Set Dialog Box

3. Select the desired clock.

4. Click the directional button to select path direction.

5. Select the desired Inputs (all input pad pins) or Registers (all input pins on
the flip-flops and latches).

Use the pull-down menus to choose the active clock nets. Choose All Clocks
for both to find delays for all register-to-register paths. Choose the Outputs
radio buttons to filter the From and To list boxes (it limits the From and To
list boxes to all output pad pins).

Select your desired starting and ending points in the From and To list boxes.
Naming filters are provided to limit the list of terminals in the display. The
naming filters use the * character as a wildcard and the / character to delimit
levels of hierarchy.

For example, use * to filter for all terminals; *:E to filter for all terminals with
pin E; U1/* to filter for all terminals in block U1; and U1/*:E to filter for all
terminals in block U1 with a pin E. You can also use multiple wildcards such as
/U1/:E. After entering your naming filter, click the Set or Select All button.

If the directional button is pointing right:

1. Select a starting point in the From list. The To list box displays all corresponding

endpoints.

2. Select one or more endpoints in the To list box that complete the path set. Click

the Select All button to select all endpoints.

If the directional button is pointing left:

1. Select the endpoint in the To list box. The From list box displays all

corresponding starting points.

2. Select one or more starting points in the From list box. Click the Select All

button to select all.

Click Apply to add the path set to the Paths tab. Continue creating and
adding sets. When you are done, click Close to close the Add Path Set dialog
box.

Libero IDE User's Guide

328

Add a "one input to all outputs" path set
To show one input to all outputs, you must add the set to the Paths tab. You can then

view delay details and set constraints.

To show one input to all outputs:

1. In the Paths tab, choose Add Set of Paths from the Edit menu. The Add Path

Set dialog box appears.

2. Select the Inputs and Outputs radio buttons.

Make sure the directional arrow is pointing to the right, from Inputs to Outputs.

Click the arrow to change its direction.

3. Choose the desired input starting point in the From list box.

4. Click the Select All button to select all outputs.

5. Click OK. The set showing one input to all outputs is added to the Paths tab.

Add an "all inputs to one output" path set
To show all inputs to one output you must configure and add the set to the Paths tab.

To create a set showing all inputs to one output:

1. In the Paths tab, from the Edit menu, click Add Set of Paths. The Add Path Set

dialog box appears.

2. Select the Inputs and Outputs radio buttons.

3. Click the directional arrow to point it left.

4. Choose the desired output endpoint in the To list box.

5. Select all inputs (all starting points), by Clicking on the Select All button under

the From list box.

6. Click OK. The set showing all inputs to one output is added to the Paths tab.

Timing Analysis

329

Edit or Remove a Path Set

To edit a path set:

1. Select the set in the Paths tab.

2. In the Edit menu, click Edit Set of Paths, or right-click and choose Edit Set.

This displays the Edit Set dialog box.

3. Edit the Path Set and click OK.

To remove a path set:

1. Select the set in the Paths tab.

2. In the Edit menu, click Remove Set of Paths, or right-click and choose Remove

Set from the shortcut menu. The set is removed.

Adding/Removing sets with keywords
The Advanced tab in the Add Set dialog box enables you to use keywords (macros
that represent various sets of terminals) to create a set. Timer does not save
constraints on the Advanced tab in the Add Set dialog box. You must Commit your
changes in the main window to save your constraints.

Add Path Set - Advanced Tab

Keywords for the SX-A, eX, Axcelerator, and Flash families are explained in the

Keyword Filters section.

Libero IDE User's Guide

330

Supported keywords include:

• $inputs()

All input and bi-directional pins.

• $outputs()

All output and bi-directional pins.

• $registers(clock_name)

The pins of all registers driven by the clock whose name is clock_name.

To create a set using keywords:

1. Click the Paths tab.

2. In the Edit menu, click Add Set of Paths.

3. Click the Advanced tab.

4. Enter the From keyword or choose a keyword from the From drop-down list box

to define the From set.

5. Enter the To keyword or choose a keyword from the drop-down list box to define

to set.

6. Click OK. This displays paths for the keyword set in the paths tab.

Timing constraints
Timer enables you to specify timing constraints and requirements for clocks and
paths. Use these constraints to generate timing reports and in Timing Driven Layout.
In order to run timing driven layout, you must enter and commit your constraints in
Timer before you exit the tool.

For Flash, some of the constraints must be entered via GCF and SDC constraints.
 For Axcelerator, you can run timing driven place-and-route even if you have not set
any user constraints.

Timing Analysis

331

Constraint guidelines

Constraint Guidelines
Delay constraints control the Timing Driven Layout engine. You can define these
constraints using Timer or by importing an external DCF, SDC, or GCF (for Flash)
file. The timing-driven layout engine considers the defined delays when allocating
silicon resources with the goal of meeting or beating all constraints if possible. The
timing-driven layout engine evaluates the performance criticality of one function
versus another when allocating device resources. Because resources are limited, use
the following guidelines to ensure the defined constraints meet the needs of the
design without impairing device resources.

General Guidelines

• Set Sufficient Constraints - All constraints for the design should be defined to

ensure correct operation of the Timing Driven Layout engine. Timing Driven

Layout considers networks that have not been defined as “don't care” paths, which

have a low priority for resource allocation. If these undefined paths are actually

critical, they may fail to meet performance demands.

• Avoid Unnecessary Constraints - Describe “don’t care” paths to free high

performance device resources. Not defining a path is one mechanism for doing

this. However, it is difficult to avoid defining some “don't care” paths, so

Designer provides clock exceptions and global stop sets to enhance this capability

(see Clock exceptions).

• Avoid Over-Constraining - The Timing Driven Layout engine is designed to

achieve or exceed the delay constraint defined (less than or equal). Defining a

constraint shorter than is actually required for margin can have a negative impact

on the performance of the device because of competition for device resources.

Specifying clock constraints
Use the Clocks tab to assign values to each clock network in your design.

To assign clock constraints:

1. Click the Clocks tab.

2. Select the clock of interest in the Select Clock pull-down menu in the toolbar.

Libero IDE User's Guide

332

3. Specify the timing requirements. In the Constraints area, define the Required

and Duty Cycle areas. Select MHz or ns from the pull-down menu.

4. Click Set.

Clock exceptions
Timer enables you to specify global clock constraints. If you have paths that are not

required to meet the global constraint (for example, multi-cycle paths), then list them as

exceptions. The Clocks Exceptions area on the Clocks tab provides a mechanism for

doing this. A terminal specified as a clock exception will cause all paths beginning or

ending at this terminal to be unconstrained by the global timing constraint.

To add or remove terminals from the Clock Exception List:

1. Click the Clocks tab.

2. Select the Clock name from the drop down menu.

3. Enter a constraint in the Constraints area and click Set.

4. Select Source or Sink in the Clock Exceptions area. The Clock Exceptions area

displays the Pins. The terminals of the sequential device are displayed using an

<instance_name>:<pin_name> format.

For example, a DFM with an instance name of U1\FF1 will have a single source

terminal, U1\FF1:CLK, and 3 three sink terminals: U1\FF1:A, U1\FF1:B, and

U1\FF1:S.

5. Use the Filter field to further sort the list of clock pins. Naming filters are

provided to limit the list of terminals for consideration. The naming filters use the

* character as a wildcard and the / character to delimit levels of hierarchy.

For example, use * to filter for all terminals; *:E to filter for all terminals with pin

E; U1/* to filter for all terminals in block U1; and U1/*:E to filter for all terminals

in block U1 with a pin E. After entering your naming filter, click the Set or Select

All button. Multiple * and / characters may be used.

Timing Analysis

333

6. Add or Remove the clock exception. To add a clock exception, highlight the

desired entry from the Clock Pins list and click Add. To remove an exception,

highlight it in the Exceptions list and click Remove.

7. From the File menu, select Commit to commit changes.

Path constraints - specifying or removing
You can specify a timing constraint on a specific path or groups (sets) of paths.

To specify a timing constraint for a path set:

1. Click the Summary or Paths tab.

2. Select a Path set.

3. Enter the timing constraint. On the Summary tab enter the constraint in the

Required text box and click Set. On the Paths tab enter the constraint in the Max

Delay column.

To specify a timing constraint for a specific path:

1. Click the Paths tab.

2. Click the corresponding set in the Set grid.

3. Select the path in the path grid.

4. Enter the timing constraint in the Max Delay column.

Removing Constraints
You can remove all constraints or just selected constraints. To remove all constraints

choose Remove All Constraints from the Edit menu.

To remove select constraints on the Paths tab:

1. Click the Paths tab.

2. Select the path set with the constraint you wish to remove.

3. In the Edit menu, click Remove Selected Constraints.

Libero IDE User's Guide

334

To remove select constraints on the Summary tab, delete the constraint in the Required

text box and click Set.

Export Results
From the Paths tab, you can export the path or set grids in a text file.

To save your results to a text file:

1. Click the Paths tab.

2. In the File menu, click Export Path Grid or Export Set Grid. This displays the

Save As dialog box.

3. Choose a destination on your disk, enter a File Name and click Save.

Commit before you exit
If you wish to save the constraint requirements entered into Timer, you must Commit

your Timing results before exiting Timer.

To commit your results choose Commit from the File menu before exiting, or click Yes

when asked if you would like to commit your results before exiting. Timer saves your

timing constraints to Designer’s temporary design database.

Generate reports
The timing report enables you to quickly determine if any timing problems exist in your

design. The timing report lists the following information:

• Delay from input I/O to output I/O (longest or shortest, depending on your

Preferences).

• Delay from input I/O to internal registers (longest or shortest, depending on your

Preferences).

• Delay from internal registers to output I/O (longest or shortest).

• Delays for each clock network (longest or shortest).

• Delays for interaction between clocks networks (longest or shortest).

Timing Analysis

335

To generate a timing report:

1. In the Tool menu, click Report Paths. The Timing Report dialog appears. The

External Setup-hold Timing Check box and the Slack Threshold text box are

explained in the Timer Report dialog box section.

2. Click Options to specify more settings for your report. This displays the

Preferences dialog box.

3. Verify your timing analysis preferences. Timer uses these preferences to generate

your report.

• Maximum List Size:

Longest/Shortest Path(s) - Defines the number of paths to display in the

report (default is 1)

Expanded Path(s) in List - Defines the number of expanded paths to display

in the report (default is 15)

• Sort By:

Actual - Sort paths by actual delays.

Slack - Sort paths by slack delays.

This option is available only if you have entered timing constraints.

• Case: specifies your operating conditions, Best (0 degrees centigrade), Typical

(25 degrees centigrade), and Worst (70 degrees centigrade).

• Break Path at Register - The default timing paths break at all clock, gate,

clear, and preset pins. Uncheck the boxes in Break Path at Register to generate

a timing report that displays paths that pass through (and do not "break") at all

Clock, Clear, Gate, and Preset pins.

Once you are satisfied with your selections, click OK in the Preferences dialog box

and then click OK in the Timing Report dialog box. The timing report is

displayed in a separate window.

Libero IDE User's Guide

336

Violations Report
For families that use the pin-to-pin timing model, the Violations report enables you to

obtain constraint results sorted by slack. You can now view Max Delay violations as well

as Min Delay violations in the report.

Keyword Filters

Keywords
Keywords enable you to filter out any unwanted paths or instances, making it easier
to view critical paths in the design and limiting the paths displayed for a particular
set. The use of keywords is only supported for pin-to-pin delay families.

Use keywords to create custom sets for Timer’s Paths tab screen.

 The use of keywords is only supported for pin-to-pin delay families (for a an
explanation of pin-to-pin and input-to-input delay families, see Delays, PLLs, RAMs,

and FIFOs). Use keywords to create custom sets for Timer’s Paths tab screen. Refer

to Adding/Removing sets with keywords for details on how to enter keywords.

Keywords enable you to filter out any unwanted paths or instances, making it easier
to view critical paths in the design and limiting the paths displayed for a particular
set. Timer uses two types of keywords, first- and second-level.

Levels of Keywords

The first-level keywords enable access to the main objects of the design, such as
registers, while the second-level keywords enable access to a sub-list of these main
objects. For instance, $registers() is a first-level keyword that enables access to all
the registers of the design. This list includes clock pins, data pins, enable pins and,
asynchronous pins.

If the $registers() keyword is combined with the second-level keyword $datapins(),
the related command is applied only to the data pins of the registers. You can use a
second-level keyword only with a first-level; second-level keywords may not be used
alone. In Timer, only the first-level keyword $registers() may be combined with the
second-level keywords. Use the colon “:” without any spaces to combine first- and
second level keywords. Keywords and filters are case insensitive.

Filtering

Filter keywords with brackets []. The filter is a string that is used as an identifier (it
may contain wild cards). [] with an empty string is not accepted in the macro
language. The user can enter $registers(), $registers()[filterString], but not
$registers()[].

Timing Analysis

337

Functions

Sometimes you may want to locate objects of the design by defining or identifying
other objects. For instance, you might want to analyze delays of all the registers
driven by a specific primary clock. Functions can help you locate the registers
(objects) by defining the primary clock (identifier).

To use functions, the identifier of the object has to be reported between parentheses
(). This identifier may contain wild cards and can also be another keyword. For
example:

$registers(clock1)
returns all the registers driven by

the primary clock “clock1”

Supported Keywords

Timer supports the keywords listed below.

First-Level Keywords Second-Level Keywords

$registers()

$inputs()

$outputs()

$clocks()

$ports

$datapins()

$clockpins()

$asyncpins()

$enablepins()

$outputpins()

$inputpins

$allpins

First-Level Keywords

Each keyword has two identifiers, a long version and a short version. They both have
exactly the same function. The first-level keywords are defined below.

$registers(ClockName) or $reg(ClockName)

The keywords above only display the registers (edge-triggered flip-flops and level-
sensitive latches) controlled by the clock ClockName. If no ClockName is specified,
this keyword will cause all the registers of the design to be displayed.

$inputs() or $in()

This keyword only displays all the primary inputs of the design.

$outputs() or $out()

This keyword only displays the primary inputs of the design.

Libero IDE User's Guide

338

“$Clocks()” or “$CK()” only displays the primary clocks of the design.

$ports(InstanceName) or $po(InstanceName)

This macro replaces all the primary inputs and outputs of the design.

Second-Level Keywords

While first-level keywords allow access to the main objects of the design, such as
registers, second-level keywords give access to a sub-list of these main objects.

Currently, second-level keywords can only be used with the first-level keyword
$registers(). A first-level keyword is separated from a second-level keyword with the
colon “:” character, without any white space.

As with first-level keywords, most second-level keyword have two identifiers, a long
version and a short version. Each has the exact same function. In the following
examples, it is assumed that the notion of event and pin are implicit.

“$DataPins()” or “$dp ()” indicates all the data pins of a register. For example:

$registers(CLK):$dp()
displays the data pins of all the registers

controlled by CLK

“$OutputPins()” or “$qp()” indicates all the output pins of a register. For example:.

$registers(CLK):$qp()
displays the output pins of all the registers

controlled by the primary clock CLK

“$ClockPins()” or “$cp()” indicates all the clock pins of a register. For example:.

$registers(CLK):clockpins()

displays the output pins of all the

registers controlled by the

primary clock CLK.

“$AsyncPins()” or “$ap()” indicates all the asynchronous pins of a register (preset
and clear).

“$EnablePins()” or “$ep()” indicates all the enable pins of a register. For example:

$registers(CLK):$ep()

displays the enable pins of all the

registers controlled by the primary

clock CLK.

Timing Analysis

339

$inputpins() or $ip() indicates all the input pins of a register. For example:.

$reg(CLK):$inputpins()
Displays the input pins of all the

registers controlled by the CLK

$allpins() indicates all the pins of a register. For example:.

$registers(CLK):$all-
pins()

Displays the pins of all the registers

controlled by the CLK

Second-Level Exceptions

In order to provide more flexibility, the second level keywords can be coupled with
exceptions. For instance, if the you want to select all the input pins of the registers
except the clock pins, you can use the following macro:

$registers(clk):$inputpins(TmacEx_CLOCKPINS)

The available exceptions are listed in the following table:

Exception Result

TmacEX_CLOCKPINS
The clock pins will not be returned from the pins

indicated by the 2nd level macro.

TmacEX_DATAPINS
The data pins will not be returned from the pins

indicated by the 2nd level macro.

TmacEX_ASYNCPINS
The asynchronous pins will not be returned from the

pins indicated by the 2nd level macro.

TmacEX_INPUTPINS
The input pins will not be returned from the pins

indicated by the 2nd level macro.

TmacEX_ENABLEPINS
The enable pins will not be returned from the pins

indicated by the 2nd level macro.

TmacEX_OUTPUTPINS
The output pins will not be returned from the pins

indicated by the 2nd level macro.

Libero IDE User's Guide

340

Using ChipPlanner/ChipEditor with Timer
Use ChipPlanner or ChipEditor and Timer together to view place-and-route of Timer
paths.

Timer and ChipPlanner

To view critical paths:

1. Open Timer and ChipEditor/ChipPlanner from Designer (ChipEditor opens if

you are using an ACT1, ACT2, ACT3, DX, MX, SX, SX-A, or eX device; all

other devices use ChipPlanner).

2. In Timer, click the Paths tab.

3. Select a Path set in the path set grid. Paths within that set are displayed in the

path grid.

4. Select the path you wish to expand.

5. Expand the path by double-clicking on the path, or in the Edit menu, click

Expand Path. The Expanded Paths window opens and displays a single path in

Timing Analysis

341

the Expanded Paths Grid and a graphical representation of the paths in the Chart

Window.

6. Select a module or net in the Expanded Paths dialog box. The module or net is

shown in ChipEditor or ChipPlanner.

Refer to the online help for more information on how to use the
ChipEditor/ChipPlanner tools.

You can add and remove break points in Timer while you use the

ChipEditor/ChipPlanner tool.

Timer Glossary of Terms
This glossary defines terms and concepts used in the Timer online help.

clock exception

A terminal in a synchronous network that should be excluded from the specified clock
period. The exception can remain undefined (don't care) or can be assigned a unique
value in the Path Constraint Editor.

critical path

The path within a design that dictates the fastest time at which an entire design can
run. This path runs from the source to a sink node such that if any activity on the
path is delayed by an amount t, then the entire circuit function is delayed by time t.

delay constraint

A delay constraint defines a fixed amount of time required for a signal to propagate
from all starting terminals to all ending terminals for a network.

destination

An ending point, sink node, for a timing analysis path, often the data input of a
synchronous element or pad.

don't care path

A signal path in which the delay is considered to be infinite.

Dynamic Timing Analysis

Dynamic timing analysis (simulation) has been the standard mechanism in verifying
design functionality and performance. Both pre-layout and post-layout timing
analysis can be performed via the SDF interface. Pre-layout timing analysis provides
quick estimates of the designs performance. Post-layout timing simulation on the
other hand provides accurate timing information that is appropriate for device or
system level simulation.

Libero IDE User's Guide

342

filter

A set of limitations or options applied to the timing analysis to more specifically
target important items of interest.

global Stop

A defined intermediate point in a network that forces all paths through the defined
point to be don't care paths regardless of any constraint assignment.

network

Network. A network can consist of 1 or more start terminals and 1 or more end
terminals. All signal paths connecting any start terminal to any end terminal are
included in the network. Only one delay value can be assigned to each defined
network. Networks can be defined implicitly by a common clock (synchronous
network) or explicitly by a defined set of terminals. Network and Paths are used
interchangeably.

path

An ordered set of elements identifying a logic flow pathway through a circuit. A path
may consist of a single net or a grouping of related nets and components. There can
be multiple, or parallel paths (consisting of nets and components) between the two
pins. When a component is selected as part of a path, both the input pin to the
component and the output pin are included in the path. A path stops when it reaches
the data input of a synchronous element (flip-flop), clock, or pad. A path usually
starts at the output of a synchronous element, clock, or pad.

path delay

The path delay defines the sum of all the individual delays of the nets and the logic
macros in the signal path.

path sets

In this manual we refer to groups or categories of paths as “sets.” Path sets are
displayed on the Paths tab.

signal path

The signal path describes a consecutive sequence of logic and nets, the first net
being driven by a start terminal, and the last net driving a macro input pin of the end
terminal

slack

The difference between the constraint and the analyzed value, with negative slack
indicating the analyzed value is greater than the constrained value.

Standard Delay Format (SDF)

Standard Delay Format is an industry-standard file format used for storing timing
data generated by EDA tools. It is often used for simulation.

Timing Analysis

343

Static Timing Analysis (STA)

Static timing analysis is an exhaustive and convenient method of ensuring that the
design meets its timing requirements. There are functions that are especially easy to
analyze with the static approach. Complex functions such as a multiplier are much
easier to analyze using the static approach because static analysis offers one
hundred percent coverage with minimal effort compared to dynamic timing analysis.
In addition, the static approach is faster for highly synchronous designs compared to
dynamic timing analysis.

status bar

The area located at the bottom of an application window

Timing delay constraint definitions

The following terminology appears in the description of constraints for Timer.

DTL Terminals

Timing Driven Layout terminals define the starting (or source) and ending (or sink)
points for a signal path. They are always I/Os or sequential elements; no
intermediate combinatorial element is currently supported as a terminal.

Signal Path

The signal path describes a consecutive sequence of logic and nets, the first net
being driven by a start terminal, and the last net driving a macro input pin of the end
terminal.

Network

A network can consist of 1 or more start terminals and 1 or more end terminals. All
signal paths connecting any start terminal to any end terminal are included in the
network. Only one delay value can be assigned to each defined network. Networks
can be defined implicitly by a common clock (synchronous network) or explicitly by a
defined set of terminals. Network and Paths are used interchangeably.

Path Delay

The path delay defines the sum of all the individual delays of the nets and the logic
macros in the signal path.

Delay Constraint

A delay constraint defines a fixed amount of time required for a signal to propagate
from all starting terminals to all ending terminals for a network.

Don't Care Path

A signal path in which the delay is considered to be infinite.

Libero IDE User's Guide

344

Global Stop

A defined intermediate point in a network that forces all paths through the defined
point to be don't care paths regardless of any constraint assignment.

Clock Exception

A terminal in a synchronous network that should be excluded from the specified clock
period. The exception can remain undefined (don't care) or can be assigned a unique
value in the Path Constraint Editor.

345

Synthesis
Synthesis Overview
Libero IDE works with the following synthesis tools:

• Synplify from Synplicity

• LeonardoSpectrum from Mentor Graphics

• Precision RTL from Mentor Graphics

While LeonardoSpectrum and Precision RTL are not part of the Libero IDE package,

they can be integrated to work with Libero IDE. You can also integrate different versions

of Synplify. To integrate tools, add them to your project profile.

Synplify
Libero’s integrated synthesis tool, Synplify AE from Synplicity, takes your Verilog or

VHDL Hardware Description Language source as input and outputs an optimized EDIF

and HDL netlist.

Synthesizing your design with Synplify
1. In Libero, right-click the HDL file in the File Manager, or the top-level

schematic for mixed schematic-HDL designs, in the Design Hierarchy, and

select Synthesize. Synplify starts and loads the appropriate design files, with a few

pre-set default values.

2. From Synplify’s Project menu, click Implementation Options.

3. Set your specifications and click OK.

Libero IDE User's Guide

346

4. Click the RUN button. Synplify compiles and synthesizes the design into an

EDIF, *.edn, file. Your EDIF netlist is then automatically translated by Libero

into an HDL netlist. The resulting *edn and *.vhd files are visible in the File

Manager, under Implementation Files

Should any errors appear after you click the Run button, you can edit the file using

the Synplify editor. Double-click the file name in the Synplify window showing the

loaded design files. Any changes you make are saved to your original design file in

Libero.

5. From the File menu, click Exit to close Synplify. A dialog box asks you if you

would like to save any settings that you have made while in Synplify. Click Yes.

Integrating Precision RTL
Libero IDE supports Precision RTL from Mentor Graphics.

To integrate Precision RTL with your Libero IDE project:

1. From the Options menu, click Profile. The Project Profile dialog box appears.

2. Click Add and select Synthesis. The Add Tool dialog box appears.

3. Enter a name. This is the name that appears in the Project Profile dialog box.

4. Select Precision RTL.

5. Enter the location of Precision RTL and any additional parameters.

6. Click OK.

7. Select Precision RTL in the Project Profile dialog box and click OK.

8. Double-click Precision RTL in the Libero Process window to start Precision

RTL.

Synthesis

347

Starting Precision RTL
Before you can start Precision RTL you must add it to your project profile.

To start Precision RTL to run synthesis:

1. In Libero, right-click the HDL file in the File Manager or the top-level

schematic for mixed schematic-HDL designs in the Design Hierarchy, and click

Synthesize. Precision starts.

2. (Optional) Click Setup Design to enter clock frequency, input delays and output

delays.

3. (Optional) Click Constraint if you want to import a constraint file (*.sdf).

4. Click Compile, if you want to compile the design first.

5. If compile runs without error, click Synthesize to optimize the design for your

target technology. To investigate errors in the log window, click the red error

icon next to the error. A HDL Text Editor opens and the part of the HDL text

which is the source of the error is automatically highlighted for you to modify.

 Click Save to save the changes you have made to the HDL text. Rerun

Synthesis to get a successful run.

6. Click Synthesize. Precision RTL runs compile and then synthesizes your design.

7. The synthesized netlist (EDIF format) and is visible under Implementation Files

in the Libero File Manager tab.

8. From the File menu, click Exit to close Precision RTL. A dialog box asks you if

you would like to save any settings that you have made while in Precision. Click

Yes to save the Precision project file (*.psp).

Libero IDE User's Guide

348

Integrating LeonardoSpectrum
Libero IDE supports LeonardoSpectrum from Mentor Graphics.

To integrate LeonardoSpectrum with your Libero IDE project:

1. From the Options menu, click Profile. The Project Profile dialog box appears.

2. Click Add and select Synthesis. The Add Synthesis Tool dialog box appears.

3. Enter a name. This is the name that appears in the Project Profile dialog box.

4. Select LeonardoSpectrum.

5. Enter the location of LeonardoSpectrum and any additional parameters.

6. Click OK.

7. Select LeonardoSpectrum in the Project Profile dialog box and click OK.

8. Double-click LeonardoSpectrum in the Libero Process window to start

LeonardoSpectrum.

Synthesizing your design with LeonardoSpectrum
Before you can start Precision RTL you must add it to your project profile.

To synthesizing your design with LeonardoSpectrum:

1. In Libero, right-click the HDL file in the File Manager, or the top-level

schematic for mixed schematic-HDL designs, in the Design Hierarchy, and select

Synthesize. LeonardoSpectrum starts.

2. The Input Box is blank. Hit the Enter key on the keyboard and all the design files

are loaded into the Input Box.

3. From Tools, click Options.

4. Unselect Automatically save and restore Current Work Directory option.

5. Enter the Clock Frequency if you want to constrain the design.

6. Use the slide bar to select the level of Optimize Effort.

Synthesis

349

7. Click Run Flow. Information about errors can be found by clicking the red error

icon next to the error. The HDL Text Editor opens and the part of the HDL text

which is the source of the error is automatically highlighted for you to modify.

8. Click Save to save the changes you have made to the HDL text. Rerun Synthesis

to get a successful run. The synthesized netlist is in EDIF format and is visible

under Implementation Files in the Libero File Manager tab.

9. From the File menu, click Exit to close LeonardoSpectrum. A dialog box asks

you if you would like to save any settings that you have made while in

LeonardoSpectrum. Click Yes to save the LeonardoSpectrum project file (*.lsp).

Integration issues
Some workarounds are required when using LeonardoSpectrum with Libero IDE.

• LeonardoSpectrum starts with empty windows: When you first open

LeonardoSpectrum from Libero, the Input window is blank and the output file is

not specified. Also, the wrong family appears in the Technology window. To fix

this, simply place your cursor in the transcript window and press Enter. All

windows are updated.

• LeonardoSpectrum log files are misplaced: From the Tools menu, click Options,

and Session Settings. Unselect Automatically save and restore current working

directory. This box must be un-selected in order for your log files to be passed

back to Libero properly.

351

Testbench Creation
WaveFormer Lite
WaveFormer Lite is a special version of WaveFormer Pro that can generate VHDL and

Verilog stimulus-based testbenches for Libero IDE. WaveFormer Lite fits perfectly into

Libero’s design environment, automatically extracting signal information from your HDL

design files and producing HDL testbench code that can be used for VHDL or Verilog

simulation.

WaveFormer Lite generates VHDL and Verilog testbenches from drawn waveforms.

WaveFormer Lite can generate the following:

• VHDL transport testbench (*.vhd) that uses assignment statements

• VHDL wait testbench (*.vhd) that uses wait statements

• Verilog (*.v) file with Verilog stimulus statements

Note:

• WaveFormer Lite comes with its own online help. After starting WaveFormer

Lite, click the Help menu.

Creating your testbench with WaveFormer Lite
WaveFormer Lite generates VHDL and Verilog testbenches from drawn waveforms.

Create your testbench after you are done creating your design and wish to perform

simulation.

There are five basic steps for creating testbenches using WaveFormer Lite and Libero

IDE. These steps are described in detail in the following sections.

To create a testbench using WaveFormer Lite:
1. Double-click WaveFormer Lite in the Process Window. WaveFormer Lite starts

and your signal information is automatically imported.

Libero IDE User's Guide

352

2. Using WaveFormer Lite, draw the waveforms to describe the testbench.

3. (Optional) Add VHDL Libraries and Use Clauses for VHDL export. These

libraries or packages can be included using the VHDL Libraries and Use Clauses

dialog. From the Options menu, click the VHDL Libraries and Use Clauses

menu item to open this dialog.

4. From the Export menu, click Export Timing Diagram and choose the type of file

to generate. You can generate a testbench with a top-level module that

automatically hooks up the model under test to the testbench, or you can generate

just a testbench model. Below is a detailed description of the two methods:

• To generate a Top-Level Model and a Testbench model choose one of the

"top-level" scripts from the save as type drop-down list box. The top-level

module will instantiate the model under test and hook it up to the

testbench. For this script to work the top-level module needs to be defined

in the project. For Wave-Former Lite customers, the Actel Software

should automatically set this option. Below is a list of top-level scripts:

• VHDL Wait with Top Level TestBench (*.vhd)s

• VHDL Transport with Top Level TestBench (*.vhd)s

• Verilog with Top Level TestBench (*.v)s

• To generate a plain testbench model (which does not instantiate your

model under test) then choose one of the VHDL or Verilog scripts. To

simulate with the testbench model, you will need to write a top-level

model that instantiates the testbench model and the model under test.

This is the method used by Wave-Former Pro customers. Below is a list of

VHDL and Verilog testbench generation scripts:

• VHDL Wait (*.vhd)s

• VHDL Transport (*.vhd)s

• Verilog

5. From the File menu, click Exit.

Note:

Testbench Creation

353

• If you added extra signals to the testbench and do not want to export those

signals, then double click the signal’s names to open the Signals Properties dialog

and uncheck the Export check box.

355

Simulation
ModelSim AE
ModelSim Actel Edition (AE) is a custom edition of ModelSim PE that is integrated

into Libero's design environment. ModelSim for Actel is an OEM edition of Model

Technology Incorporated’s (MTI) tools. ModelSim for Actel supports VHDL or

Verilog, but it can only simulate one language at a time. It only works with Actel libraries

and is supported by Actel.

Other editions of ModelSim are supported by Libero. To use other editions of

ModelSim with Libero, simply do not install ModelSim PE from the Libero CD.

Note:

• ModelSim for Actel comes with its own online help and documentation. After

starting ModelSim, click the Help menu.

Setting your simulation options
You can set a variety of simulation options for your project.

To set your simulation options:

1. From the Options menu, click Project Settings.

2. Click Simulation.

3. Select your options and click OK.

• Use automatic do file: Select if you do not want Libero to initialize

ModelSim.

• User defined Do file: Enter the do file name or click the browse button.

• Compile VHDL Package files: Select to compile VHDL package files

using ModelSim AE.

Libero IDE User's Guide

356

• Include Do file: Select to execute the wave.do or other specified Do file.

Use the wave.do file to customize the ModelSim Waveform window

display settings.

• Simulation Run Time: Specify how long the simulation should run in ns.

If the value is 0, or if the field is empty, there won’t be a run command

included in the run.do file.

• Testbench entity name: Specify the name of your testbench entity name.

Default is “testbench,” the value used by WaveFormer Lite.

• Top Level instance name in the testbench: Default is <top_0>”, the value

used by WaveFormer Lite. Libero replaces <top> by the actual top level

macro when ModelSim is run.

• Vsim Command Type:Select Min, Typical (Typ), or Max

• Resolution: The default is family specific, but you can customize it to fit

your needs.

Family Default

Resolution

ACT1, ACT2, ACT3 1 ns

MX 1 ns

DX 1 ns

SX, SX-A 1 ns

eX 1 ns

Axcelerator 1 ps

ProASIC 1 ps

ProASIC PLUS 1 ps

• Vsim additional options: Text entered in this field is added to the vsim

command.

• Default: Restores factory settings.

Simulation

357

Selecting a stimulus file for simulation
Before running simulation, you must associate a testbench. If you attempt to run

simulation without an associated testbench, Libero IDE asks you to associate a testbench

or open ModelSim without a testbench.

To associate a stimulus:
1. Run simulation or right-click the top level module in the Design Hierarchy Menu

and click Select a Stimulus File from the right-click menu. The Select Stimulus

dialog box appears.

2. Associate your testbench(es):

In the Select Stimulus dialog box, all the stimulus files in the current Libero project

appear in the left Stimulus Files in the Project list box. Files already associated with

the block appear in the Associated Files list box.

In most cases you will only have one testbench associated with your block.

However, if you want simultaneous association of multiple testbench files for one

simulation session, as in the case of PCI cores, add multiple files to the Associated

Files dialog box.

To add a testbench: Select the testbench you want to associate with the block in

the Stimulus Files in the Project list box and click Add to add it to the Associated

Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list

box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want

the testbenches compiled. The top level entity should be in the bottom of the list.

Libero IDE User's Guide

358

4. When you are satisfied with the Associated File(s) list, click OK. A check mark

appears next to WaveFormer Lite in the Process window to let you know that a

testbench has been associated with the block.

Performing functional simulation
1. Create your testbench.

2. Right-click the top level module in the Design Hierarchy window.

3. Click Select a Stimulus File from the right-click menu.

In the Select Stimulus dialog box, all the stimulus files in the current Libero project

appear in the left Stimulus Files in the Project list box. Files already associated with

the block appear in the Associated Files list box.

In most cases you will only have one testbench associated with your block.

However, if you want simultaneous association of multiple testbench files for one

simulation session, as in the case of PCI cores, add multiple files to the Associated
Files dialog box.

To add a testbench: Select the testbench you want to associate with the block in

the Stimulus Files in the Project list box and click Add to add it to the Associated

Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list

box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want

the testbenches compiled.

4. When you are satisfied with the Associated File(s) list, click OK. A check mark

appears next to WaveFormer Lite in the Process window to let you know that a

testbench has been associated with the block.

Simulation

359

5. Start ModelSim AE by doing one of the following:

• Right-click the top level module in the Design Hierarchy window and

select Run Pre-Synthesis Simulation or Run Post-Synthesis Simulation.

• Double-click ModelSim Simulation in the Process Window.

ModelSim starts and compiles the appropriate source files. When the

compilation completes, the simulator runs for 1uS and the Wave window

opens to display the simulation results.

6. Scroll in the Wave window to verify that the logic of your design functions as

intended. Use the zoom buttons to zoom in and out as necessary.

7. From the File menu, click Quit.

Performing timing simulation
The steps for performing functional and timing simulation are nearly identical.

Functional simulation is performed before place-and-route and simulates only the

functionality of the logic in the design. Timing simulation is performed after the design

has gone through place-and-route and uses timing information based on the delays in the

placed and routed designs.

Timing simulation includes much more detailed timing information for the targeted

device. Timing simulation requires a testbench.

To perform timing simulation:
1. If you have not done so, back-annotate your design and create your testbench.

2. Right-click the top level module in the Design Hierarchy Menu.

3. Click Select a Stimulus File from the right-click menu.

In the Select Stimulus dialog box, all the stimulus files in the current Libero project

appear in the left Stimulus Files in the Project list box. Files already associated with

the block appear in the Associated Files list box.

Libero IDE User's Guide

360

In most cases you will only have one testbench associated with your block.

However, if you want simultaneous association of multiple testbench files for one

simulation session, as in the case of PCI cores, add multiple files to the Associated
Files dialog box.

To add a testbench: Select the testbench you want to associate with the block in

the Stimulus Files in the Project list box and click Add to add it to the Associated

Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list

box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want

the testbenches compiled.

4. When you are satisfied with the Associated File(s) list, click OK. A check mark

appears next to WaveFormer Lite in the Process window to let you know that a

testbench has been associated with the block.

5. Double-click ModelSim Simulation in the Process window. The ModelSim

simulator starts and compiles the source files. When the compilation completes,

the simulator runs for 1 uS and a Wave window opens to display the simulation

results.

6. Scroll in the Wave window to verify the logic works as intended. Use the cursor

and zoom buttons to zoom in and out and measure timing delays. If you didn't’

 create a testbench with WaveFormer Lite, you might get error messages with the

vsim command if the instance names of your testbench don’t follow the same

conventions as WaveFormer Lite. Ignore the error message and type and the

correct vsim command.

7. When you are done, from the File menu, click Quit.

Simulation

361

363

Device Programming
Generating Programming Files
Once you have completed your design, and you are satisfied with the back-annotated

timing simulation, create your programming file. Depending upon your device family,

you need to generate a Fuse, Bitstream or STAPL programming file.

Programmer Antifuse Programming

File

Flash Programming File

Flash Pro N/A .stp

Silicon Sculptor I .afm (Non-Axcelerator

families)

.bit

Silicon Sculptor II .afm .bit

.stp (Windows only)

Starting Silicon Sculptor from Libero IDE
Before starting Silicon Sculptor, generate your programming file.

To start the programming tool software:

1. Right-click the design root file in the Design Hierarchy window.

2. Click Run Silicon Sculptor. Refer to the Silicon Sculptor User’s Guide for

information on using the programming tool.

FlashLock
Actel’s ProASIC and ProASICPLUS devices contain FlashLock circuitry to lock the device

by disabling the programming and readback capabilities after programming. Care has

been taken to make the locking circuitry very difficult to defeat through electronic or

direct physical attack.

Libero IDE User's Guide

364

FlashLock has three security options: No Lock, Permanent Lock, and Keyed Lock.

No Lock

Creates a programming file which does not secure your device.

Permanent Lock

The permanent lock makes your device one time programmable. It cannot be unlocked

by you or anyone else.

Keyed Lock

Within each ProASIC and ProASICPLUS device, there is a multi-bit security key user key.

The number of bits depends on the size of the device. The tables below show the key size

of different ProASIC and ProASICPLUS devices, respectively. Once secured, read

permission and write permission can only be enabled by providing the correct user key to

first unlock the device. The maximum security key for the device is shown in the dialog

box.

Device Programming

365

Key Size of ProASIC Devices

Device Key

Size

(bits)

Key

Size

(Hex)

A500K050 51 Bits 13

A500K130 51 Bits 13

A500K180 51 Bits 13

A500K270 51 Bits 13

Key Size of ProASICPLUS Devices

Device Key

Size

(bits)

Key

Size

(Hex)

APA075 79 Bits 20

APA150 79 Bits 20

APA300 79 Bits 20

APA450 119

Bits

30

APA600

167

Bits

42

APA750 191

Bits

48

APA1000

263

Bits

66

Programming the Security Bit

Two device programmers, Silicon Sculptor and Flash Pro, are available for ProASIC and

ProASICPLUS devices. If the programming file contains the security key, by default the

Silicon Sculptor and Flash Pro programming software automatically enables the "secure"

option and programs the security key. You can turn this off, should you decide not to

program using the security key.

Please refer to the application note “Implementation of Security in Actel's ProASIC and

ProASICPLUS Flash-Based FPGAs” for more details.

Libero IDE User's Guide

366

Generating Bitstream and STAPL files
Bitstream allows you to generate a bitstream or STAPL file for ProASIC and

ProASICPLUS devices. Please consult the Program Files table to find out which file type

you should choose.

To generate a bitstream or STAPL file:

1. In the Tools menu, click Bitstream or click the Bitstream button in the Design

Flow window.

2. Select Bitstream or STAPL from the File Type drop-down list box.

3. FlashLock. Select one of the following options:

• No Locking: Creates a programming file which does not secure your

device.

• Use Keyed Lock: Creates a programming file which secures your device

with a FlashLock key. The maximum security key for the device is shown

in the dialog box. The maximum security key for the device is shown in

the dialog box.

• Use Permanent Lock: Creates a one-time programmable device.

4. Click OK. Designer validates the security key and alerts you to any concerns.

Note: The bitstream file header contains the security key.

Device Programming

367

Generating a Fuse file
Fuse allows you to generate a programming file for your Actel Antifuse devices. Fuse files

work with Actel's Silicon Sculptor programmers. (For Axcelerator families, you must use

the Silicon Sculptor II programmer.)

To generate a fuse programming file:
1. In the Tools menu, click Fuse or click the Fuse button in the Design Flow

window.

• File Type. Select the appropriate file type in the File Type pull-down

menu. Select “AFM-APS2” if you are using Silicon Sculptor programmer.

• Silicon Signature (Optional): Enter a 5 digit hexadecimal value in the

Silicon Signature box to identify the design. Valid characters are “0”

through “9,” and “a” through “f.”

• Output filename: Designer automatically names the file based on the

<design_name>.adb file. You can change the name by entering it in the File

Name box. Click Browse to change the directory. Do not add a file extension or

suffix to the file name. The Designer software automatically adds the extension to

the programming file name when you specify the programming format.

• Generate Probe File Also: This option automatically generates a .prb file for use

with Silicon Explorer

• Disable clamping diode for unused I/O pins: (SX-A and eX families). Check box

to disable clamping diode.

• Use the JTAG Reset Pull-up Resistor: (Axcelerator family) Select to enable pull-

up resistors on the TRSTB pin (JTAG Reset pin which is active low). This is not

part of the JTAG standard but can be useful if you want to make sure that the

JTAG tap controller is not reset by mistake if the TRSTB pin is not connected.

The pull-up resistor guarantees that if the pin is not driven to low (active), the pin

is left in an inactive state (high).

Libero IDE User's Guide

368

• Use the Global Set Fuse: (Axcelerator family) Select to set flip-flops to a known

state after power-up. If not selected all flip-flops are set to '0' at power up. If this

option id used, all flip-flops are set to '1' at power up.

2. Click OK when finished to save the file.

Generating prototype files
When designing for RTAX-S, you can use the Axcelerator family of devices for

prototyping. Please refer to the application note, Prototyping RTAX-S Using

Axcelerator Devices for more information.

To generate prototype files:

1. From the Tools menu, click Generate Prototype. In the Generate Prototype Files

dialog box, make the following selections:

• Silicon Signature (Optional). Enter a 5 digit hexadecimal value in the

Silicon Signature box to identify the design. Valid characters are “0”

through “9,” and “a” through “f.”

• Output filename. Designer automatically names the file based on the

<design_name>.adb file. You can change the name by entering it in the File

Name box. Click Browse to change the directory. Do not add a file extension or

suffix to the file name. The Designer software automatically adds the extension to

the programming file name when you specify the programming format.

• Generate Probe File Also. This option automatically generates a .prb file for use

with Silicon Explorer

Device Programming

369

• Use the JTAG Reset Pull-up Resistor: Select to enable pull-up resistors on the

TRSTB pin (JTAG Reset pin which is active low). This is not part of the JTAG

standard but can be useful if you want to make sure that the JTAG tap controller

is not reset by mistake if the TRSTB pin is not connected. The pull-up resistor

guarantees that if the pin is not driven to low (active), the pin is left in an inactive

state (high).

• Use the Global Set Fuse: Select to set flip-flops to a known state after power-up.

If not selected all flip-flops are set to '0' at power up. If this option id used, all

flip-flops are set to '1' at power up.

2. Click OK. The AFM file is generated.

371

Contacting Actel
Actel Headquarters
Actel Corporation is a supplier of innovative programmable logic solutions, including

field-programmable gate arrays (FPGAs) based on antifuse and flash technologies, high-

performance intellectual property (IP) cores, software development tools and design

services targeted for the high-speed communications, application-specific integrated

circuit (ASIC) replacement, and radiation-tolerant markets.

Address: 955 East Arques Avenue

Sunnyvale, CA 94086

Phone: (888) 99-ACTEL

Technical Support
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00

P.M. Pacific Time, Monday through Friday.

Visit Tech Support Online
For 24-hour support resources, visit Actel Technical Support at

http://www.actel.com/custsup/search.html.

Contacting Technical Support
Contact us with your technical questions via e-mail or by phone. Also, if you have design

problems, you can e-mail your design files to receive assistance. When sending your

request to us, please be sure to include your full name, company name, and telephone

number.

E-mail: tech@actel.com

Telephone (In U.S.): (408) 522-4460

(800) 262-1060

Telephone (Outside the US): Contact a local sales office

Libero IDE User's Guide

372

Customer Service
Contact Customer Service for non-technical product support, such as product pricing,

product upgrades, update information, order status, and authorization. For technical

issues, contact Technical Support.

From Call

Northeast and North Central U.S.A. (408) 522-4480

Southeast and Southwest U.S.A. (408) 522-4480

South Central U.S.A. (408) 522-4434

Northwest U.S.A. (408) 522-4434

Canada (408) 522-4480

Europe (408) 522-4252 or +44 (0) 1276 401500

Japan (408) 522-4743

From the rest of the world (408) 522-4743

Sales
For a list of Actel Sales Offices, please see the Actel web site

http://www.actel.com/contact/offices/offices.html.

Documentation Feedback
Actel Corporation strives to produce the highest quality online Help and printed

documentation. We want to help you learn about our products. We welcome your

feedback. Please send your comments to documentation@actel.com.

373

Index

374

.

.lok 109

A

Actel 293

ADB 112

Adding applications 110

ADL 129

AFL 129

AFM 129

Applications 110

Associate 286

Audit settings 118

Auditing 118

Auxiliary files 96, 118

B

BIT 129

Bitstream 289, 290

BSD 129

C

ChipEditor 42

ChipPlanner 48, 50

COB 129

constraint file 95

constraints 66, 95, 100

crash 109

CRT 129

D

DCF 95, 129

Device Support 12

DIO 129

Directory 111

Documentation 297

E

EDN 129

Empty 48

Exclusive 48

Exporting 66, 129

Exporting files 129

F

Feedback 297

Files 12, 13, 14, 15, 16, 21, 24, 25,
27, 32, 33, 283, 286, 287, 289,
290, 291

Flash Layout 123

Flash Pro 289

FlashLock 289, 290

FlashPro 19

Flip-Flop 132

Floorplanning 47, 48, 50

FUS 129

Fuse 289, 291

G

GCF 66, 95, 96, 100, 118, 129

Guidelines 31

H

HDL Editor 7, 25, 27

I

Importing 15, 66, 96, 100, 116, 118,
120

Inclusive 48

Internet 111, 112

K

Keyed lock 289

L

LeonardoSpectrum 281

Libero Gold 5, 7

Libero Platinum 5

Index

375

Libero Platinum Evaluation 5

Libero Silver 5

Literature 297

LOC 129

LOG 129

logic assignment 44

M

macro 42

Menu 12, 13, 15, 16, 21, 24, 25, 27,
33, 287, 290

ModelSim 286

N

naming 31

New Project 12

New tools 110

New version 111

O

Opening 111

ordering applications 110

P

PDC 66, 79, 89, 90, 92, 96, 118,
129, 168

PDF 113

Permanent lock 289

PIN 129

PinEditor 35, 44

place and route 123

Placement 42

Port names 31

PRB 129

Precision RTL 280

Preferences 111, 112, 113

ProASIC 66, 100

Programming 19, 289, 291, 292

Projects 12, 13, 14, 15, 16, 23, 24,
25, 27, 32, 33, 283

Prototype 292

Proxy 112

R

Regions 47, 48, 50

Reports 132

RTAX-S 292

S

SAIF 129

Sales 294

Saving 111

Schematic 31, 32, 33

Sculptor 289, 291

SDC 95, 96, 97, 99, 118, 120

SDF 129

Security 289

Security Key 290

SEG 129

Simulation 287

simulation options 18, 285

Software update 111

Source files 116

STAPL 289

Starting 35

Starting applications 110

STF 129

Stimulus 286

Synthesis 280, 281

T

TCL 79, 89, 90, 92, 129, 168, 169,
177, 179, 180, 197

Technical Support 293

Testbench 7, 14, 283, 286, 287

Timing 287

Libero IDE User's Guide

376

Timing driven layout 123

Tools menu 110

Troubleshooting 293

U

UNIX 113

Updates 111

V

VDC 129

Version Checking 21, 111

W

WaveFormer Lite 286

