
Synplify®

 for Actel

User Guide

September 2004

Synplicity, Inc.
600 West California Avenue

Sunnyvale, CA 94086
(U.S.) +1 408 215-6000 direct

(U.S.) +1 408 222-0263 fax
www.synplicity.com

http://www.synplicity.com

LO

Preface

ii Synplify User Guide, September 2004

Preface

Disclaimer of Warranty
Synplicity, Inc. makes no representations or warranties, either expressed or
implied, by or with respect to anything in this manual, and shall not be liable
for any implied warranties of merchantability or fitness for a particular
purpose of for any indirect, special or consequential damages.

Copyright Notice
Copyright © 1994-2004 Synplicity, Inc. All Rights Reserved.

Synplicity software products contain certain confidential information of
Synplicity, Inc. Use of this copyright notice is precautionary and does not
imply publication or disclosure. No part of this publication may be repro-
duced, transmitted, transcribed, stored in a retrieval system, or translated
into any language in any form by any means without the prior written
permission of Synplicity, Inc. While every precaution has been taken in the
preparation of this book, Synplicity, Inc. assumes no responsibility for errors
or omissions. This publication and the features described herein are subject
to change without notice.

Trademarks
Synplicity, the Synplicity “S” logo, Behavior Extracting Synthesis Technology,
Embedded Synthesis, HDL Analyst, SCOPE, Simply Better Results, Simply
Better Synthesis, Synplify, and Synthesis Constraint Optimization Environ-
ment are registered trademarks of Synplicity, Inc.

Amplify, B.E.S.T., Certify, DST, Direct Synthesis Technology, Partition-Driven
Synthesis, and Physical Optimizer are trademarks of Synplicity, Inc.

Preface

Synplify User Guide, September 2004 iii

Verilog is a registered trademark of Cadence Design Systems, Inc. IBM and
PC are registered trademarks of International Business Machines Corpora-
tion. Microsoft is a registered trademark of Microsoft Corporation. Sun,
SPARC, Solaris, and SunOS are trademarks of Sun Microsystems, Inc. UNIX
is a registered trademark of UNIX Systems Laboratories, Inc.

All other product names mentioned herein are the trademarks or registered
trademarks of their respective owners.

Synplicity products are protected under U.S. Patent No. 6,182,268.

Restricted Rights Legend
Government Users: Use, reproduction, release, modification, or disclosure of
this commercial computer software, or of any related documentation of any
kind, is restricted in accordance with FAR 12.212 and DFARS 227.7202,
and further restricted by the Synplicity Software License Agreement.
Synplicity, Inc., 600 West California Avenue, Sunnyvale, CA 94086, U.S.A

Printed in the U.S.A
September 2004

LO

Preface

iv Synplify User Guide, September 2004

Synplicity Software License Agreement

Important! READ CAREFULLY BEFORE PROCEEDING

BY INDICATING YOUR ACCEPTANCE OF THE TERMS OF THIS AGREEMENT, YOU ARE REPRESENT-
ING THAT YOU HAVE THE RIGHT AND AUTHORITY TO LEGALLY BIND YOURSELF OR YOUR COM-
PANY, AS APPLICABLE, AND CONSENTING TO BE LEGALLY BOUND BY ALL OF THE TERMS OF THIS
AGREEMENT. IF YOU DO NOT AGREE TO ALL THESE TERMS DO NOT INSTALL OR USE THE SOFT-
WARE, AND RETURN THE SOFTWARE TO THE LOCATION OF PURCHASE FOR A REFUND. This is a
legal agreement governing use of the software program ("SOFTWARE") provided to you ("Licensee") by Syn-
plicity. The term "SOFTWARE" also includes related documentation (whether in print or electronic form) and
any updates or upgrades of the SOFTWARE provided by Synplicity, but does not include certain software
licensed by third party licensors and made available to you by Synplicity under the terms of such third party
licensor's license (including software licensed under the General Public License (GPL)). If Licensee is a par-
ticipant in the University Program or has been granted an Evaluation License, then some of the following
terms and conditions may not apply (refer to the sections entitled, respectively, Evaluation License and Uni-
versity Program, below).

Evaluation License. If Licensee has obtained the SOFTWARE pursuant to an evaluation license, then, in addi-
tion to all other terms and conditions, the following restrictions apply: (a) The license to the SOFTWARE ter-
minates after 20 days (unless otherwise agreed to in writing by Synplicity); and (b) Licensee may use the
SOFTWARE only for the sole purpose of internal testing and evaluation to determine whether Licensee wishes
to license the SOFTWARE on a commercial basis. Licensee shall not use the SOFTWARE to design any inte-
grated circuits for production or pre-production purposes or any other commercial use including, but not lim-
ited to, for the benefit of Licensee's customers. If Licensee breaches any of the foregoing restrictions, then
Licensee shall pay to Synplicity a license fee equal to Synplicity's standard license fee for the commercial ver-
sion of the SOFTWARE.

License. Synplicity grants to Licensee a non-exclusive right to install the SOFTWARE and to use or authorize
use of the SOFTWARE by up to the number of nodes for which Licensee has a license and for which Licensee
has the security key(s) or authorization code(s) provided by Synplicity or its agents. If Licensee has obtained
the SOFTWARE under a node-locked license, then a "node" refers to a specific machine, and the SOFTWARE
may be installed only on the number of "nodes" or machines authorized, must be used only on the machine(s)
on which it is installed, and may be accessed only by users who are physically present at that node or machine.
A node-locked license may only be used by one user at a time running one instance of the software at a time. If
Licensee has obtained the SOFTWARE under a "floating" license, then a "node" refers to a concurrent user or
session, and the SOFTWARE may be used concurrently by up to the number of users or sessions indicated. All
SOFTWARE must be used within the country for which the systems were licensed and at Licensee's Site (con-
tained within a one kilometer radius); however, if Licensee has a floating license then remote use is permitted
by employees who work at the site but are temporarily telecommuting to that same site from less than 50 miles
away (for example, an employee who works at a home office on occasion), but the maximum number of con-
current sessions or nodes still applies. In addition, Synplicity grants to Licensee a non-exclusive license to
copy and distribute internally the documentation portion of the SOFTWARE in support of its license to use the
program portion of the SOFTWARE. For purposes of this Agreement the "Licensee's Site" means the location
of the server on which the SOFTWARE resides, or when a server is not required, the location of the client com-

Preface

Synplify User Guide, September 2004 v

puter for which the license was issued.

Copy Restrictions. This SOFTWARE is protected by United States copyright laws and international treaty pro-
visions and Licensee may copy the SOFTWARE only as follows: (i) to directly support authorized use under
the license, and (ii) in order to make a copy of the SOFTWARE for backup purposes. Copies must include all
copyright and trademark notices.

Use Restrictions. This SOFTWARE is licensed to Licensee for internal use only. Licensee shall not (and shall
not allow any third party to): (i) decompile, disassemble, reverse engineer or attempt to reconstruct, identify or
discover any source code, underlying ideas, underlying user interface techniques or algorithms of the SOFT-
WARE by any means whatever, or disclose any of the foregoing; (ii) provide, lease, lend, or use the SOFT-
WARE for timesharing or service bureau purposes, on an application service provider basis, or otherwise
circumvent the internal use restrictions; (iii) modify, incorporate into or with other software, or create a deriva-
tive work of any part of the SOFTWARE; (iv) disclose the results of any benchmarking of the SOFTWARE, or
use such results for its own competing software development activities, without the prior written permission of
Synplicity; or (v) attempt to circumvent any user limits, maximum gate count limits or other license, timing or
use restrictions that are built into the SOFTWARE.

Transfer Restrictions/No Assignment. The SOFTWARE may only be used under this license at the desig-
nated locations and designated equipment as set forth in the license grant above, and may not be moved to
other locations or equipment or otherwise transferred without the prior written consent of Synplicity. Any per-
mitted transfer of the SOFTWARE will require that Licensee executes a "Software Authorization Transfer
Agreement" provided by Synplicity. Further, Licensee shall not sublicense, or assign this Agreement or any of
the rights or licenses granted under this Agreement, without the prior written consent of Synplicity.

Security. Licensee agrees to take all appropriate measures to safeguard the SOFTWARE and prevent unautho-
rized access or use thereof, including without limitation: (i) implementation of firewalls and other security
applications, (ii) use of FLEXlm options file that restricts access to the SOFTWARE to identified users; (iii)
maintaining and storing license information in paper format only; (iv) changing TCP port numbers every three
(3) months; and (v) communicating to all authorized users that use of the SOFTWARE is subject to the restric-
tions set forth in this Agreement.

Ownership of the SOFTWARE. Synplicity retains all right, title, and interest in the SOFTWARE (including all
copies), and all worldwide intellectual property rights therein. Synplicity reserves all rights not expressly
granted to Licensee. This License is not a sale of the original SOFTWARE or of any copy.

Ownership of Design Techniques. "Design" means the representation of an electronic circuit or device(s),
derived or created by Licensee through the use of the SOFTWARE in its various formats, including, but not
limited to, equations, truth tables, schematic diagrams, textual descriptions, hardware description languages,
and netlists. "Design Techniques" means the data, circuit and logic elements, libraries, algorithms, search strat-
egies, rule bases, and technical information incorporated in the SOFTWARE and employed in the process of
creating Designs. Synplicity retains all right, title and interest in and to Design Techniques incorporated into
the SOFTWARE, including all intellectual property rights embodied therein. Licensee acknowledges that Syn-
plicity has an unrestricted, royalty-free right to incorporate any Design Techniques disclosed by Licensee into
its software, documentation and other products, and to sublicense third parties to use those incorporated design
techniques.

LO

Preface

vi Synplify User Guide, September 2004

Termination. Synplicity may terminate this Agreement immediately if Licensee breaches any provision,
including without limitation, failure by Licensee to implement the Security measures set forth above. Upon
notice of termination by Synplicity, all rights granted to Licensee under this Agreement will immediately ter-
minate, and Licensee shall cease using the SOFTWARE and return or destroy all copies (and partial copies) of
the SOFTWARE and documentation.

Limited Warranty and Disclaimer. Synplicity warrants that the program portion of the SOFTWARE will per-
form substantially in accordance with the accompanying documentation for a period of 90 days from the date
of receipt. Synplicity's entire liability and Licensee's exclusive remedy for a breach of the preceding limited
warranty shall be, at Synplicity's option, either (a) return of the license fee, or (b) providing a fix, patch,
work-around, or replacement of the SOFTWARE that does not meet such limited warranty. In either case, Lic-
ensee must return the SOFTWARE to Synplicity with a copy of the purchase receipt or similar document.
Replacements are warranted for the remainder of the original warranty period or 30 days, whichever is longer.
Some states/jurisdictions do not allow limitations, so the above limitation may not apply. EXCEPT AS
EXPRESSLY SET FORTH ABOVE, NO OTHER WARRANTIES OR CONDITIONS, EITHER EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, ARE MADE BY SYNPLICITY OR ITS LICENSORS WITH
RESPECT TO THE SOFTWARE AND THE ACCOMPANYING DOCUMENTATION, AND SYNPLICITY
EXPRESSLY DISCLAIMS ALL WARRANTIES AND CONDITIONS NOT EXPRESSLY STATED HEREIN,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDITIONS OF MERCHANT-
ABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. SYNPLICITY AND ITS
LICENSORS DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
LICENSEE'S REQUIREMENTS, BE UNINTERRUPTED OR ERROR FREE, OR THAT ALL DEFECTS IN THE
PROGRAM WILL BE CORRECTED. Licensee assumes the entire risk as to the results and performance of the
SOFTWARE. Some states/jurisdictions do not allow the exclusion of implied warranties, so the above exclu-
sion may not apply.

Limitation of Liability. IN NO EVENT SHALL SYNPLICITY OR ITS LICENSORS OR THEIR AGENTS BE
LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL OR INCIDENTAL DAMAGES WHATSOEVER
(INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTER-
RUPTIONS, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE
USE OF OR INABILITY TO USE THE SOFTWARE, EVEN IF SYNPLICITY AND/OR ITS LICENSORS HAVE
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. FURTHER, IN NO EVENT SHALL SYNPLIC-
ITY'S LICENSORS BE LIABLE FOR ANY DIRECT DAMAGES ARISING OUT OF LICENSEE'S USE OF THE
SOFTWARE. In no event will Synplicity or its licensors be liable to Licensee for damages in an amount greater
than the fees paid for the use of the SOFTWARE. Some states/jurisdictions do not allow the limitation or exclu-
sion of incidental or consequential damages, so the above limitations or exclusions may not apply.

Intellectual Property Right Infringement. If a claim alleging infringement of an intellectual property right
arises concerning the SOFTWARE (including but not limited to patent, trade secret, copyright or trademark
rights), Synplicity in its sole discretion may elect to defend or settle such claim, and/or terminate this Agree-
ment and all rights to use the SOFTWARE, and require the return or destruction of the SOFTWARE, with a
refund of the fees paid for use of the SOFTWARE less a reasonable allowance for use and shipping.

Export. Licensee warrants that it is not prohibited from receiving the SOFTWARE under U.S. export laws;
that it is not a national of a country subject to U.S. trade sanctions; that it will not use the SOFTWARE in a
location that is the subject of U.S. trade sanctions that would cover the SOFTWARE; and that to its knowledge
it is not on the U.S. Department of Commerce's table of deny orders or otherwise prohibited from obtaining
goods of this sort from the United States.

Preface

Synplify User Guide, September 2004 vii

Miscellaneous. This Agreement is the entire agreement between Licensee and Synplicity with respect to the
license to the SOFTWARE, and supersedes any previous oral or written communications or documents (includ-
ing, if you are obtaining an update, any agreement that may have been included with the initial version of the
SOFTWARE). This Agreement is governed by the laws of the State of California, USA excluding its conflicts
of laws principals. This Agreement will not be governed by the U. N. Convention on Contracts for the Interna-
tional Sale of Goods and will not be governed by any statute based on or derived from the Uniform Computer
Information Transactions Act (UCITA). If any provision, or portion thereof, of this Agreement is found to be
invalid or unenforceable, it will be enforced to the extent permissible and the remainder of this Agreement will
remain in full force and effect. Failure to prosecute a party's rights with respect to a default hereunder will not
constitute a waiver of the right to enforce rights with respect to the same or any other breach.

Government Users. The Software contains commercial computer software and commercial computer soft-
ware documentation. In accordance with FAR 12.212 and DFARS 227.7202, use, duplication or disclosure is
subject to restrictions under paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
at 252.227-7013, and further restricted by this Agreement. Synplicity, Inc., 600 W. California Avenue, Sunny-
vale, CA 94086, U. S. A.

University Program. The following section applies only if Licensee is a participant in Synplicity's University
Program; it does not replace the remainder of the Agreement and supersedes only those terms that directly con-
flict.

University Program: License. Subject to the terms and conditions of this Agreement, Synplicity hereby grants
to Licensee (a University) for the License Term (defined below), a non-exclusive license, only for purposes of
course work or teaching in connection with a university-sponsored class, or for academic research either spon-
sored by or conducted under the auspices of Licensee, to (a) install and use the SOFTWARE, and (b) reproduce
and distribute copies of the documentation included in the SOFTWARE subject only to payment for those cop-
ies (which may be based on the number of users, the number and type of copies, or both). If the SOFTWARE is
licensed pursuant to a node-locked license, then the Licensee may install and use the SOFTWARE on the
authorized workstations. If the SOFTWARE is licensed pursuant to a floating license, then the Licensee may
install the SOFTWARE on the authorized server and use the SOFTWARE on up to the number of nodes for
which Licensee has paid license fees and Synplicity has granted authorization.

University Program: License Term and Termination. For purposes of the University Program, "License Term"
means one year unless otherwise agreed to in writing. This Agreement will terminate at the end of the License
Term, unless earlier terminated in accordance with this Agreement.

University Program: License Restrictions. As Licensee, University may not (i) allow access to the SOFTWARE
by any user not registered for a course or participating in an academic research project for which use of the
SOFTWARE has been authorized; (ii) use the SOFTWARE to design any commercial products; or (iii) disclose
the results of any benchmarking of the SOFTWARE, or use such results for its own competing software devel-
opment activities, without the prior written permission of Synplicity.

University Program: Technical Liaison. Licensee shall appoint a Technical Liaison who will serve as the single
point of contact between Synplicity and Licensee with respect to the subject matter of this Agreement. The
Technical Liaison will coordinate installation and maintenance of the SOFTWARE, communicate with Synplic-
ity regarding license procedures, administer Licensee's obligations under this Agreement and respond to
inquiries by Synplicity related to the subject matter of this Agreement.

LO

Preface

viii Synplify User Guide, September 2004

University Program: Technical Support in North America. Unless otherwise agreed in writing, Synplicity will
accept calls only from the appointed Technical Liaison. No technical support will be provided other than calls
from the Technical Liaison relating to installation of the SOFTWARE. SOFTWARE upgrades may be obtained
from the Synplicity Web Site.

University Program: International Technical Support. Technical support is provided through Synplicity's
authorized distributors in accordance with their applicable policies.

revised 7/03

Synplify User Guide, September 2004 ix

Contents

Chapter 1: Introduction
The Synplify Synthesis Tool . 1-2

About the Software . 1-2
Synplicity Product Family . 1-3

The Generic FPGA Design Flow . 1-4
HDL Design Entry . 1-4
Logic Optimization (Compilation) . 1-5
Technology Mapping . 1-5
Placement . 1-5
Routing . 1-6
FPGA Configuration . 1-6

Audience . 1-6

Scope of the Document . 1-7

Starting the Software . 1-7
Getting Started . 1-7
Using the License Wizard . 1-8
Getting Help . 1-10

User Interface Overview . 1-11

The Design Flow . 1-12

Chapter 2: File Setup
Setting Up HDL Source Files . 2-2

Creating Source Files . 2-2
Checking Source Files . 2-4
Editing Source Files with the Built-in Text Editor . 2-5
Using an External Text Editor . 2-8
Setting Editing Window Preferences . 2-9

Setting Up Project Files . 2-11
Creating a Project File Without the Project Wizard . 2-11

LO

Preface

x Synplify User Guide, September 2004

Creating a Project File with the Project Wizard . 2-14
Opening an Existing Project File . 2-15
Making Changes to a Project . 2-16
Setting Project View Display Preferences . 2-18

Chapter 3: Constraints, Attributes, and Options
Setting Implementation Options . 3-2

Setting Device Options . 3-2
Setting Constraint and Optimization Options . 3-5
Specifying Result Options . 3-6
Specifying Timing Report Output . 3-8
Setting Verilog and VHDL Options . 3-9

Setting Constraints in the SCOPE Window . 3-13
Opening the SCOPE Window . 3-13
Entering and Editing Constraints in the SCOPE Window 3-15
Entering Default Constraints . 3-18
Setting Clock and Path Constraints . 3-20
Defining Clocks . 3-22
Defining I/O Constraints . 3-26
Defining False Paths . 3-27
Defining From/To/Through for Timing Exceptions . 3-28
Setting SCOPE Display Preferences . 3-30

Working with Constraint Files . 3-31
When to Use Constraint Files over Source Code . 3-31
Tcl Syntax Guidelines for Constraint Files . 3-32
Using a Text Editor for Constraint Files . 3-33

Adding Attributes and Directives . 3-36
Adding Attributes and Directives in VHDL . 3-36
Adding Attributes and Directives in Verilog . 3-37
Adding Attributes in the SCOPE Window . 3-38
Adding Attributes to a Tcl Constraint File . 3-40
Adding Attributes From the RTL and Technology Views 3-40

Chapter 4: Result Analysis
Checking Log Results . 4-2

Viewing the Log File . 4-2
Analyzing Results Using the Log File Reports . 4-4
Handling Warnings . 4-4

Basic Operations in the Schematic Views . 4-10
Differentiating Between the Views . 4-11

Preface

Synplify User Guide, September 2004 xi

Opening the Views . 4-11
Analyzing Your Design Graphically . 4-13
Viewing Object Properties . 4-14
Selecting Objects in the RTL/Technology Views . 4-17
Working with Multisheet Schematics . 4-18
Moving Between Views in a Schematic Window . 4-20
Setting Schematic View Preferences . 4-20
Managing Windows . 4-22

Exploring Design Hierarchy . 4-24
Traversing Design Hierarchy with the Hierarchy Browser 4-24
Exploring Object Hierarchy by Pushing/Popping . 4-25
Exploring Object Hierarchy of Transparent Instances 4-29

Finding Objects . 4-30
Browsing to Find Objects . 4-30
Using Find for Hierarchical and Restricted Searches 4-32
Using Wildcards with the Find Command . 4-35

Crossprobing . 4-38
Crossprobing Description . 4-38
Crossprobing within an RTL/Technology View . 4-39
Crossprobing from the RTL/Technology View . 4-40
Crossprobing from the Text Editor Window . 4-42

Analyzing With the HDL Analyst Tool . 4-44
Viewing Design Hierarchy and Context . 4-44
Filtering Schematics . 4-48
Expanding Pin and Net Logic . 4-50
Expanding and Viewing Connections . 4-54
Flattening Schematic Hierarchy . 4-56
Minimizing Memory Usage While Analyzing Designs 4-60

Analyzing Timing . 4-61
Analyzing Clock Trees in the RTL View . 4-61
Viewing Critical Paths . 4-62
Handling Negative Slack . 4-65

Chapter 5: Design Optimization
Design Guidelines . 5-2

General Optimization Tips . 5-2
Area Optimization Tips . 5-3
Timing Optimization Settings . 5-4

Optimizing Results . 5-5

LO

Preface

xii Synplify User Guide, September 2004

Sharing Resources . 5-5
Setting Fanout Limits . 5-7
Controlling Buffering and Replication . 5-9
Controlling Hierarchy Flattening . 5-10
Preserving Objects from Optimization . 5-10
Preserving Hierarchy . 5-12

Defining State Machines for Synthesis . 5-13
Defining State Machines in Verilog . 5-13
Defining State Machines in VHDL . 5-14
Specifying FSMs with Attributes and Directives . 5-15

Using the Symbolic FSM Compiler . 5-17
Choosing When to Use the FSM Compiler . 5-17
Running the FSM Compiler on the Whole Design . 5-18
Running the FSM Compiler on Individual FSMs . 5-19

Defining Black Boxes for Synthesis . 5-22
Instantiating Black Boxes and I/Os in Verilog . 5-22
Instantiating Black Boxes and I/Os in VHDL . 5-24
Adding Black Box Timing Constraints . 5-26
Adding Other Black Box Attributes . 5-30

Chapter 6: Vendor-Specific Optimizations
Passing Information to the P&R Tools . 6-2

Specifying Pin Locations . 6-2
Specifying Locations for Actel Bus Ports . 6-3
Specifying Macro and Register Placement . 6-3

Generating Vendor-Specific Output . 6-4
Targeting Output to Your Vendor . 6-4

Working with Actel Designs . 6-4
Using Predefined Actel Black Boxes . 6-5
Using ACTGen Macros . 6-5
Working with Radhard Designs . 6-6

Chapter 7: Design Flows and Process Optimization
Using Batch Mode . 7-2

Running Batch Mode on a Project File . 7-2
Running Batch Mode with a Tcl Script . 7-3

Working with Tcl Scripts and Commands . 7-4
Using Tcl Scripts . 7-4
Generating a Job Script . 7-5

Preface

Synplify User Guide, September 2004 xiii

Creating a Tcl Synthesis Script . 7-5
Using Tcl Variables to Try Different Clock Frequencies 7-7
Using Tcl Variables to Try Several Target Technologies 7-8
Running Bottom-up Synthesis with a Script . 7-9

Integrating with Third-Party Software . 7-10
Integrating with ModelSim . 7-10
Resynthesizing with QuickLogic SpDE Information . 7-11
Working with Visual Elite . 7-12

Working with the Identify RTL Debugger . 7-16

LO

Preface

xiv Synplify User Guide, September 2004

Synplify User Guide, September 2004 1

C H A P T E R 1

Introduction

This chapter is an introduction to the Synplify® software, and describes the
following:

• The Generic FPGA Design Flow, on page 1-4

• Audience, on page 1-6

• Scope of the Document, on page 1-7

• Starting the Software, on page 1-7

• User Interface Overview, on page 1-11

• The Design Flow, on page 1-12

LO

Preface

2 Synplify User Guide, September 2004

The Synplify Synthesis Tool
This section briefly discusses the following topics:

• About the Software, on page 1-2

• Synplicity Product Family, on page 1-3

About the Software
Synplify® is a logic synthesistool for FPGAs (Field Programmable Gate Arrays)
and Complex PLDs (Programmable Logic Devices), developed by Synplicity® of
Sunnyvale, California. For input, the software uses high-level designs written
in Verilog and VHDL hardware description languages (HDLs). Using propri-
etary Behavior Extracting Synthesis Technology® (B.E.S.T.)®, the tool
converts the HDL into small, high-performance, design netlists that are
optimized for popular technology vendors. Optionally, the software can write
post-synthesis VHDL and Verilog netlists that you can use to verify function-
ality through simulation.

 The software has he following built-in features:

• The HDL Analyst® tool, a graphical interface for analysis and
crossprobing.

• The Synplify Text Editor window, with a language-sensitive editor for
writing and editing HDL code.

• The SCOPE® (Synthesis Constraint Optimization Environment®) inter-
face, which uses a spreadsheet-like format to manage the timing
constraints and attributes in the design.

• A symbolic FSM Compiler, which performs advanced state machine
optimizations.

Preface

Synplify User Guide, September 2004 3

Synplicity Product Family
The Synplicity products, except for the Fortify and Identify family, are based
on core synthesis technology, and share a common look and feel. The Fortify
tools offer solutions to manage the power network in your design. The
following figure shows the Synplicity products.

The Synplify and Synplify Pro tools are both FPGA synthesis tools; the latter
is an advanced version with many additional features and capabilities. You
can also buy the Amplify® physical optimizer™, as an option to the Synplify
Pro software.

Synplify® Certify®

Synthesis Board
Verification

Physical
Optimization

FPGAs

ASIC

Synplify Pro® Amplify®

Power Design and
Analysis

Power Planner™

RealPower®

Hardware
Debugging

PowerTime™

Synplify ASIC®

Amplify ASIC™
and

Amplify ASIC™

Synplify® DSP

DSP Design

Identify™

LO

Preface

4 Synplify User Guide, September 2004

The Generic FPGA Design Flow
The following figure contains a generic design flow showing the typical steps a
designer follows when implementing an FPGA. The shaded box shows the
steps you can accomplish with Synplify synthesis. This generic design flow
complements the specific design flow used for the tutorial.

The following sections describe each step more fully.

HDL Design Entry
The starting point for FPGA design is to specify the logic of the FPGA circuit to
be implemented. You can do this by drawing a schematic, writing an HDL
description, or specifying Boolean expressions.

For the Synplify flow, design entry is the step where you generate the input
for the tool. The input must be Verilog or VHDL descriptions. The software
provides you with an environment where you can write or edit HDL descrip-
tions.

HDL Design Entry

Logic Optimization

Technology Mapping

Routing

Placement

FPGA Configuration

Synplify Synthesis

Preface

Synplify User Guide, September 2004 5

Logic Optimization (Compilation)
This is the first stage of synthesis, in which the software restructures the
original network into a set of combinational functions. In the Synplify flow,
the combinational functions are represented as a Boolean network. At this
point in the design process, you modify the initial logic design to optimize the
area or speed of the final circuit, or both. The optimization is calculated from
the netlist and is independent of the target technology. It includes operations
like redundancy removal and common subexpression elimination.

Technology Mapping
Technology mapping is the second phase of optimization, in which the logic is
optimized to a specific technology. During this phase, the compiled design is
transformed into a circuit of optimized FPGA logic blocks. Depending on your
design priorities, you might want to focus on area optimization (minimizing
the total number of blocks), delay optimization (minimizing the number of
logic block stages in time-critical paths), or both.

The Synplify tool uses architecture-specific mapping techniques to map the
logic design. It has built-in tools to analyze critical paths, crossprobe, and
check the RTL view. The software generates netlists in formats appropriate for
the place-and-route tools that follow.

Placement
Placement is the first step of the physical design process. During placement,
the logic blocks are placed in an FPGA array. At this point, considerations like
the total interconnect length become important.

This is the point at which the Synplify software hands off control of the design
to another tool. However if you have the Amplify Physical Optimizer, you can
use the results from an initial placement pass to further optimize your logic
design.

LO

Preface

6 Synplify User Guide, September 2004

Routing
Routing is the final step of the physical design process. At this stage, use the
place-and-route tool to connect the placed logic blocks by assigning wire
segments and choosing programmable switches.

FPGA Configuration
In this design phase, you configure the final FPGA chip and implement it.

Audience
The Synplify software is targeted towards the FPGA system developer. It is
assumed that you are knowledgeable about the following:

• Design synthesis

• RTL

• FPGAs

• Verilog/VHDL

Preface

Synplify User Guide, September 2004 7

Scope of the Document
This user guide is part of a document set, and is intended for use with the
other documents in the set. It concentrates on describing how to use the
Synplify software to accomplish typical tasks. This implies the following:

• The user guide only explains the options needed to do the typical tasks
described in the manual. It does not describe every available command
and option. For complete descriptions of all the command options and
syntax, refer to the User Interface Commands chapter in the Synplify
Reference Manual.

• The user guide contains task-based information. For a breakdown of
how information is organized, see Getting Help, on page 1-10.

Starting the Software
This section shows you how to get started with the Synplify software. It
describes the following topics, but does not supersede the information in the
installation instructions about licensing and installation:

• Getting Started, on page 1-7

• Using the License Wizard, on page 1-8

• Getting Help, on page 1-10

Getting Started
1. If you have not already done so, install the Synplify software according to

the installation instructions.

2. Start the software.

– If you are working on a PC, select Programs->Synplicity->Synplify <version>
from the Start button.

– If you are working on a UNIX platform, type this at the command line:

synplify

LO

Preface

8 Synplify User Guide, September 2004

The command starts the Synplify synthesis tool, and opens the Project
window. If you have run the software before, the window displays the
previous project. For more information about the interface, see the User
Interface Overview chapter of the Synplify Reference Manual.

Using the License Wizard
The most current and comprehensive licensing information is included in the
platform-specific license configuration instructions (Help->Help->License Config-
uration and Set Up or Help->Online Documents->License Configuration and Set Up). This
section describes how to set up node-locked licenses on the PC with the
wizard. For other licensing information like trial licenses, or setting up license
servers, refer to the platform-specific license configuration instructions.

1. To enter license information,

– Select Help->License Wizard.

– Select the Edit or enter license information received from Synplicity button at
the bottom of the form, and click Next.

– Follow the instructions.

Preface

Synplify User Guide, September 2004 9

2. To select a new floating license or change your current license,

– Pick Help->Preferred License Selection.

– Click on a license from the License Type list, and click Select.

– To automatically start the selected license the next time you start the
software, select Save as default license type at the bottom of the window.

– Click Save and restart the software.

3. For Windows 98, Windows NT, and Windows 2000, install the sentinel
driver. For detailed instructions, select Help->Online Documents and then
click Windows License Configuration and Set Up. After the drive has been
installed, restart the computer. You can now start the Synplify software.

LO

Preface

10 Synplify User Guide, September 2004

Getting Help
Before you call Synplicity Support, look through the documented informa-
tion. You can access the information online from the Help menu, or refer to
the PDF version. The following table shows you how the information is
organized.

For help with... Refer to the...

Using software features Synplify User Guide

How to... Synplify User Guide, application notes on the
Synplicity support web site

Flow information Synplify User Guide, application notes on the
Synplicity support web site

Error messages Online help (select Help->Error Messages)

Licensing License configuration information for your
platform

Attributes and directives Synplify Reference Manual

Synthesis features Synplify Reference Manual

Language and syntax Synplify Reference Manual

Tcl syntax Online help (select Help->Tcl Help)

Tcl synthesis commands Synplify Reference Manual

Product updates Synplify Reference Manual (Web menu
commands)

Preface

Synplify User Guide, September 2004 11

User Interface Overview
The user interface (UI) consists of a main window, called the Project view, and
specialized windows or views for different tasks. For details about each of the
features, see the User Interface Overview chapter of the Synplify Reference
Manual.

LO

Preface

12 Synplify User Guide, September 2004

The Design Flow
The following figure shows the typical design flow using the Synplicity
synthesis software. The difference between this flow and the tutorial design
flow is that this flow is generic, whereas the tutorial design flow is based on
specific design data.

Set up Files

Set Constraints

Run the Software

Launch the software

Analyze Results

Implement FPGA

Set Options

Fails requirements

Synplify User Guide, September 2004 1

C H A P T E R 2

File Setup

This chapter describes typical synthesis tasks, some of which are also in the
tutorial. It covers the following:

• Setting Up HDL Source Files, on page 2-2

• Setting Up Project Files, on page 2-11

LO

Preface

2 Synplify User Guide, September 2004

Setting Up HDL Source Files
When you synthesize a design, you need to set up two kinds of files: HDL files
that describe your design, and project files to manage the design. This section
describes how to set up your source files; project file setup is described in
Setting Up Project Files, on page 2-11. Source files can be in Verilog or VHDL.
For information about structuring the files for synthesis, refer to the Synplify
Reference Manual. This section discusses the following topics:

• Creating Source Files, next

• Checking Source Files, on page 2-4

• Editing Source Files with the Built-in Text Editor, on page 2-5

• Using an External Text Editor, on page 2-8

• Setting Editing Window Preferences, on page 2-9

Creating Source Files
This section describes how to use the built-in text editor to create source
files, but does not go into details of what the files contain. For details of what
you can and cannot include, as well as vendor-specific information, see the
Synplify Reference Manual. If you already have source files, you can use the
text editor to check the syntax or edit the file (see Checking Source Files, on
page 2-4 and Editing Source Files with the Built-in Text Editor, on page 2-5).

You can use Verilog or VHDL for your source files. The files have .v (Verilog)
or .vhd (VHDL) file extensions, respectively.

1. To create a new source file either click the HDL file icon () or do the
following:

– Select File->New or press Ctrl-n.

– In the form that opens, select the kind of source file you want to
create, Verilog or VHDL. If you are using Verilog 2001 format, make
sure to enable the Use Verilog 2001 option before you run synthesis
(Project->Implementation Options->Verilog tab).

Preface

Synplify User Guide, September 2004 3

– Type a name and location for the file. Click OK.

A blank editing window opens with line numbers on the left. You can
name it now by pressing Ctrl-s and naming the file.

2. Type the source information in the window, or cut and paste it. See
Editing Source Files with the Built-in Text Editor, on page 2-5 for more
information on working in the Editing window.

For the best synthesis results, check the Reference Manual and ensure
that you are using the available constructs and vendor-specific
attributes and directives effectively.

3. Save the file by selecting File->Save or the Save icon (). Use the correct
extension for the type of file you created (.v or .vhd).

Once you have created a source file, you can check that you have the
right syntax, as described in Checking Source Files, on page 2-4.

LO

Preface

4 Synplify User Guide, September 2004

Checking Source Files
The software automatically checks the source files when it compiles them,
but if you want to check your source code before synthesis, use this proce-
dure to check your code. There are two kinds of checks you do in the
synthesis software: syntax and synthesis.

1. Select the source files you want to check.

– To check a single file, open the file with File->Open or double-click the
file in the Project window. For details of setting up the project file, see
Setting Up Project Files, on page 2-11. If you have more than one file
open and want to check only one of them, put your cursor in the
appropriate file window to make sure that it is the active window .

– To check all the source files in a project, deselect all files in the
project list, and make sure that none of the files are open in an active
window. Go to the next step. If you have an active source file, the
software only checks the active file.

2. To check the syntax, select Run->Syntax Check or press Shift+F7.

The software detects syntax errors like incorrect keywords and punctua-
tion. It puts an exclamation mark next to files in the project list that
have errors, and lists the number of warnings or notes found.

3. To run a synthesis check, select Run->Synthesis Check or press Shift+F8.

If there are hardware-related errors like incorrectly coded flip-flops, the
software displays an exclamation mark next to the file name in the
project list and lists the number of warnings or errors it found in the file.

4. Review the errors by doing one of the following:

– Check the log file for information about the error by selecting View ->
Log File.

– Look at the relevant source code by double-clicking on the file with
errors.

The Text Editor window opens the relevant source file, and highlights
the code that caused the error message. Messages can be categorized as
errors, warnings or notes. Review all of them and resolve all errors.
Warnings are less serious than errors, but you must read through and
understand them even if you do not resolve all of them. Notes generally
contain information. For information on fixing errors, see Editing Source
Files with the Built-in Text Editor, on page 2-5.

Preface

Synplify User Guide, September 2004 5

Editing Source Files with the Built-in Text Editor
The built-in text editor makes it easy to create your source code, view it, or
edit it when you need to fix errors. If you want to use an external text editor,
see Using an External Text Editor, on page 2-8.

1. Do one of the following to open a source file for viewing or editing:

– To automatically open the first file in the list with errors, press Ctrl-F5.

– To open a specific file, double-click the file in the Project window or
use File->Open (Ctrl-o) and specify the source file.

The Text Editor window opens and displays the source file. Lines are
numbered. Keywords are in blue, and comments in green. String values
are in red. If you want to change these colors, see Setting Editing Window
Preferences, on page 2-9.

2. To edit a file, type directly in the window.

This table summarizes common editing operations you might use. You
can also use the keyboard shortcuts instead of the commands.

To... Do...

Cut, copy, and paste;
undo, or redo an action

Select the command from the popup (hold down
the right mouse button) or Edit menu.

Go to a specific line Press Ctrl-g or select Edit->Go To, type the line
number, and click OK.

Find text Press Ctrl-f or select Edit ->Find. Type the text you
want to find, and click OK.

LO

Preface

6 Synplify User Guide, September 2004

3. To cut and paste a section of a PDF document, select the T-shaped Text
Select icon, highlight the text you need and copy and paste it into your
file. The Text Select icon lets you select parts of the document.

4. To create and work with bookmarks in your file, see the following table.

Bookmarks are a convenient way to navigate long files or to jump to
points in the code that you refer to often. You can use the icons in the
Edit toolbar for these operations. If you cannot see the Edit toolbar on the
far right of your window, resize some of the other toolbars.

Replace text Press Ctrl-h or select EditReplace. Type the text you
want to find, and the text you want to replace it
with. Click OK.

Complete a keyword Type enough characters to uniquely identify the
keyword, and press Esc.

Indent text to the right Select the block, and press Tab.

Indent text to the left Select the block, and press Shift-Tab.

Change to upper case Select the text, and then select Edit->Advanced
->Uppercase or press Ctrl-Shift-u.

Change to lower case Select the text, and then select Edit->Advanced
->Lowercase or press Ctrl-u.

Add block comments Put the cursor at the beginning of the comment
text, and select Edit->Advanced->Comment Code or
press Alt-c.

Edit columns Press Alt, and use the left mouse button to select
the column. On some platforms, you have to use
the key to which the Alt functionality is mapped,
like the Meta or diamond key.

To... Do...

Insert a
bookmark

Click anywhere in the line you want to bookmark.
Select EditToggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is highlighted to indicate that there is a
bookmark at the beginning of that line.

To... Do...

Preface

Synplify User Guide, September 2004 7

5. To fix errors or review warnings in the source code, do the following:

– Go directly to the first error or warning in a file by double-clicking the
file from the project list. The beginning of the line with the error is
highlighted in red.

– Click on the highlighted error. At the bottom of the Editing window,
you see an explanation of the error, and a suggestion for fixing it.

For example, this statement might create a warning message:

attribute syn_encoding of ALUOP_TYPE : type is "sequential";

and the associated explanation:

Warning: syn_encoding obsolete for enumerated types. Use
syn_enum_encoding.

You can fix it by editing the source code so that the line now reads:

attribute syn_enum_encoding of ALUOP_TYPE : type is "sequential";

– To go to the next error in the same file, select Run->Next Error/Warning or
press F5. To jump to the next error in another file, press Ctrl-F5.

– To navigate back to the previous error, select Run->Previous
Error/Warning or press Shift-F5.

6. To crossprobe from the source code window to other views, open the
view and select the piece of code. See Crossprobing from the Text Editor
Window, on page 4-42 for details.

Delete a
bookmark

Click anywhere in the line with the bookmark.
Select Edit->Toggle Bookmarks, press Ctrl-F2, or select the
first icon in the Edit toolbar.
The line number is no longer highlighted after the
bookmark is deleted.

Delete all
bookmarks

Select Edit->Delete all Bookmarks, press Ctrl-Shift-F2, or
select the last icon in the Edit toolbar.
The line numbers are no longer highlighted after the
bookmarks are deleted.

Navigate a file
using
bookmarks

Use the Next Bookmark (F2) and Previous Bookmark
(Shift-F2) commands from the Edit menu or the
corresponding icons from the Edit toolbar to navigate to
the bookmark you want.

To... Do...

LO

Preface

8 Synplify User Guide, September 2004

7. When you have fixed all the errors, select File->Save or click the Save icon
to save the file.

To use the file, it must be part of a project. You can add it to a project
automatically when you save it. You can also add it later, as described in
Making Changes to a Project, on page 2-16. If it is already in a project,
you can rerun synthesis.

Using an External Text Editor
You can now use an external text editor like vi or emacs instead of the built-in
text editor. Do the following to enable an external text editor. For information
about using the built-in text editor, see Editing Source Files with the Built-in
Text Editor, on page 2-5.

1. Select Options->Editor Options and turn on the External Editor option.

2. Select the external editor, using the method appropriate to your
operating system.

– If you are working on a PC platform, click the ...(Browse) button and
select the external text editor executable.

– From a UNIX or Linux platform for a text editor that creates its own
window, click the ... Browse button and select the external text editor
executable.

– From a UNIX platform for a text editor that does not create its own
window, do not use the ... Browse button. Instead type xterm -e
<editor>. The following figure shows VI specified as the external
editor.

Preface

Synplify User Guide, September 2004 9

– From a Linux platform, for a text editor that does not create its own
window, do not use the ... Browse button. Instead, type
gnome-terminal -x <editor>. To use emacs for example, type
gnome-terminal -x emacs.

The software has been tested with the emacs and vi text editors.

3. Click OK.

Setting Editing Window Preferences
You can customize the fonts and colors used by the internal editor in the Text
Editing window.

1. Select Options->Editor Options, and select Internal Editor. Click Options.

2. Select the kind of file for which you want to set the preferences.

The Text Editing window can be used to set preferences for source files,
log files, Tcl files, constraint files, or other default files. The Editor Options
form opens.

3. This table shows you how to set some common syntax options from the
Editor Options form:

LO

Preface

10 Synplify User Guide, September 2004

4. Click OK on the Editor Options form.

To... Do This on the Editor Options form...

Set syntax color
defaults

Click Syntax coloring.
On the Syntax Coloring form, check Use syntax coloring.
Set the colors you want for keywords, comments, quotes,
and default text by clicking Foreground and Background and
selecting colors from the palette.
Click OK.

Define comment
characters

Click Syntax coloring.
On the Syntax Coloring form, type the comment start
character(s) in the lower part of the form.
Type the comment end characters if necessary.
Click OK.

Make the
text editor
case-sensitive

Click Syntax coloring
On the Syntax Coloring form, check Case Sensitive.
Click OK.

Set fonts Click Fonts.
On the Font form, set the font and the size.
Click OK.

Set tabs Specify tab size.
Specify whether spaces or tabs are to be used to define tabs.
Set the display of a tab character.

Preface

Synplify User Guide, September 2004 11

Setting Up Project Files
For a specific example on setting up a project file, refer to the tutorial. This
section describes the following:

• Creating a Project File Without the Project Wizard, next

• Creating a Project File with the Project Wizard, on page 2-14

• Opening an Existing Project File, on page 2-15

• Making Changes to a Project, on page 2-16

• Setting Project View Display Preferences, on page 2-18

Creating a Project File Without the Project Wizard
You must set up a project file for each project. A project contains the data
needed for a particular design: the list of source files, the synthesis results
file, and your device option settings. The following procedure shows you how
to set up a project file using individual commands. For information about
setting up a project file with the Project Wizard, see Creating a Project File with
the Project Wizard, on page 2-14.

1. Start by selecting one of the following: File->Build Project, File->Open Project,
or the P icon. Click New Project.

The Project window shows a new project. Click the Add File button, press
F4, or select the Project->Add Source File command. The Select Files to Add to
Project dialog box opens.

2. Add the source files to the project.

– Make sure the Look in field at the top of the form points to the right
directory. The files are listed in the box. If you do not see the files,
check that the Files of Type field is set to display the correct file type.

LO

Preface

12 Synplify User Guide, September 2004

– To add all the files in the directory at once, click the Add All button on
the right side of the form. To add files individually, click on the file in
the list and then click the Add button, or double-click the file name.

You can add all the files in the directory and then remove the ones
you do not need with the Remove button.

– Click OK.

Your project window displays a new project file. If you click on the plus
sign next to the project and expand it, you see the following:

– A folder with the source files
If your files are not in a folder under the project directory, you can set
this preference by selecting Options->Project View Options and checking
the View project files in folders box. This separates one kind of file from
another in the Project view by putting them in separate folders.

Preface

Synplify User Guide, September 2004 13

– The implementation, usually named rev_1. Implementations are
revisions of your design within the context of the synthesis software,
and do not replace external source code control software and
processes. Each implementation has its own synthesis and device
options and its own project-related files.

3. Check file order in the Project view. File order is especially important for
VHDL files.

– For VHDL files, you can automatically order the files by selecting
Run->Arrange VHDL Files. Alternatively, manually move the files in the
Project view. Package files must be first on the list because they are
compiled before they are used. If you have design blocks spread over
many files, make sure you have the following file order: the file
containing the entity must be first, followed by the architecture file, and
finally the file with the configuration.

– In the Project view, check that the last file in the Project view is the
top-level source file. Alternatively, you can specify the top-level file
when you set the device options.

4. To add a third-party VHDL package library, do the following:

– Add the .vhd file to the design, as described in step 2.

– Right click the file in the Project view and select File Options, or select
Project-> Set VHDL library. Specify a library name that is compatible with
the simulators. For example, MYLIB.

LO

Preface

14 Synplify User Guide, September 2004

– Make sure that this package library is before the top-level design in
the list of files in the Project view.

For information about setting Verilog and VHDL file options, see Setting
Verilog and VHDL Options, on page 3-9. You can set these file options
later, before running synthesis.

5. Select File->Save, type a name for the project, and click Save. The Project
window reflects your changes.

6. To close a project file, select the Close Project button or File->Close Project.

Creating a Project File with the Project Wizard
The easiest way to create a project file is to use the wizard, but you can also
use individual commands for each step in the process of building a project
file. See Creating a Project File Without the Project Wizard, on page 2-11 for
details.

1. Click the P icon or select File->Open Project. Click Project Wizard in the form
that opens.

The Project Wizard opens. It prompts you to fill out information.

2. Set Project Type to Synthesis, type a name for the project, and click Next.

3. Click Add Files. The Select Files to Add to Project dialog box opens.

Preface

Synplify User Guide, September 2004 15

4. Add the files as described in Creating a Project File Without the Project
Wizard, on page 2-11.

5. Check file order. You can adjust the file order within the wizard or in the
Project view. The following shows you how to use the wizard; for
information about adjusting file order in the Project view and general
information about VHDL file order, see Creating a Project File Without the
Project Wizard, on page 2-11.

– To adjust file order within the wizard, select the file and use the
arrows to move the file to the right position. For example, use the
arrows to move the top-level source file to the last position. If you do
not do this now, you must explicitly specify the top-level source file
when you set the device options or move the file in the Project view.

– At this point, you can either click Finish, because you have finished
setting up the project file, or click Next and set the source file and
other options with the wizard. For details about these options, see
Setting Implementation Options, on page 3-2.

6. To add a third-party VHDL package library, right-click in the Project
view and select Project-> Set VHDL library. Specify a library name that is
compatible with the simulators. See step 4 of the procedure described in
Creating a Project File Without the Project Wizard, on page 2-11.

7. To close a project file, select the Close Project button or File->Close Project.

Opening an Existing Project File
There are two ways to open a project file: the Open Project and the generic
File->Open command.

1. If the project you want to open is one you worked on recently, you can
select it directly: File->Recent Projects-> projectName.

2. Use one of the following methods to open any project file:

Move file up

Move file downDelete file

LO

Preface

16 Synplify User Guide, September 2004

The project opens in the Project window.

Making Changes to a Project
Typically, you might have to add, delete, or replace files.

1. To add source or constraint files to a project, select the Add Files button
or Project->Add Source File to open the Select Files to Add to Project dialog box.
See Creating a Project File Without the Project Wizard, on page 2-11 for
details.

2. To delete a file from a project, click the file in the Project window, and
press the Delete key.

3. To replace a file in a project,

– Select the file you want to change in the Project window.

– Click the Change File button, or select Project->Change File.

– In the Source File dialog box that opens, set Look In to the directory
where the new file is located. The new file must be of the same type as
the file you want to replace.

– If you do not see your file listed, select the type of file you need from
the Files of Type field.

– Double-click the file. The new file replaces the old one in the project
list.

Open Project Command File->Open Command

Select File->Open Project orclick the
P icon.
To open a recent project,
double-click it from the list of recent
projects.
Otherwise, click the Existing Project
button to open the Open dialog box
and select the project.

Select File->Open.
Specify the correct directory in the
Look In: field.
Set File of Type to Project Files (*.prj).
The box lists the project files.
Double-click on the project you want
to open.

Preface

Synplify User Guide, September 2004 17

4. To specify how project files are saved in the project, right click on a file in
the Project view and select File Options. Set the Save File option to either
Relative to Project or Absolute Path.

5. To check the time stamp on a file, right click on a file in the Project view
and select File Options. Check the time that the file was last modified.
Click OK.

LO

Preface

18 Synplify User Guide, September 2004

Setting Project View Display Preferences
You can customize the organization and display of project files.

1. Select Options->Project View Options.

The Project View Options form opens.

2. To organize different kinds of input files in separate folders, check View
Project Files in Folders.

Checking this option creates separate folders in the Project view for
constraint files and source files.

Preface

Synplify User Guide, September 2004 19

3. Control file display with the following:

– Automatically display all the files, by checking Show Project Library. If
this is unchecked, the Project view does not display files until you
click on the plus symbol and expand the files in a folder.

– Check one of the boxes in the Project File Name Display section of the
form to determine how filenames are displayed. You can display just
the filename, the relative path, or the absolute path.

4. Control the output file display with the following:

– Check the Show all Files in Results Directory box to display all the output
files generated after synthesis.

– Change output file organization by clicking in one of the header bars
in the Implementation Results view. You can group the files by type or
sort them according to the date they were last modified.

5. To view file information, select the file in the Project view, right-click, and
select File Options. For example, you can check the date a file was
modified.

LO

Preface

20 Synplify User Guide, September 2004

Synplify User Guide, September 2004 1

C H A P T E R 3

Constraints, Attributes, and
Options

This chapter describes the typical options you set when working through the
synthesis design flow. It covers the following:

• Setting Implementation Options, on page 3-2

• Setting Constraints in the SCOPE Window, on page 3-13

• Working with Constraint Files, on page 3-31

• Adding Attributes and Directives, on page 3-36

LO

Preface

2 Synplify User Guide, September 2004

Setting Implementation Options
You can set global options for your synthesis run, some of them
technology-specific. This section covers the global options you set with the
Implementation Options command. You can override the global setting by setting
individual attributes or directives. For details of vendor-specific options, or
attributes and directives, see the Synplify Reference Manual. For information
about the Verilog and VHDL options, see This section discusses the following
topics:

• Setting Device Options, next

• Setting Constraint and Optimization Options, on page 3-5

• Specifying Result Options, on page 3-6

• Specifying Timing Report Output, on page 3-8

• Setting Verilog and VHDL Options, on page 3-9

Setting Device Options
Device options are part of the global options you can set for the synthesis
run. They include the part selection (technology, part and speed grade) and
implementation options (I/O insertion and fanouts). The options and the
implementation of these options can vary from technology to technology, so
check the vendor chapters of the Synplify Reference Manual for information
about your vendor options.

1. Open the Options for Implementation form by clicking the Impl Options button
or selecting Project->Implementation Options, and click the Device tab at the
top if it is not already selected.

2. Select the technology, part, package, and speed. Available options vary,
depending on the technology you choose.

Preface

Synplify User Guide, September 2004 3

3. Set the device mapping options. The options vary, depending on the
technology you choose.

– If you are unsure of what an option means, click on the option to see
a description in the box below. For full descriptions of the options,
refer to the vendor chapter in the Synplify Reference Manual.

– To set an option, type in the value or check the box to enable it.

For more information about setting fanout limits, see Setting Fanout
Limits, on page 5-7. For details about each option, refer to the appro-
priate vendor chapter and technology family in the Synplify Reference
Manual.

LO

Preface

4 Synplify User Guide, September 2004

4. Set other options as described in Setting Constraint and Optimization
Options, on page 3-5, Specifying Result Options, on page 3-6, Specifying
Timing Report Output, on page 3-8, and Setting Verilog and VHDL
Options, on page 3-9.

5. Click OK and run synthesis.

The software compiles and maps the design using the options you set.

6. To set device options with a script, use the set_option Tcl command.

The following table contains an alphabetical list of the device options on
the form mapped to the equivalent Tcl commands. Because the options
are technology-based, all the options will not apply to your design. All
commands begin with set_option, followed by the syntax in the column as
shown. Check the Synplify Reference Manual for the most comprehen-
sive list of options for your vendor.

The following table shows typical device options.

Option Tcl Command (set_option...)

Disable I/O insertion -disable_io_insertion
{true|false}

Fanout guide) -fanout_guide fanout_value

Fanout limit -fanout_limit limit

Fanout limit (hard) (Actel) -maxfan_hard {true|false}

Package -package pkg_name

Part -part part_name

Speed -speed_grade speed_grade

Technology -technology keyword

Preface

Synplify User Guide, September 2004 5

Setting Constraint and Optimization Options
Constraint and optimization options are part of the global options you can set
for the run. This section tells you how to set options like frequency and global
optimization options like resource sharing. You can also set some of these
options with the appropriate buttons on the UI.

1. Open the Options for Implementation form by clicking the Impl Options
button or selecting Project->Implementation Options, and click the Options tab
at the top.

2. Click the optimization options you want, either on the form or on the left
panel. Your choices vary, depending on the technology. If an option is
not available for your technology, it is grayed out. Setting the option in
one place automatically updates it in the other.

The equivalent Tcl set_option command options are -frequency,
-resource_sharing, and -symbolic_fsm_compiler.

For more information about the FSM compiler,see Using the Symbolic
FSM Compiler, on page 5-17

3. Click the Constraints tab and specify the constraints you want to use.

– Specify the frequency. The equivalent Tcl set_option command is
-frequency frequency_value. See Setting Constraints in the SCOPE
Window, on page 3-13 for more information about constraints

– Check the constraints (.sdc) files you want to use in the project.

– If you do not want to use a constraint file that is currently in the
project, click off the checkbox next to the file name. You can do the
same thing in the Project view by right-clicking on the file, and
selecting Remove from Project.

Implementation Options Form Option Panel in Project View

LO

Preface

6 Synplify User Guide, September 2004

4. Set other options as described in Setting Device Options, on page 3-2,
Specifying Result Options, on page 3-6, Specifying Timing Report Output,
on page 3-8, and Setting Verilog and VHDL Options, on page 3-9.

5. Click OK and run synthesis.

The software compiles and maps the design using the options you set.

Specifying Result Options
This section shows you how to specify criteria for the output of the
synthesis run.

1. Open the Options for Implementation form by clicking the Impl Options
button or selecting Project->Implementation Options, and click the
Implementation Results tab at the top.

Implementation Options Form Option Panel in Project View

Preface

Synplify User Guide, September 2004 7

2. Specify the output files you want to generate.

– To generate mapped netlist files, click Write Mapped Verilog Netlist or Write
Mapped VHDL Netlist.

– To generate a vendor-specific constraint file for forward annotation,
click Write Vendor Constraint File. See Adding Attributes and Directives, on
page 3-36 for more information.

3. Set the directory to which you want to write the results.

4. Set the format for the output file. The equivalent Tcl command for
scripting is project -result_format format.

You might also want to set attributes to control name-mapping. For
details, refer to the appropriate vendor chapter in the Synplify Reference
Manual.

5. Set other options as described in Setting Device Options, on page 3-2,
Setting Constraint and Optimization Options, on page 3-5, Specifying
Timing Report Output, on page 3-8, and Setting Verilog and VHDL
Options, on page 3-9.

6. Click OK and run synthesis.

The software compiles and maps the design using the options you set.

LO

Preface

8 Synplify User Guide, September 2004

Specifying Timing Report Output
You can determine how much is reported in the timing report by setting the
following options.

1. Open the Options for Implementation form by clicking the Impl Options button
or selecting Project->Implementation Options, and click the Timing Report tab at
the top.

2. Set the number of critical paths you want the software to report.

3. Specify the number of start and end points you want to see reported in
the critical path sections.

4. Set other options as described in Setting Device Options, on page 3-2,
Setting Constraint and Optimization Options, on page 3-5, Setting Verilog
and VHDL Options, on page 3-9, and Specifying Result Options, on
page 3-6.

5. Click OK and run synthesis.

The software synthesizes the design and generates a timing report
according to the options you set.

Preface

Synplify User Guide, September 2004 9

Setting Verilog and VHDL Options
When you set up the Verilog and VHDL source files in your project, you can
also specify certain compiler options.

Setting Verilog File Options
You set Verilog file options by selecting either Project->Implementation
Options->Verilog, or Options->Configure Verilog Compiler.

1. Specify the Verilog format to use.

– To set the compiler globally for all the files in the project, select
Project->Implementation Options->Verilog. For Verilog 2001, enable Use
Verilog 2001; for Verilog 95, disable this option. If you are using Verilog
2001, check the Synplify Reference Manual for supported constructs.

– To specify the Verilog compiler on a per file basis, select the file in the
Project view. Right-click and select File Options. Select the appropriate
compiler. The default for existing projects is Verilog 95, and the
default for new projects is Verilog 2001.

2. Specify the top-level module if you did not already do this in the Project
view.

3. To extract parameters from the source code, do the following on the
Verilog tab of the Implementation Options dialog box:

– Click Extract Parameters.

– To override the default, enter a new value for a parameter.

The software uses the new value for the current implementation only.

LO

Preface

10 Synplify User Guide, September 2004

4. Type in compiler directives, using spaces to separate the statements.

You can type in directives you would normally enter with ‘ifdef and
‘define statements in the code. For example, size=32 test_impl results
in the software writing the following statements to the project file:

set_option -hdl_define -set "size=32 test_impl"

5. In the Include Path Order box, specify the search paths for the include
commands in your project. Use the buttons in the upper right corner of
the box to add, delete, or reorder the paths.

6. Set other options as described in Setting Device Options, on page 3-2,
Setting Constraint and Optimization Options, on page 3-5, Specifying
Result Options, on page 3-6, and Specifying Timing Report Output, on
page 3-8. Click OK and run synthesis.

The software compiles and maps the design using the options you set.

Setting VHDL File Options
You set VHDL file options by selecting either Project->Implementation
Options->VHDL, or Options->Configure VHDL Compiler.

Move file up

Move file downDelete file

Preface

Synplify User Guide, September 2004 11

For VHDL source, you can specify the following options:

• Top Level Entity – top level entity for the design.

Use this option when you want to specify a module that is not the actual
top-level entity for HDL Analyst displaying and debugging in the
schematic views.

• Default Enum Encoding – default encoding style for enumerated data types.
See Defining State Machines in VHDL, on page 5-14 for information.

• Push Tristates – When enabled (default), tristates are pushed across
process/block boundaries. For details, see Push Tristates Option, on
page 3-38.

• Synthesis On/Off Implemented as Translate On/Off – This switch operates in
conjunction with the synthesis_on and synthesis_off directives. When
selected, these directives operate the same as translate_on/translate_off. If
this switch is disabled, the synthesis_on/synthesis_off directives are
ignored. See translate_off/translate_on, on page 8-103 in the Synplify
Reference Manual for more information.

• Extract Generic Constants – Extracts generics from the top-level entity and
displays them in the Generics table.

• Generics – Displays values from the Extract Generic Constants command. You
can override the default and set a new value for the generic constant.
The value is valid for the current implementation.

LO

Preface

12 Synplify User Guide, September 2004

1. To extract generics from the source code, do the following on the VHDL
tab of the Implementation Options dialog box:

– Click Extract Generic Constants.

– To override the default, enter a new value for a generic.

The software uses the new value for the current implementation only.

2. Specify the top-level entity if you did not do so in the Project view.

3. For user-defined state machine encoding, do the following:

– Specify the kind of encoding you want to use.

– Disable the FSM compiler.

When you synthesize the design, the software uses the compiler direc-
tives you set here to encode the state machines and does not run the
FSM compiler, which would override the compiler directives. Alterna-
tively, you can define state machines with the syn_encoding attribute, as
described in Defining State Machines in VHDL, on page 5-14.

4. Set other options as described in Setting Device Options, on page 3-2,
Setting Constraint and Optimization Options, on page 3-5, Specifying
Result Options, on page 3-6, and Specifying Timing Report Output, on
page 3-8. Click OK and run synthesis.

The software compiles and maps the design using the options you set.

Preface

Synplify User Guide, September 2004 13

Setting Constraints in the SCOPE Window
You can use a text editor to create a constraint file as described in Working
with Constraint Files, on page 3-31, but it is easier to use the SCOPE
(Synthesis Constraint Optimization Environment) window, which provides a
spreadsheet-like interface. The SCOPE interface is good for editing most
constraints, but there are some constraints (like black box constraints) which
can only be entered as directives in the source files. If you want to use a text
editor to edit a constraint file, close the SCOPE window before editing the file,
or you will overwrite results.

This section describes the following:

• Opening the SCOPE Window, next

• Entering and Editing Constraints in the SCOPE Window, on page 3-15

• Entering Default Constraints, on page 3-18

• Defining Clocks, on page 3-22

• Defining I/O Constraints, on page 3-26

• Defining False Paths, on page 3-27

• Defining From/To/Through for Timing Exceptions, on page 3-28

• Setting SCOPE Display Preferences, on page 3-30

You can also use the SCOPE window to add attributes. For more information,
see Adding Attributes in the SCOPE Window, on page 3-38.

Opening the SCOPE Window
To work with the SCOPE interface, you must have a compiled design so that
the SCOPE table can access the design information. You can use the SCOPE
window with an uncompiled design, but you have to type in entries manually
because the software has no knowledge of the design.

1. To create a new constraint file, follow these steps:

– Compile the design (F7). If you do not compile the design, you can still
use the SCOPE window, but you can not automatically initialize the
clocks and I/O ports.

LO

Preface

14 Synplify User Guide, September 2004

– Open the SCOPE window by clicking the SCOPE icon in the toolbar
(), pressing Ctrl-n, or selecting File -> New. If you use one of the latter
two methods, select Constraint File (SCOPE) as the type of file to open.
This opens the Initialize New Constraint File dialog box.

– Optionally, select the constraints to be initialized and click OK. If you
started with a compiled design, setting these options automatically
initializes the Clock and Inputs/Outputs tabs with the appropriate
signals.

An empty SCOPE spreadsheet window opens. The tabs along the bottom

of the SCOPE window list the different kinds of constraints you can add.
For each kind of constraint, the columns contain specific data.

You can now enter constraints directly or with the wizard. Refer to
Entering and Editing Constraints in the SCOPE Window, on page 3-15 or
Entering Default Constraints, on page 3-18.

File->New Ctrl-n

Preface

Synplify User Guide, September 2004 15

2. To open an existing file, do one of the following:

– Double-click the file from the project window.

– Press Ctrl-o or select File->Open. In the dialog box, set the kind of file
you want to open to Constraint Files (SCOPE) (*.sdc), and double-click to
select the file from the list.

The SCOPE window opens with the file you specified. For details about
editing the file, see Entering and Editing Constraints in the SCOPE
Window, on page 3-15. If you want to edit the Tcl file directly, see
Working with Constraint Files, on page 3-31.

Entering and Editing Constraints in the SCOPE Window
For manual constraints, the direct method is best suited for editing and
entering individual constraints. If you are setting many constraints or
defaults, use the wizard, as described in Entering Default Constraints, on
page 3-18. You can use the wizard to enter default constraints, and then use
the direct method to modify, add, or delete constraints.

1. Click the appropriate tab at the bottom of the window to enter the kind
of constraint you want to create:

To define... Click...

Clock frequency for a clock signal output of clock divider logic
A specific clock frequency that overrides the global frequency

Clock

Edge-to-edge clock delay that overrides the automatically
calculated delay.

Clock to
Clock

Input/output delays that model your FPGA input/output
interface with the outside environment

Inputs/
Outputs

Delay constraints for paths feeding into/out of registers Registers

Paths that require multiple clock cycles Multicycle
paths

Paths to ignore for timing analysis (false paths) False Paths

LO

Preface

16 Synplify User Guide, September 2004

The SCOPE window displays columns appropriate to the kind of
constraint you picked. You can now enter constraints using the wizard,
or work directly in the SCOPE window.

2. Enter or edit constraints as follows:

– For attribute cells in the spreadsheet, click in the cell and select from
the pulldown list of available choices.

– For object cells in the spreadsheet, click in the cell and select from
the pulldown list. When you select from the list, the objects
automatically have the proper prefixes in the SCOPE window.

Alternatively, you can drag and drop an object from an HDL Analyst
view into the cell, or type in a name. If you drag a bus, the software
enters the whole bus (busA). To enter busA[3:0], select the appropriate
bus bits before you drag and drop them. If you drag and drop or type
a name, make sure that the object has the proper prefix:

– For cells with values, type in the value or select from the pulldown
list.

Maximum delay for paths Max Delay
Paths

Attributes, like syn_reference_clock, that were not entered
in the source files

Attributes

Place and route tool constraints
Other constraints not used for synthesis, but which are passed
to other tools. For example, multiple clock cycles from a
register or input pin to a register or output pin

Other

Prefix Description

v: view object (for a module)

i: instance

p: port

b: bit slice of a port

n: internal net

To define... Click...

Preface

Synplify User Guide, September 2004 17

– Click the check box in the Enabled column to enable the constraint or
attribute.

– Make sure you have entered all the essential information for that
constraint. Scroll horizontally to check. For example, to set a clock
constraint in the Clocks tab, you must fill out Enabled, Clock, Frequency
or Period, and Clock Group. The other columns are optional. For details
about setting different kinds of constraints, see Setting Clock and Path
Constraints, on page 3-20.

3. For common editing operations, refer to this table:

4. Save the file by clicking the Save icon and naming the file.

The software creates a TCL constraint file (.sdc). See Working with
Constraint Files, on page 3-31 for information about the commands in
this file.

5. To apply the constraints to your design, you must add the file to the
project now or later.

– Add it immediately by clicking Yes in the prompt box that opens after
you save the constraint file.

– Add it later, following the procedure for adding a file described in
Making Changes to a Project, on page 2-16.

To... Do...

Cut, copy, paste,
undo, or redo

Select the command from the popup (hold down the
right mouse button to get the popup) or from the
Edit menu.

Copy the same value
down a column

Select Fill Down (Ctrl-d) from the Edit or popup
menus.

Insert or delete rows Select Insert Row or Delete Rows from the Edit or
popup menus.

Find text Select Find from the Edit or popup menus. Type the
text you want to find, and click OK.

LO

Preface

18 Synplify User Guide, September 2004

Entering Default Constraints
The wizard is best for entering a number of constraints or for setting defaults
manually. To edit or set individual constraints, or create constraints in the
Other tab, work directly in the SCOPE window (Setting Clock and Path
Constraints, on page 3-20).The following procedure shows you two methods
to enter defaults. The quick method, in step 1, is only appropriate for certain
kinds of constraints. The rest of the steps show you how to use the wizard to
enter other SCOPE constraints.

1. To quickly generate defaults in the Clocks or Inputs/Outputs tabs without
the wizard, follow these steps. This method does not work for other
constraints.

– Click on the Clocks or Inputs/Outputs tabs, and select Edit->Insert Quick. A
new row is inserted at the top of the spreadsheet.

– Select the objects you want from the list.

– Enter the values you want, and enable the constraint.

– Save the constraint file and add it to the project.

2. To generate defaults with the wizard, follow the rest of these steps.
Select a tab in the SCOPE window and then select Edit->Insert Wizard or
press Ctrl-w to start the wizard.

Preface

Synplify User Guide, September 2004 19

The wizard guides you through two dialog boxes, which vary slightly
depending on the kind of constraints you want to set.

3. In the first dialog box, select the design objects to which you want to
attach the constraints.

– Move objects to the selected list by either using wildcards, or
highlighting objects in the unselected list and using the arrow
buttons to move them. If there are no objects in the Unselected box,
disable the Exclude Duplicates option.

– Click Next.

4. In the second dialog box, set defaults for the selected objects.

– Enable or disable the constraints.

– Set the default value.

– Click Finish.

LO

Preface

20 Synplify User Guide, September 2004

When you are done, the constraints appear in the SCOPE window. To
modify or add to them, do so directly in the SCOPE window (refer to
Entering and Editing Constraints in the SCOPE Window, on page 3-15).

5. To apply the constraints, add the file to the project according to the
procedure described in Making Changes to a Project, on page 2-16. The
constraints file has a .sdc extension. See Working with Constraint Files,
on page 3-31 for more information about constraint files.

Setting Clock and Path Constraints
The following table summarizes how to set different clock and path
constraints from the SCOPE window. For information about setting
attributes, see Adding Attributes in the SCOPE Window, on page 3-38. For
information about setting default constraints, see Entering Default
Constraints, on page 3-18.

Preface

Synplify User Guide, September 2004 21

To define... Pane Do this to set the constraint...

Clocks Clock Select the clock (Clock).
Type a frequency value (Frequency) or a period (Period).
Change the default Duty Cycle or set Rise/Fall At, if
needed.
Change the default clock group, if needed
Check the Enabled box.
See Defining Clocks, on page 3-22 for information
about clock attributes.

Virtual
clocks

Clock Set the clock constraints as described for clocks, above.
Check the Virtual Clock box.

Edge-to-edge
clock delay

Clock to
Clock

Select the starting edge for the delay constraint (From
Clock Edge).
Select the ending edge for the constraint (To Clock Edge).
Enter a delay value.
Mark the Enabled check box.

Input/output
delays

Inputs/
Outputs

See Defining I/O Constraints, on page 3-26 for
information about setting I/O constraints.

Register
delays

Registers Select the register (Register).
Select the type of delay, input or output (Type).
Type a delay value (Value).
Check the Enabled box.

Maximum
path delay

Max Path
Delay

Select the port or register (From/Through). See Defining
From/To/Through for Timing Exceptions, on page 3-28
for more information.
Select another port or register if needed (To/Through).
Set the delay value (Max Delay).
Check the Enabled box.

Multicycle
paths

Multicycle
Paths

Select the port or register (From/Through). See Defining
From/To/Through for Timing Exceptions, on page 3-28
for more information.
Select another port or register if needed
(From/To/Through).
Type the number of clock cycles (Cycles).
Check the Enabled box.

False paths False Paths
Clock to Clock

See Defining False Paths, on page 3-27 for details.

LO

Preface

22 Synplify User Guide, September 2004

Defining Clocks
Clock frequency is the most important timing constraint, and must be set
accurately. The following procedures show you how to define clock frequency
(Defining Clock Frequency, on page 3-22) and set other clock constraints that
affect timing, like clock groups (Defining Other Clock Requirements, on
page 3-25).

Defining Clock Frequency
This section shows you how to define clock frequency either through the GUI
or in a constraint file. See Defining Other Clock Requirements, on page 3-25
for other clock constraints.

1. Define a realistic global frequency for the entire design, either in the
Project view or the Constraints tab of the Implementation Options dialog box.

This target frequency applies to all clocks that do not have specified
clock frequencies. If you do not specify any value, a default value of 1
MHz (or 1000 ns clock period) applies to all timing paths whenever the
clock associated with both start and end points of the path is not speci-
fied. All clocks that use the global frequency are assumed to be related
and are assigned to the same clock group.

Global
attributes

Attributes Set Object Type to <global>.
Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

Attributes Attributes Do either of the following:
• Select the type of object (Object Type).

Select the object (Object).
Set the attribute (Attribute) and its value (Value).
Check the Enabled box.

• Set the attribute (Attribute) and its value (Value).
Select the object (Object).
Check the Enabled box.

Other Other Type the TCL command for the constraint (Command).
Enter the arguments for the command (Arguments).
Check the Enabled box.

To define... Pane Do this to set the constraint...

Preface

Synplify User Guide, September 2004 23

See Defining Other Clock Requirements, on page 3-25 for more informa-
tion about clock group settings.

The global frequency also applies to any purely combinatorial paths. The
following figure shows how the software determines constraints for
specified and unspecified start or end clocks on a path:

2. Define frequency for individual clocks on the Clocks tab of the SCOPE
window (define_clock constraint).

– Specify the frequency as either a frequency in the Frequency column
(-freq Tcl option) or a time period in the Period column (-period Tcl
option). When you enter a value in one column, the other is
calculated automatically.

– For asymmetrical clocks, specify values in the Rise At (-rise) and Fall At
(-fall) columns. The software automatically calculates and fills out the
Duty Cycle value.

The software infers all clocks, whether declared or undeclared, by
tracing the clock pins of the flip-flops. However, it is recommended that
you specify frequencies for all the clocks in your design. The defined
frequency overrides the global frequency. Any undefined clocks default
to the global frequency.

If clkA is... And clkB is... The effect for logic C is...

Undefined Defined The path is constrained by a full cycle of clkB.

Defined Undefined The path is constrained by a full cycle of clkA.

Defined Defined For related clocks in the same clock group, the
relationship between clocks is calculated; all other
paths between the clocks are treated as false paths.

Undefined Undefined The global frequency value is used to constrain path.
(Default is 1 MHz or period of 1000 ns.) All global
frequency clocks are assigned to the same group.

BA

clkA clkB

Logic
C

LO

Preface

24 Synplify User Guide, September 2004

3. Define internal clock frequencies (clocks generated internally) on the
SCOPE Clocks tab (define_clock constraint). Apply the constraint
according to the source of the internal clock.

4. For signals other than clocks, define frequencies with the
syn_reference_clock attribute. You can add this attribute on the SCOPE
Attributes tab.

You might need to do this if your design uses an enable signal as a
clocking signal because of limited clocking resources. If the enable is
slower than the clock, defining the enable frequency separately instead
slowing down the clock frequency ensures more accuracy. If you slow
down the clock frequency, it affects all other registers driven by the
clock, and can result in longer run times as the tool tries to optimize a
non-critical path.

Define this attribute as follows:

– Define a dummy clock on the Clocks tab (define_clock constraint).

– Add the syn_reference_clock attribute (Attributes tab) to the affected
registers to apply the clock. In the constraint file, you can use the Find
command to find all registers enabled by a particular signal and then
apply the attribute:

define_clock -virtual dummy -period 40.0
define_attribute {find -reg -enable en40}

syn_reference_clock dummy

5. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

Source Add SCOPE constraint/define_clock to...

Register Register.

Instance, like a PLL
or clock DLL

Instance. If the instance has more than one clock
output, apply the clock constraints to each of the
output nets, making sure to use the n: prefix (to
signify a net) in the SCOPE table.

Combinatorial logic Net. Make sure to use the n: prefix in the SCOPE
interface.

Preface

Synplify User Guide, September 2004 25

Defining Other Clock Requirements
Besides clock frequency (described in Defining Clock Frequency, on
page 3-22), you can also set other clock requirements, as follows:

1. If you have limited clock resources, define clocks that do not need a
clock buffer by attaching the syn_noclockbuf attribute to an individual
port, or the entire module/architecture.

2. Define the relationship between clocks by setting clock domains. By
default, all clocks are in default_clkgroup. All inferred and other clocks that
use the global frequency are in the same clock group.

– On the SCOPE Clocks tab, group related clocks by putting them into
the same clock group. Use the Clock Group field to assign all related
clocks to the same clock group.

– Make sure that unrelated clocks are in different clock groups. If you
do not, the software calculates timing paths between unrelated clocks
in the same clock group, instead of treating them as false paths.

The software does not check design rules, so it is best to define the
relationship between clocks as completely as possible.

3. Define all gated clocks with the define_clock constraint.

Avoid using gated clocks to eliminate clock skew. If possible, move the
logic to the data pin instead of using gated clocks. If you do use gated
clocks, you must define them explicitly, because the software does not
propagate the frequency of clock ports to gated clocks.

To define a gated clock, attach the define_clock constraint to the clock
source, as described above for internal clocks. To attach the constraint
to a keepbuf (a keepbuf is a placeholder instance for clocks generated from
combinatorial logic), do the following:

– Attach the syn_keep attribute to the gated clock to ensure that it
retains the same name through changes to the RTL code.

– Attach the define_clock constraint to the keepbuf generated for the gated
clock.

4. Specify edge-to-edge clock delays on the Clock to Clock tab
(define_clock_delay).

5. After synthesis, check the Performance Summary section of the log file for a
list of all the defined and inferred clocks in the design.

LO

Preface

26 Synplify User Guide, September 2004

Defining I/O Constraints
In addition to setting I/O delays in the SCOPE window as described in Setting
Clock and Path Constraints, on page 3-20, you can also set the Use clock period
for unconstrained IO option.

1. Open the SCOPE window, click Inputs/Outputs, and select the port
(Port).You can set the constraint for

– All inputs and outputs (globally in the top-level netlist)

– For a whole bus

– For single bits

You can specify multiple constraints for the same port. The software
applies all the constraints; the tightest constraint determines the worst
slack. If there are multiple constraints from different levels, the most
specific overrides the more global. For example, if there are two bit
constraints and two port constraints, the two bit constraints override
the two port constraints for that bit. The other bits get the two port
constraints.

2. Specify the constraint value in the SCOPE window:

– Select the type of delay: input or output (Type).

– Type a delay value (Value).

– Check the Enabled box, and save the constraint file in the project.

Make sure to specify explicit constraints for each I/O path you want to
constrain.

3. To determine how the I/O constraints are used during synthesis, do the
following:

– Select Project->Implementation Options, and click Constraints.

– To use only the explicitly defined constraints, enable Use clock period for
unconstrained IO.

– To synthesize with all the constraints, using the clock period for all
I/O paths that do not have an explicit constraint, disable Use clock
period for unconstrained IO.

– Synthesize the design. When you forward-annotate the constraints,
the constraints used for synthesis are forward-annotated.

Preface

Synplify User Guide, September 2004 27

Defining False Paths
You define false paths by setting constraints explicitly on the False Paths tab or
implicitly on the Clock or Clock to Clock tabs. You can also define false paths
with the corresponding define_false_path, define_clock, and define_clock_delay Tcl
commands.

1. To define a false path between ports or registers, select the SCOPE False
Paths tab, and do the following:

– Select the port or register (From/To/Through). See Defining
From/To/Through for Timing Exceptions, on page 3-28 for more
information.

– Select another port or register if needed (From/ To/Through).

– Check the Enabled box.

The software treats this is as an explicit false constraint and assigns it
the highest priority. Any other constraints on this path are ignored.

2. To define a false path between two clock edges, select the SCOPE Clock to
Clock tab, and do the following:

– Specify one clock as the starting clock edge (From Clock Edge).See
Defining From/To/Through for Timing Exceptions, on page 3-28 for
more information.

– Specify the other clock as the ending clock edge (To Clock Edge).

– Click in the Delay column, and select false.

– Mark the Enabled check box.

Use this technique to specify a false path between any two clocks,
regardless of whether their clock groups. This constraint can be
overridden by a maximum delay constraint on the same path.

3. To define a false path between two clocks, select the SCOPE Clocks tab,
and assign the clocks to different clock groups:

The software implicitly assumes a false path between clocks in different
clock groups. This false path constraint can be overridden by a
maximum path delay constraint, or with an explicit constraint as
described in the next step.

LO

Preface

28 Synplify User Guide, September 2004

4. To override an implicit false path between any two clocks (see the
previous step), set an explicit constraint between the clocks by selecting
the SCOPE Clock to Clock tab, and doing the following:

– Specify the starting (From Clock Edge) and ending clock edges (To Clock
Edge) as described in step 2.

– Specify a value in the Delay column.

– Mark the Enabled check box.

The software treats this is as an explicit constraint. You can use this
method to constrain a path between any two clocks, regardless of
whether they belong to the same clock group.

5. To set an implicit false path on a path to/from an I/O port, select
Project->Implementation Options->Constraints, and disable Use clock period for
unconstrained IO.

Defining From/To/Through for Timing Exceptions
For multicycle path, false path, and maximum path delay constraints, you
must define paths with a combination of From/To/Through points. The following
steps guide you through the details.

1. In the From field, identify the starting point for the path.

The starting point can be a register, top-level input or bidirectional port,
or black box. To specify multiple starting points, like all the bits of a bus,
enclose them in square brackets: A[0:15].

Bit constraints override bus constraints. Given a constraint From A[0:15]
to B, and a second From A[8] to B, only the second constraint applies to
paths starting from A[8]. The first exception applies to paths starting
from A[0:7, 9:15].

If the previous rule does not apply and there are multiple constraints,
the tightest constraint prevails. If there is a 3-cycle constraint From A To
B, and a 4-cycle constraint From A To B Through C, all paths starting at A
and ending at B (including paths that cross C) get a 3-cycle constraint.

Preface

Synplify User Guide, September 2004 29

2. In the To field, identify the ending point for the path.

The ending point can be a register, top-level output or bidirectional port,
or black box. To specify multiple ending points, like all the bits of a bus,
enclose them in square brackets: B[0:15]. In the case of multiple
constraints, the priority rules described in the previous step apply.

If you specify multiple start points and multiple end points such as From
A[0:15] to B[0:15], the constraint applies from any start point to any end
point. In this example, the exception applies to all 16 * 16 = 256 combina-
tions of start/end points.

3. For a single through point, specify the net name in the Through field.

This constraint applies to any path passing through regs_mem[2].

define_path_delay -through n:regs_mem[2]

4. To specify a list of through points, specify the nets in the Through field.

The constraint works as an OR function and applies to any path passing
through any of the specified nets. The following constraint is applied to
any path through regs_mem[2] OR prgcntr.pc[7] OR dmux.alub[0]:

define_path_delay -through {n:regs_mem[2], n:prgcntr.pc[7], n:dmux.alub[0]}
-max 5

You can only specify one list of points.

LO

Preface

30 Synplify User Guide, September 2004

Setting SCOPE Display Preferences
You can set format and colors in the SCOPE window. The following table lists
some preferences and shows you how to set them.

To... Do this...

Set the appearance of
lines and buttons in
the SCOPE table

With a SCOPE window open, select View-> Properties.
Set the options you want on the Display Settings form.
Check the Save settings to profile option if you want to
settings to be the default.

Set fonts, colors, and
borders for a row

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Row Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a column

Select a SCOPE row.
Select Format -> Style.
On the Styles form, check Save as Default if you want the
new settings to be the default.
Select the category you want to change (Column Header or
Standard), and click Change.
Set the display options you want and click OK on both
forms.

Set fonts, colors, and
borders for a single
cell

Select a SCOPE cell.
Select Format -> Cells.
Set the display options you want and click OK.

Align text in columns
and rows

Select a column or row in the SCOPE window.
Select Format -> Align.
Click the alignment you want and click OK.

Size columns/rows to
text

Select a column or row in the SCOPE window.
Select Format -> Resize Rows or Format -> Resize Columns.

Hide/show cells Select a SCOPE cell.
Select Format -> Cover Cells to hide a cell.
Select Format -> Remove Covering to show a hidden cell.

Preface

Synplify User Guide, September 2004 31

Working with Constraint Files
Constraint files are text files that are automatically generated by the SCOPE
interface (see Setting Constraints in the SCOPE Window, on page 3-13), or
which you create manually with a text editor. They contain Tcl commands or
attributes that constrain the synthesis run. Alternatively, you can set
constraints in the source code, but it is not the preferred method.

This section contains information about

• When to Use Constraint Files over Source Code, on page 3-31

• Tcl Syntax Guidelines for Constraint Files, on page 3-32

• Using a Text Editor for Constraint Files, on page 3-33

• Adding Attributes and Directives, on page 3-36

When to Use Constraint Files over Source Code
You can add constraints in constraint files (generated by SCOPE interface or
entered in a text editor) or in the source code. In general, it is better to use
constraint files, because you do not have to recompile for the constraints to
take effect. It also makes your source code more portable.

However, if you have black box timing constraints (syn_tco, syn_tpd, syn_tsu),
you must enter them in the source code. Unlike attributes, directives can only
be added to the source code, not to constraint files. See Adding Attributes and
Directives, on page 3-36 for more information on adding directives to source
code.

LO

Preface

32 Synplify User Guide, September 2004

Tcl Syntax Guidelines for Constraint Files
This section covers general guidelines for using Tcl for constraint files:

• Pay attention to case, because Tcl is case-sensitive.

• Remember these rules when naming objects:

– Make sure that object names match the names in the HDL code.

– Enclose all instance and port names with curly braces { }.

– Do not use spaces in names.

– Use periods as separators in hierarchical names

– In Verilog modules, use the following syntax for instance, port, and
net names, where cell is the name of the design entity, prefix is a
prefix to identify objects with the same name, and object_name is an
instance path with periods as separators:

v:cell[prefix:]object_name

– Use the following syntax for instance, port, and net names in VHDL
modules, where v: identifies it as a view object, lib is the name of the
library, cell is the name of the design entity, view is a name for the
architecture, prefix is a prefix to identify objects with the same
name, and object_name is an instance path with periods as
separators. You only need view if there is more than one architecture
for the design. See the preceding table for the prefixes for different
objects.

v:cell[.view] [prefix:]object_name

Prefix (Lower-case) Object

i: Instance names

p: Port names (entire port)

b: Bit slice of a port

n: Net names

Preface

Synplify User Guide, September 2004 33

• Use the * and ? wildcards to match names. The asterisk matches any
number of characters, and the question mark matches a single
character. These characters do not match periods that are used as
hierarchy separators. For example, you can use the following to identify
all bits of the statereg instance in the statemod module:

statemod | i: statereg[*]

Using a Text Editor for Constraint Files
This section shows you how to manually create a Tcl constraint file. The
software automatically creates this file if you use the SCOPE interface to enter
the constraints. The Tcl constraint file only contains general timing
constraints. Black box constraints must be entered in the source code. For
details of the Tcl commands, refer to the Synplify Reference Manual. For
additional information, see When to Use Constraint Files over Source Code, on
page 3-31.

1. Open a file for editing.

– Make sure you have closed the SCOPE window, or you could
overwrite previous constraints.

– To create a new file, select File->New, and select the Constraint File
(SCOPE) option. Type a name for the file and click OK.

– To edit an existing file, select File->Open, set the Files of Type filter to
Constraint Files (.sdc) and open the file you want.

2. Follow the syntax guidelines in Tcl Syntax Guidelines for Constraint Files,
on page 3-32.

LO

Preface

34 Synplify User Guide, September 2004

3. Enter the timing constraints you need. For the syntax, see the Reference
Manual. If you have black box timing constraints, you must enter them
in the source code.

To define... Use...

Clock frequencies define_clock. See Defining Clocks, on
page 3-22 for additional information.

Clock frequency other than
the one implied by the
signal on the clock pin

syn_reference_clock (attribute). See Defining
Clocks, on page 3-22 for additional information

Clock domains with
asymmetric duty cycles

define_clock. See Defining Clocks, on
page 3-22 for additional information

Edge-to-edge clock delays define_clock_delay. See Defining Clocks,
on page 3-22 for additional information

Speed up paths feeding
into a register

define_reg_input_delay.

Speed up paths coming
from a register

define_reg_output_delay.

Input delays from outside
the FPGA

define_input_delay. See Defining I/O
Constraints, on page 3-26 for additional
information

Output delays from your
FPGA

define_output_delay. See Defining I/O
Constraints, on page 3-26 for additional
information

Paths with multiple clock
cycles

define_multicycle_path. See Defining
From/To/Through for Timing Exceptions, on
page 3-28 for additional information

False paths (certain
technologies)

define_false_path. See Defining False
Paths, on page 3-27 for additional information

Path delays define_path_delay. See Defining
From/To/Through for Timing Exceptions, on
page 3-28 for additional information

Preface

Synplify User Guide, September 2004 35

The following code excerpt shows some typical Tcl constraints:

Override the default frequency for clk_fast and set it to run
at 66.0 MHz.

define_clock {clk_fast} -freq 66.0

Set a default input delay of 4 ns
define_input_delay -default 4.0

Except for the "sel" signal, which has an input delay of 8 ns
define_input_delay {sel} 8.0

The outputs have an off-chip delay of 3.0 ns
define_output_delay -default 3.0

Get better results on the critical path going to register
"inst3.q[0]” (in the memory) by adding 3 ns with -improve

define_reg_input_delay {inst3.q[0]} -improve 3.0

4. You can also add vendor-specific attributes in the constraint file using
define_attribute. See Adding Attributes to a Tcl Constraint File, on page 3-40
for more information.

5. Save the file.

6. Add the file to the project as described in Making Changes to a Project, on
page 2-16, and run synthesis.

LO

Preface

36 Synplify User Guide, September 2004

Adding Attributes and Directives
Attributes and directives are pieces of information that you attach to design
objects to control the way in which your design is analyzed, optimized, and
mapped. The difference between attributes and directives is that you must
specify directives in the source code. Directives can only be added in the
source code, but attributes can be added in the SCOPE and HDL Analyst
windows as well as in the source code. For further details, refer to these
subtopics:

• Adding Attributes and Directives in VHDL, next

• Adding Attributes and Directives in Verilog, on page 3-37

• Adding Attributes in the SCOPE Window, on page 3-38

• Adding Attributes to a Tcl Constraint File, on page 3-40

• Adding Attributes From the RTL and Technology Views, on page 3-40

Adding Attributes and Directives in VHDL
You can also use the SCOPE window to add attributes to objects, as
described in Adding Attributes in the SCOPE Window, on page 3-38. However,
you can specify directives only in the source code.

1. If you are going to use the predefined attributes package included in the
software library, add these lines to the syntax:

library synplify;
use synplify.attributes.all;

The advantage to using the predefined package is that you avoid
redefining the attributes and directives each time you include them in
source code. The disadvantage is that your source code is less portable.

2. Add the attribute or directive you want after the design unit declaration.

<declarations>;
attribute <att_name> of <object_name>:<object_kind> is <value>;

Preface

Synplify User Guide, September 2004 37

For example:

entity simpledff is
port(q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf of clk :signal is true;

For information about the syntax of attributes and directives, see the
Synplify Reference Manual.

3. If you do not use the predefined attributes package, define attributes
after design unit declarations as follows:

<design_unit_declaration>;
attribute <att_name> : <data_type>;
attribute <att_name> of <object_name>:<object_kind> is <value>;

If you do not use the attributes package, you must redefine the
attributes each time you include them in source code. For example:

entity simpledff is
port(q: out bit_vector(7 downto 0);

 d : in bit_vector(7 downto 0);
clk : in bit);

attribute syn_noclockbuf : boolean;
attribute syn_noclockbuf of clk :signal is true;

4. Add the source file to the project.

Adding Attributes and Directives in Verilog
You can also use the SCOPE window to add attributes to objects, as described
in Adding Attributes in the SCOPE Window. However, you can specify direc-
tives only in the source code.

1. To add an attribute or directive in Verilog, use Verilog line or block
comment syntax directly following the design object, and before the
semicolon, if there is one.

Verilog Block Comment Syntax Verilog Line Comment Syntax

/* synthesis <att_name> = <value> */
/* synthesis <dir_name> = <value> */

// synthesis <att_name> = <value>
// synthesis <dir_name> = <value>

LO

Preface

38 Synplify User Guide, September 2004

Verilog does not have predefined synthesis attributes and directives, so
you must add them as comments. Note that the attribute or directive
name is preceded by the keyword synthesis. For information about
attributes and their values, refer to the Synplify Reference Manual.

The following are examples of attributes and directives:

module fifo(out, in) /* synthesis syn_hier = “firm“ */;

module b_box(out, in) /* synthesis syn_black_box */;

2. To attach multiple attributes or directives to the same object, separate
the attributes with white spaces, but do not repeat the synthesis keyword.
For example:

case state /* synthesis full_case parallel_case */;

Adding Attributes in the SCOPE Window
The SCOPE window provides an easy-to-use interface to add any attribute.
You cannot use it for adding directives, because they must be added to the
source files. (See Adding Attributes and Directives in VHDL, on page 3-36 or
Adding Attributes and Directives in Verilog, on page 3-37).

1. Start with a compiled design and open the SCOPE window. To add the
attributes to an existing constraint file, open the SCOPE window by
clicking on the existing file in the Project view. To add the attributes to a
new file, click the SCOPE icon and click Initialize to open the SCOPE
window.

2. Click the Attributes tab at the bottom of the SCOPE window.

You can either select the object first (step 2) or the attribute first (step 3).

3. To specify the object, do one of the following in the Object column. If you
already specified the attribute, the Object column lists only valid object
choices for that attribute.

– Drag the object to which you want to attach the attribute from the
RTL or Technology views to the Object column in the SCOPE window.

– Select the type of object in the Object Filter column, and then select an
object from the list of choices in the Object column.

– Type the name of the object in the Object column. If you do not know
the name, use the Find command or the Object Filter column.

Preface

Synplify User Guide, September 2004 39

If you specified the object first, you can now specify the attribute. The
list shows only the valid attributes for the type of object you selected.

4. Specify the attribute by holding down the mouse button in the Attribute
column and selecting an attribute from the list.

If you selected the object first, the choices available are determined by
the selected object and the technology you are using. If you selected the
attribute first, the available choices are determined by the technology.

When you select an attribute, the SCOPE window tells you the kind of
value you must enter for that attribute and provides a brief description
of the attribute. If you selected the attribute first, make sure to go back
and specify the object.

5. Fill out the value. Hold down the mouse button in the Value column, and
select from the list. You can also type in a value.

If you manually type an attribute the software does not recognize, or
select an incompatible attribute/object combination, the attribute cell is
shaded in red.

6. Save the file and add it to the project, if it is not already in the project.

The software saves the SCOPE information in a Tcl constraint file, using
the define_attribute syntax. See Adding Attributes to a Tcl Constraint File,
on page 3-40 for information about adding this attribute manually to a
constraint file. When you synthesize the design, the software reads the
constraint file and applies the attribute.

LO

Preface

40 Synplify User Guide, September 2004

Adding Attributes to a Tcl Constraint File
When you add attributes through the SCOPE window (Adding Attributes in
the SCOPE Window, on page 3-38), the attributes are automatically added to
the constraint file using the Tcl define_attribute syntax. The following procedure
explains how to add attributes manually to a Tcl constraint file. For informa-
tion about editing the constraints in a constraint file, see Using a Text Editor
for Constraint Files, on page 3-33.

1. In the constraint file, add the attribute and value you want, using the
following define_attribute syntax.

define_attribute {object_name} attribute_name value

Check the descriptions of individual attributes in the Reference Manual
for the exact values and syntax of the attribute.

Adding Attributes From the RTL and Technology Views
You can add attributes to instances, nets, or ports in the RTL or Technology
windows.

1. If you already have a constraint file but you want to use a new one for
the attributes, create a file first, and add it to the project. If you are
using an existing constraint file, go to the next step.

2. Select an instance, net, or port in an RTL or Technology view.

You can only select a single object. The instance must be a primitive or a
module.

3. Right-click and select SCOPE->Edit Attributes from the popup menu.

If the command is grayed out, you have selected an invalid object.

If you do not have a constraint file, the software asks you if you want to
create one. If you select OK, the software automatically creates a
constraint file and adds it to the project file. If you have a constraint file,
the software opens and minimizes it. If there are multiple constraint
files, you are prompted to choose one from a list.

Preface

Synplify User Guide, September 2004 41

Then, an attribute editing dialog box opens.

4. Specify the attribute and the value in the box. The bottom left of the form
shows a short description of the selected attribute and lists the type of
value required.

LO

Preface

42 Synplify User Guide, September 2004

Synplify User Guide, September 2004 1

C H A P T E R 4

Result Analysis

This chapter describes typical analysis tasks. It describes graphical analysis
with the HDL Analyst tool as well as interpretation of the text log file. It covers
the following:

• Checking Log Results, on page 4-2

• Basic Operations in the Schematic Views, on page 4-10

• Exploring Design Hierarchy, on page 4-24

• Finding Objects, on page 4-30

• Crossprobing, on page 4-38

• Analyzing With the HDL Analyst Tool, on page 4-44

• Analyzing Timing, on page 4-61

LO

Preface

2 Synplify User Guide, September 2004

Checking Log Results
You can check the log file for information about the synthesis run. The
following describe different ways to check the results of your run:

• Viewing the Log File, next

• Analyzing Results Using the Log File Reports, on page 4-4

• Handling Warnings, on page 4-4

Viewing the Log File
The log file contains the most comprehensive results and information about a
synthesis run.

1. To view the log file, select View -> Log File, or click the View Log button in
the Project window. You see a Text Editor window with the log file.

The log file lists the compiled files, details of the synthesis run, color-
coded errors, warnings and notes, and a number of reports. For infor-
mation about the reports, see Analyzing Results Using the Log File
Reports, on page 4-4.

For general information about working in an Editing window, including
adding bookmarks, see Editing Source Files with the Built-in Text Editor,
on page 2-5.

2. To find information in the log file, select Edit -> Find or press Ctrl-f. Fill out
the criteria in the form and click OK.

Preface

Synplify User Guide, September 2004 3

The areas of the log file that are most important are the warning
messages and the timing report. The following table lists places in the log
file you can use when searching for information.

3. Resolve any errors and check all warnings.

You must fix errors, because you cannot synthesize a design with errors.
Check the warnings and make sure you understand them. See Handling
Warnings, on page 4-4 for information about some common warnings.
Notes are usually informational, and can be ignored. For details about
crossprobing and fixing errors, see Editing Source Files with the Built-in
Text Editor, on page 2-5 .

4. If you are trying to find and resolve errors, you can bookmark them as
shown in this procedure:

– Select Edit -> Find or press Ctrl-f.

– Type @W as the criteria on the Find form, and click Mark All. The
software inserts bookmarks at every line with a warning. You can now
page through the file from bookmark to bookmark using the
commands in the Edit menu or the icons in the Edit toolbar. For more
information on using bookmarks, see Editing Source Files with the
Built-in Text Editor, on page 2-5.

5. To crossprobe from the log file to the source code, double-click on a
warning.

To find... Search for...

Notes @N, or look for blue text

Warnings and errors @W and @E, or look for purple
and red text respectively

Performance summary Performance Summary

The beginning of the timing report START TIMING REPORT

Detailed information about slack times,
constraints, arrival times, etc.

Interface Information

Resource usage Resource Usage Report

Hierarchical usage Area Report

LO

Preface

4 Synplify User Guide, September 2004

Analyzing Results Using the Log File Reports
The log file contains technology-appropriate reports like timing reports,
resource usage reports and net buffering reports, in addition to any notes,
errors, and warning messages.

1. To analyze timing results,

– View the Timing Report by going to the Performance Summary section of
the log file.

– Check the slack times. See Handling Negative Slack, on page 4-65 for
details.

– Check the detailed information for the critical paths, including the
setup requirements at the end of the detailed critical path
description. You can crossprobe and view the information graphically
and determine how to improve the timing.

2. To check buffers,

– Check the report by going to the Net Buffering Report section of the log
file.

– Check the number of buffers or registers added or replicated and
determine whether this fits into your design optimization strategy.

3. To check logic resources,

– Go to the Resource Usage Report section at the end of the log file.

– Check the number and types of components used to determine if you
have used too much of your resources.

Handling Warnings
The following cases describe some warning messages you might see in your
log file and show how you can deal with them.

Asynchronous Loads
Register <name> with async load is being synthesized in compatibility mode. A
synthesis/simulation mismatch is possible.

Preface

Synplify User Guide, September 2004 5

This message is generated when the software creates objects that are not
explicitly defined in the RTL code. For example, if you have a register with an
asynchronous load, the software generates a set/reset register even if this is
not defined in the code. To avoid simulation mismatches, rewrite the code
with explicit assignments.

Verilog Example

Original Code Revised Code

always @(posedge clk or posedge
load)
begin
if (load)
q=d0;

else
q=d1;

end

wire tmp_set = load & d0;
wire tmp_rst = load & -d0;
always @(posedge clk or posedge
tm_rst or posedge tmp_set)

begin
if (tmp_rst)
q=0;

else if (tmp_set)
q=1;

else
q=d;

end

VHDL Example

Original Code Revised Code

process (clk, load)
begin
if (load = '1') then)
q <= d0;

elsif (rising_edge(clk)) then
q <=d;

end if;
end

begin
tmp_set <= load and d0;
tmp_rst <= load and not (d0);
process (clk, tmp_rst, tmp_set)
if (tmp_rst = '1') then)
q <= 0;

elsif (t'p_set = '1') then
q <= '1’;

elsif (rising_edge(clk)) then
q <=d;

end if;
end

LO

Preface

6 Synplify User Guide, September 2004

Latch Inference
Latch generated from always block for signal <name>, probably caused by a missing
assignment in IF or CASE statement.

You see a message like this when you have not declared all the cases in a
CASE or IF statement describing purely combinatorial logic. Even if this is
permissible in your design, check to make sure. If you do not want to
generate a latch, make sure to use a default clause or a Verilog full_case
directive for CASE statements. Make sure you always use the else clause in IF-
THEN-ELSE statements. If you require a latch, use assign statements.

The software generates a latch for the following example, because there is no
assignment for sel2 = 11. To fix it, add a statement, as shown.

Latch generated because there is no
assignment for case 11:

case sel2 i
when "00" => mux41_out <= inp1;
when "01" => mux41_out <= inp2;
when "10" => mux41_out <= inp3;
when others => null;
end case;

No latch generated when all the
cases are specified:

case sel2 i
when "00" => mux41_out <= inp1;
when "01" => mux41_out <= inp2;
when "10" => mux41_out <= inp3;
when "11" => mux41_out <= inp4;
when others => null;
end case;

Preface

Synplify User Guide, September 2004 7

Incomplete Sensitivity List
Incomplete Sensitivity List - assuming completeness. Referenced variable <name> is
not in the sensitivity list.

The software generates this message if you have signals missing in the sensi-
tivity list. The software assumes the list is complete and does not account for
missing signals, so you could have a mismatch with the simulation results.

The following table shows pieces of code. In the examples on the left, the
signal B is missing from the sensitivity list. When A is unchanged at 1, and B
changes from 1 to 0, the code on the left is insensitive to the change and Y1
remains at 1 nand 1 or 0. However, when the code is written as shown on the
right, it is sensitive to the change and the value is 1 nand 0 or 1.

Unused Inputs
“<design>|Input <input name> is unused.

You see this kind of message when an input is unused. You must check these
warnings because the software removes any logic that does not ultimately
feed a primary output.

Verilog Example

Original Code Revised Code

module nand2(A,B,Y1);
input A, B;
output Y1;
always @(A)
begin
Y1 = !(A & B);

end
endmodule

module nand2(A,B,Y1);
input A, B;
output Y1;
always @(A or B)
begin
Y1 = !(A & B);

end
endmodule

VHDL Example

Original Code Revised Code

process (A)
begin
Y1 <= A nand B;

end process;

process (A, B)
begin
Y1 <= A nand B;

end process;

LO

Preface

8 Synplify User Guide, September 2004

Redundant Logic
Removing sequential element <element_name>.

During optimization, the software reduces duplicate instances, and issues a
warning message like the one above. For example, if you have one instance
driving four other instances, the software uses just one driver instead of four
copies. Check your design and ensure that the optimization is appropriate. If
you want to keep four copies of the driver, you must specify this explicitly in
the code with the syn_preserve directive.

Verilog Example

Original Code Code with syn_preserve

module dff (q1, q2, q3, q4,
data1, clk);

output q1, q2, q3, q4;
input data1, clk;
reg q1, q2, q3 , q4;
always @(posedge clk)
begin
q1 <= data1;
q2 <= data1;
q3 <= data1;
q4 <= data1;

end
endmodule

module dff (q1, q2, q3, q4,
data1, clk);

output q1, q2, q3, q4;
input data1, clk;
reg q1 /*syn_preserve =1*/,
q2 /*syn_preserve =1*/,
q3 /*syn_preserve =1*/,
q4 /*syn_preserve =1*/;

always @(posedge clk)
begin
q1 <= data1;
q2 <= data1;
q3 <= data1;
q4 <= data1;

end
endmodule

Preface

Synplify User Guide, September 2004 9

VHDL Example

Original Code Code with syn_preserve

entity dff is
port (data1, clk : in bit;
q1, q2, q3, q4 : out bit);

end dff;
architecture rtl of dff is
begin
process (clk) begin
if (clk ‘event and clk = '1')
then
q1 <= data1; q2 <=data1;
q3 <= data1; q4 <= data1;

end if;
end process;
end rtl;

entity dff is
port (data1, clk : in bit;
q1, q2, q3, q4 : out bit);

attribute syn_preserve : boolean;
attribute syn_preserve of q1, q2,
q3, q4 : signal is true;

end dff;
architecture rtl of dff is
begin
process (clk) begin
if (clk ‘event and clk = '1') then
q1 <= data1; q2 <=data1;
q3 <= data1; q4 <= data1;

end if;
end process;
end rtl;

LO

Preface

10 Synplify User Guide, September 2004

Basic Operations in the Schematic Views
The RTL and Technology views are schematic views used to graphically
analyze your design. They are part of the HDL Analyst package. The RTL view
is available after a design is compiled; the Technology view is available after a
designed has been synthesized and contains technology-specific primitives.
For a detailed description of these views and operations, see Chapter 2 of the
Synplify Reference Manual. This section describes basic procedures you use
in the RTL and Technology views. The information is organized into these
topics:

• Differentiating Between the Views, next

• Opening the Views, on page 4-11

• Analyzing Your Design Graphically, on page 4-13

• Viewing Object Properties, on page 4-14

• Selecting Objects in the RTL/Technology Views, on page 4-17

• Working with Multisheet Schematics, on page 4-18

• Moving Between Views in a Schematic Window, on page 4-20

• Setting Schematic View Preferences, on page 4-20

• Managing Windows, on page 4-22

For information on specific tasks like analyzing critical paths, see the
following sections:

• Exploring Object Hierarchy by Pushing/Popping, on page 4-25

• Exploring Object Hierarchy of Transparent Instances, on page 4-29

• Browsing to Find Objects, on page 4-30

• Crossprobing, on page 4-38

• Analyzing With the HDL Analyst Tool, on page 4-44

• Analyzing Timing, on page 4-61

Preface

Synplify User Guide, September 2004 11

Differentiating Between the Views
The difference between the RTL and Technology views is that the RTL view is
the view generated after compilation, while the Technology view is the view
generated after mapping.

• The RTL view displays your design as a high-level, technology-indepen-
dent schematic. At this high level of abstraction, the design is repre-
sented with technology-independent components like variable-width
adders, registers, large muxes, state machines, and so on. This view
corresponds to the .srs netlist file generated by the software in the
Synplicity proprietary format. For a detailed description, see Chapter 2
of the Synplify Reference Manual.

• The Technology view contains technology-specific primitives. It shows
low-level vendor-specific components such as look-up tables, cascade
and carry chains, muxes, and flip-flops, which can vary with the vendor
and the technology. This view corresponds to the .srm netlist file, gener-
ated by the software in the Synplicity proprietary format. For a detailed
description, see Chapter 2 of the Synplify Reference Manual.

Opening the Views
The procedure for opening an RTL or Technology view is similar; the main
difference is the design stage at which these views are available.

LO

Preface

12 Synplify User Guide, September 2004

All RTL and Technology views have the schematic on the right and a pane on
the left that contains a hierarchical list of the objects in the design. This pane
is called the Hierarchy Browser. The bar at the top of the window contains the
name of the view, the kind of view, hierarchical level, and the number of
sheets in the schematic. See Hierarchy Browser, on page 2-8 in the Synplify
Reference Manual for a description of the Hierarchy Browser.

To open an RTL
view...

Start with a compiled design.
To open a hierarchical RTL view, do one of the following:
• Select HDL Analyst->RTL->Hierarchical View.
• Click the RTL View icon () (a plus sign inside a circle).
• Double-click the .srs file in the Implementation Results view.
To open a flattened RTL view, select HDL Analyst->RTL->Flattened
View.

To open a
Technology
view...

Start with a mapped (synthesized) design.
To open a hierarchical Technology view, do one of the following:
• Select HDL Analyst ->Technology->Hierarchical View.
• Click the Technology View icon (NAND gate icon).
• Double-click the .srm file in the Implementation Results view.
To open a flattened Technology view, select HDL Analyst->
Technology->Flattened View.

To open a post-
partitioned
view...

Start with a compiled design.
To open a post-partitioned RTL view:
• Select the FPGA or black-box bin in the Partition Device view.
• Select RTL View from the Partition view popup menu.

Preface

Synplify User Guide, September 2004 13

Analyzing Your Design Graphically
By using BEST® (Behavior Extraction Synthesis Technology) in the RTL view,
the software keeps a high-level of abstraction, and makes the RTL view easy
to view and debug. High-level structures like RAMs, ROMs, operators and
FSMs are kept as abstractions in this view instead of being converted to gates.
You can examine the high-level structure, or push into a component and view
the gate-level structure.

In the Technology view, the software uses module generators to implement
the high-level structures from the RTL view using technology-specific
resources.

Technology View

RTL View

LO

Preface

14 Synplify User Guide, September 2004

To analyze information, compare the current view with the information in the
RTL/Technology view, the log file, and the source code. You can use
techniques like crossprobing, flattening, and filtering to isolate and examine
the components. The following table points you to where you can find more
information about some analysis techniques.

Viewing Object Properties
There are a few ways in which you can view the properties of objects.

1. To temporarily display the properties of a particular object, hold the
cursor over the object. A tooltip temporarily displays the information. at
the cursor and in the status bar at the bottom of the product window.

2. Select the object, right-click and select Properties. The properties and
their values are displayed in a table.

If you select an instance, you can view the properties of the associated
pins by selecting the pin from the list . Similarly, if you select a port, you
can view the properties on individual bits.

For Information About See...

Crossprobing Crossprobing, on page 4-38

Analyzing logic Analyzing With the HDL Analyst Tool, on page 4-44

Isolating or filtering logic Filtering Schematics, on page 4-48

Expanding filtered logic Expanding Pin and Net Logic, on page 4-50 and
Expanding and Viewing Connections, on page 4-54

Flattening Flattening Schematic Hierarchy, on page 4-56

Analyzing timing Analyzing Timing, on page 4-61

Preface

Synplify User Guide, September 2004 15

3. To flag objects by property, do the following with an open
RTL/Technology view:

– Set the properties you want to see by selecting Options->Schematic
Options->Visual Properties, and selecting the properties from the
pulldown list. Some properties are only available in certain views.

– Close the Schematic Options dialog box.

Set this field to the pin
name to see pin properties

LO

Preface

16 Synplify User Guide, September 2004

– Enable View->Visual Properties. If you do not enable this, the software
does not display the property flags in the schematics. The HDL
Analyst annotates all objects in the current view that have the
specified property with a rectangular flag that contains the property
name and value. The software uses different colors for different
properties, so you can enable and view many properties at the same
time.

Example: Slow and New Properties
You can view objects with the slow property when you are analyzing your
critical path. All objects with this property do not meet the timing criteria.
The following figure shows a filtered view of a critical path, with slow instances
flagged in blue.

When you are working with filtered views, you can use the New property to
quickly identify objects that have been added to the current schematic with
commands like Expand. You can step through successive filtered views to
determine what was added at each step. This can be useful when you are
debugging your design.

The following figure expands one of the pins from the previous filtered view.
The new instance added to the view has two flags: new and slow.

Slow property

Preface

Synplify User Guide, September 2004 17

Selecting Objects in the RTL/Technology Views
For mouse selection, standard object selection rules apply: In selection mode,
the pointer is shaped like a crosshair.

To select... Do this...

One object Click it in the RTL or Technology schematic, or click the object
name in the Hierarchy Browser.

Multiple objects Use one of these methods:
• Draw a rectangle around the objects.
• Select an object, press Ctrl, and click other objects you want to

select.
• Select multiple objects in the Hierarchy Browser. See

Browsing With the Hierarchy Browser, on page 4-30.
• Use Find to select the objects you want. See Using Find for

Hierarchical and Restricted Searches, on page 4-32.

Objects by type
(instances,
ports, nets)

Use Edit->Find to select the objects (see Browsing With the Find
Command, on page 4-31), or use the Hierarchy Browser, which
lists objects by type.

LO

Preface

18 Synplify User Guide, September 2004

The HDL Analyst view highlights selected objects in red. If the object you
select is on another sheet of the schematic, the schematic tracks to the
appropriate sheet. If you have other windows open, the selected object is
highlighted in the other windows as well (crossprobing), but the other
windows do not track to the correct sheet. Selected nets that span different
hierarchical levels are highlighted on all the levels. See Crossprobing, on
page 4-38 for more information about crossprobing.

Some commands affect selection by adding to the selected set of objects: the
Expand commands, the Select All commands, and the Select Net Driver and Select
Net Instances commands.

Working with Multisheet Schematics
The title bar of the RTL or Technology view indicates the number of sheets in
that schematic. In a multisheet schematic, nets that span multiple sheets are
indicated by sheet connector symbols, which you can use for navigation.

1. To reduce the number of sheets in a schematic, select Options->Schematic
Options and increase the values set for Sheet Size Options - Instances and
Sheet Size Options - Filtered Instances. To display fewer objects per sheet
(increase the number of sheets), increase the values.

These options set a limit on the number of objects displayed on an unfil-
tered and filtered schematic sheet, respectively. A low Filtered Instances
value can cause lower-level logic inside a transparent instance to be
displayed on a separate sheet. The sheet numbers are indicated inside
the empty transparent instance.

2. To navigate through a multisheet schematic, refer to this table. It
summarizes common operations and ways to navigate.

All objects of a
certain type
(instances,
ports, nets)

To select all objects of a certain type, do either of the following:
• Right-click and choose the appropriate command from the

Select All Schematic/Current Sheet popup menus.
• Select the objects in the Hierarchy Browser.

No objects
(deselect all
currently
selected objects)

Click the left mouse button in a blank area of the schematic or
click the right mouse button to bring up the pop-up menu and
choose Unselect All. Deselected objects are no longer
highlighted.

To select... Do this...

Preface

Synplify User Guide, September 2004 19

To view... Use one of these methods...

Next sheet or
previous sheet

Select View->Next/Previous Sheet.
Press Alt and draw a horizontal mouse stroke (left to right for
next sheet, right to left for previous sheet).
Click the icons: Next Sheet () or Previous Sheet ()
Press Shift-right arrow (Next Sheet) or Shift-left arrow (Previous
sheet).
Navigate with View->Back and View ->Forward if the
next/previous sheets are part of the display history.

A specific sheet
number

Select View->View Sheets, and select the sheet.
Click the right mouse button, select View Sheets from the
popup, and then select the sheet you want.
Press Ctrl-g and select the sheet you want.

Lower-level logic of
a transparent
instance on
separate sheets

Check the sheet numbers indicated inside the empty
transparent instance. Use the sheet navigation commands like
Next Sheet or View Sheets to move to the sheet you need.

All objects of a
certain type

To highlight all the objects of the same type in the schematic,
right-click and select the appropriate command from the Select
All Schematic popup menu.
To highlight all the objects of the same type on the current
sheet, right-click and select the appropriate command from the
Select All Sheet popup menu.

Selected items
only

Filter the schematic as described in Filtering Schematics, on
page 4-48.

A net across
sheets

If there are no sheet numbers displayed in a hexagon at the
end of the sheet connector, select Options ->Schematic Options
and enable Show Sheet Connector Index. Right-click the sheet
connector and select the sheet number from the popup, as
shown in the following figure.

Sheet Connector Symbol

Sheet connector with multisheet popup menuConnected sheet numbers

LO

Preface

20 Synplify User Guide, September 2004

Moving Between Views in a Schematic Window
When you filter or expand your design, you move through a number of
different design views in the same schematic window. For example, you might
start with a view of the entire design, zoom in on an area, then filter an object,
and finally expand a connection in the filtered view, for a total of four views.

1. To move back to the previous view, click the Back icon or draw the
appropriate mouse stroke.

The software displays the last view, including the zoom factor. This does
not work in a newly generated view (for example, after flattening)
because there is no history.

2. To move forward again, click the Forward icon or draw the appropriate
mouse stroke.

The software displays the next view in the display history.

Setting Schematic View Preferences
You can set various preferences for the RTL and Technology views from the
user interface.

1. Select Options->HDL Analyst Options. For a description of all the options on
this form, see HDL Analyst Options Command, on page 3-73 in the
Synplify Reference Manual.

2. The following table details some common operations:

To... Do this...

Display the Hierarchy Browser Enable Show Hierarchy Browser (General tab).

Control crossprobing from an
object to a P&R text file

Enable Enhanced Text Crossprobing. (General
tab)

Preface

Synplify User Guide, September 2004 21

Some of these options do not take effect in the current view, but are
visible in the next schematic view you open.

3. To view hierarchy within a cell, enable the General -> Show Cell Interiors
option.

4. To control the display of labels, first enable the Text->Show Text option,
and then enable the Label Options you want. The following figure
illustrates the label that each option controls.

Determine the number of
objects displayed on a sheet.

Set the value with Maximum Instances on the
Sheet Size tab. Increase the value to display
more objects per sheet.

Determine the number of
objects displayed on a sheet in
a filtered view.

Set the value with Maximum Filtered Instances
on the Sheet Size tab. Increase the number
to display more objects per sheet. You
cannot set this option to a value less than
the Maximum Instances value.

To... Do this...

Show Cell Interior off Show Cell Interior on

LO

Preface

22 Synplify User Guide, September 2004

For a more detailed information about some of these options, see
Schematic Display, on page 6-9 in the Synplify Reference Manual.

5. Click OK on the Schematic Options form.

The software writes the preferences you set to the .ini file, and they
remain in effect until you change them.

Managing Windows
As you work on a project, you open different windows. For example, you
might have two Technology views, an RTL view, and a source code window
open. The following guidelines help you manage the different windows you
have open. For information about cycling through the display history in a
single schematic, see Moving Between Views in a Schematic Window, on
page 4-20.

1. Toggle on View->Workbook Mode.

Below the Project view, you see tabs like the following for each open
view. The tab for the current view is on top. The symbols in front of the
view name on the tab help identify the kind of view.

Show Instance Name

Show Symbol Name

Show Pin Name
Show Conn Name

Show Port Name

Preface

Synplify User Guide, September 2004 23

2. To bring an open view to the front, do one of the following:

– If the window is not visible, click its tab. If part of the window is
visible, click in any part of the window.

– If you previously minimized the view, it will be in minimized form.
Double-click the minimized view to open it.

3. To bring the next view to the front, click Ctrl-F6 in that window.

4. Order the display of open views with the commands from the Window
menu. You can cascade the views (stack them, slightly offset), or tile
them horizontally or vertically.

5. To close a view, press Ctrl-F4 in that window or select File->Close.

LO

Preface

24 Synplify User Guide, September 2004

Exploring Design Hierarchy
Schematics generally have a certain amount of design hierarchy. You can
move between hierarchical levels using the Hierarchy Browser or Push/Pop
mode. For additional information, see Analyzing With the HDL Analyst Tool,
on page 4-44.

Traversing Design Hierarchy with the Hierarchy Browser
The Hierarchy Browser is the list of objects on the left side of the RTL and
Technology views. It is best used to get an overview, or when you need to
browse and find an object. If you want to move between design levels of a
particular object, Push/Pop mode is more direct. Refer to Exploring Object
Hierarchy by Pushing/Popping, on page 4-25 for details.

The hierarchy browser allows you to traverse and select the following:

• Instances and submodules

• Ports

• Internal nets

• Clock trees (in an RTL view)

The browser lists the objects by type. A plus sign in a square icon indicates
that there is hierarchy under that object, and a minus sign indicates that the
design hierarchy has been expanded. To see lower-level hierarchy, click on
the plus sign for the object. To ascend the hierarchy, click on the minus sign.

Preface

Synplify User Guide, September 2004 25

Refer to Hierarchy Browser Symbols, on page 2-9 in the Synplify Reference
Manual for an explanation of the symbols.

Exploring Object Hierarchy by Pushing/Popping
To view the internal hierarchy of a specific object, it is best to use Push/Pop
mode or examine transparent instances, instead of using the Hierarchy
Browser described in Traversing Design Hierarchy with the Hierarchy
Browser, on page 4-24. You can access Push/Pop mode with the Push/Pop
Hierarchy icon, the Push/Pop Hierarchy command, or mouse strokes.

When combined with other commands like filtering and expansion
commands, Push/Pop mode can be a very powerful tool for isolating and
analyzing logic. See Filtering Schematics, on page 4-48, Expanding Pin and Net
Logic, on page 4-50, and Expanding and Viewing Connections, on page 4-54
for details about filtering and expansion. See the following sections for infor-
mation about pushing down and popping up in hierarchical design objects:

– Pushing into Objects, next

– Popping up a Hierarchical Level, on page 4-28

No lower hierarchy; click
to collapse the list.

Click to expand and see
lower-level hierarchy

LO

Preface

26 Synplify User Guide, September 2004

Pushing into Objects
In the schematic views, you can push into objects and view the lower-level
hierarchy. You can use a mouse stroke, the command, or the icon to push
into objects:

1. To move down a level (push into an object) with a mouse stroke, put
your cursor over the object, hold down the Alt key, and draw a vertical
stroke moving from top to bottom. You can push into the following
objects; see step 3 for examples of pushing into different types of objects.

– Hierarchical instances. They can be displayed as pale yellow boxes
(opaque instances) or hollow boxes with internal logic displayed
(transparent instances). You cannot push into a hierarchical instance
that is hidden with the Hide Instance command (internal logic is
hidden).

– Technology-specific primitives. The primitives are listed in the
Hierarchy Browser in the Technology view, under Instances - Primitives.

– Inferred ROMs and state machines.

The remaining steps show you how to use the icon or command to push
into an object.

Hierarchical object Alt + downward mouse stroke to push down

Preface

Synplify User Guide, September 2004 27

2. Enable Push/Pop mode by doing one of the following:

– Select View -> Push/Pop Hierarchy.

– Right-click in the Technology view and select Push/Pop Hierarchy from
the popup menu.

– Click the Push/Pop Hierarchy icon () in the toolbar (two arrows
pointing up and down).

– Press F2.

The cursor changes to an arrow. The direction of the indicates the
underlying hierarchy, as shown in the following figure. The status bar at
the bottom of the window reports information about the objects over
which you move your cursor.

3. To push (descend) into an object, click on the hierarchical object. For a
transparent instance, you must click on the pale yellow border. The
following figure shows the result of pushing into a ROM.

When you descend into a ROM, you can push into it one more time to
see the ROM data table. The information is in a view-only text file called
rom.info.

“X” arrow where Push/Pop Mode

Up arrow (hierarchy above)

Down arrow (hierarchy below)
is unavailable

LO

Preface

28 Synplify User Guide, September 2004

Popping up a Hierarchical Level
1. To move up a level (pop up a level), put your cursor anywhere in the

design, hold down the Alt key, and draw a vertical mouse stroke, moving
from the bottom upwards.

The software moves up a level, and displays the next level of hierarchy.

Alt + upward mouse
stroke to pop up a level

Preface

Synplify User Guide, September 2004 29

2. To pop (ascend) a level using the commands or icon, do the following:

– Select the command or icon if you are not already in Push/Pop mode.
See Pushing into Objects, on page 4-26for details.

– Move your cursor to a blank area and click.

3. To exit Push/Pop mode, do one of the following:

– Click the right mouse button in a blank area of the view.

– Deselect View->Push/Pop Hierarchy.

– Deselect the Push/Pop Hierarchy icon.

– Press F2.

Exploring Object Hierarchy of Transparent Instances
Examining a transparent instance is one way of exploring the design
hierarchy of an object. The following table compares this method with
pushing (described in Exploring Object Hierarchy by Pushing/Popping, on
page 4-25).

Pushing Transparent Instance

User
control

You initiate the operation
through the command or
icon.

You have no direct control; the transparent
instance is automatically generated by some
commands that result in a filtered view.

Design
context

Context lost; the lower-
level logic is shown in a
separate view

Context maintained; lower-level logic is
displayed inside a hollow yellow box at the
hierarchical level of the parent.

LO

Preface

30 Synplify User Guide, September 2004

Finding Objects
You can use the Hierarchy Browser or the Find command to find objects., as
explained in these sections:

• Browsing to Find Objects, next

• Using Find for Hierarchical and Restricted Searches, on page 4-32

• Using Wildcards with the Find Command, on page 4-35

Browsing to Find Objects
You can always zoom in to find an object in the RTL and Technology
schematics. The following procedure shows you how to browse through
design objects and find an object at any level of the design hierarchy. You can
use the Hierarchy Browser or the Find command to do this. If you are familiar
with the design hierarchy, the Hierarchy Browser can be the quickest method
to locate an object. The Find command is best used to graphically browse and
locate the object you want.

Browsing With the Hierarchy Browser
1. In the Hierarchy Browser, click the name of the net, port, or instance

you want to select.

The object is highlighted in the schematic.

2. To select a range of objects, select the first object in the range. Then,
scroll to to display the last object in the range. Press and hold the Shift
key while clicking the last object in the range.

The software selects and highlights all the objects in the range.

3. If the object is on a lower hierarchical level, do either of the following:

– Expand the appropriate higher-level object by clicking the plus
symbol next to it, and then select the object you want.

– Push down into the higher-level object, and then select the object
from the Hierarchy Browser.

Preface

Synplify User Guide, September 2004 31

The selected object is highlighted in the schematic. The following
example shows how moving down the object hierarchy and selecting an
object causes the schematic to move to the sheet and level that contains
the selected object.

4. To select all objects of the same type, select them from the Hierarchy
Browser. For example, you can find all the nets in your design.

Browsing With the Find Command
1. In a schematic view, type Ctrl-f to open the Object Query dialog box.

2. Do the following in the dialog box:

– Select objects in the selection box on the left. You can select all the
objects or a smaller set of objects to browse. If length makes it hard to
read a name, click the name in the list and the software displays the
entire name in the field at the bottom of the dialog box.

– Click the arrow to move them over to the box on the right.

The software highlights the selected objects.

Expand Instances
and select an
object on a lower
hierarchical level.

Schematic pushes
down to the correct
level to show the
selected object.

LO

Preface

32 Synplify User Guide, September 2004

3. In the Object Query dialog box, click on an object in the box on the right.

The software tracks to the schematic page with that object.

Using Find for Hierarchical and Restricted Searches
You can always zoom in to find an object in the RTL and Technology
schematics or use the Hierarchy Browser (see Browsing to Find Objects, on
page 4-30). This procedure shows you how to use the Find command to do
hierarchical object searches or restrict the search to the current level or the
current level and its underlying hierarchy.

1. If needed, restrict the range of the search by filtering the view, hiding
instances, or both.

See Viewing Design Hierarchy and Context, on page 4-44 and Filtering
Schematics, on page 4-48 for details. With a filtered view, the software
only searches the filtered instances, unless you set the scope of the
search to Entire Design, as described below. In that case, Find searches the
entire design. Hidden instances and their hierarchy are excluded from
the search. When you have finished the search, use the Unhide Instances
command to make the hierarchy visible.

You can use the filtering technique to restrict your search to just one
schematic sheet. Select all the objects on one sheet and filter the view.
Continue with the procedure

2. Select HDL Analyst->Find or press Control-f, to open the Object Query form.
Move the dialog box so you can see both your schematic and the
dialog box.

Preface

Synplify User Guide, September 2004 33

3. Select the tab (at the top of the form) for the type of object. The
Unhighlighted box on the left lists all objects of that type.

For fastest results, search by Instances rather than Nets. When you select
Nets, the software loads the whole design, which could take some time.

4. Click one of these buttons to set the hierarchical range for the search:
Entire Design, Current Level & Below, or Current Level Only, depending on the
hierarchical level of the design to which you want to restrict your search.

The range setting is especially important when you use wildcards. See
Effect of Search Range on Wildcard Searches, on page 4-35 for details.
Current Level Only or Current Level & Below are useful for searching filtered
schematics or critical path schematics.

Use Entire Design to hierarchically search the whole design. For large
hierarchical designs, reduce the scope of the search by using the
techniques described in the first step.

The Unhighlighted box shows available objects within the scope you set.
Objects are listed in alphabetical order, not hierarchical order.

LO

Preface

34 Synplify User Guide, September 2004

5. Do the following to select objects from the list. To use wildcards in
selection, see the next step.

– Click on the objects you want from the list. If length makes it hard to
read a name, click the name in the list and the software displays the
entire name in the field at the bottom of the dialog box.

– Click Find 200 or Find All. The former finds the first 200 matches, and
then you can click the button again to find the next 200.

– Click the right arrow to move the objects into the box on the right, or
double-click individual names.

The schematic displays highlighted objects in red.

6. Do the following to select objects using patterns or wildcards.

– Type a pattern in the Highlight Wildcard field. See Using Wildcards with
the Find Command, on page 4-35 for a detailed discussion of
wildcards.

The Unhighlighted list shows the objects that match the wildcard
criteria. If length makes it hard to read a name, click the name in the
list and the software displays the entire name in the field at the
bottom of the form.

– Click the right arrow to move the selections to the box on the right, or
double-click individual names. The schematic displays highlighted
objects in red.

You can use wildcards to avoid typing long pathnames. Start with a
general pattern, and then make it more specific. The following example
browses and uses wildcards successively to narrow the search.

7. You can leave the dialog box open to do successive Find operations. Click
OK or Cancel to close the dialog box when you are done.

For detailed information about the Find command and the Object Query
dialog box, see Find Command (HDL Analyst), on page 3-15 of the Synplify
Reference Manual.

Find all instances three levels down *.*.*

Narrow search to find instances that begin with i_ i_*.*.*

Narrow search to find instances that begin with un2 after the
second hierarchy separator

i_*.*.un2*

Preface

Synplify User Guide, September 2004 35

Using Wildcards with the Find Command
Use the following wildcards when you search the schematics:

Effect of Search Range on Wildcard Searches
The asterisk and question mark do not cross hierarchical boundaries.
However, the scope of the search determines the starting points for the
searches, and this might make it appear as if the wildcards cross hierarchical
boundaries in some cases. If you are at 2A in the following figure and the
scope of the search is set to Current Level and Below, separate searches start at
2A, 3A1, and 3A2. Each search does not cross hierarchical boundaries. If the
scope of the search is Entire Design, the wildcard searches run from each
hierarchical point (1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3). The result of an
asterisk search (*) with Entire Design is a list of all matches in the design,
regardless of the current level.

See Wildcard Search Examples, on page 4-37 for examples.

* The asterisk matches any sequence of characters.

? The question mark matches a single character.

. The dot explicitly matches a hierarchy separator, so type one dot for each level
of hierarchy. To use the dot as a pattern and not a hierarchy separator, type a
backslash before the dot: \.

2A

1

2B

3B33B23B13A23A1

Entire Design

Current
Level and
Below

Current
Level

LO

Preface

36 Synplify User Guide, September 2004

How a Wildcard Search Works
1. The starting point of a wildcard search depends on the range set for the

search.

2. The software applies the wildcard pattern to all applicable objects within
the range. For Current Level and Current Level and Below, the current level
determines the starting point.

Dots match hierarchy separators, unless you use the backslash escape
character in front of the dot (\.). Hierarchical search patterns with a dot
(like *.*) are repeated at each level included in the scope. See Effect of
Search Range on Wildcard Searches, on page 4-35 and Wildcard Search
Examples, on page 4-37 for details and examples, respectively. If you
use the *.* pattern with Current Level, the software matches non-hierar-
chical names at the current level that include a dot.

Entire Design Starts at top level and uses the pattern to search from that
level. It then moves to any child levels below the top level and
searches them. The software repeats the search pattern at
each hierarchical point in the design until it covers the entire
design.

Current Level Starts at the current hierarchical level and searches that level
only. A search started at 2A only covers 2A.

Current Level
and Below

Starts at the current hierarchical level and searches that level.
It then moves to any child levels below the starting point and
conducts separate searches from each of these starting points.

Preface

Synplify User Guide, September 2004 37

Wildcard Search Examples
The figure shows a design with three hierarchical levels, and the table shows
the results of some searches on this design.

Scope Pattern Starting Point Finds Matches in...

Entire
Design

* 3A1 1, 2A, 2B, 3A1, 3A2, 3B1, 3B2, and 3B3 (* at all levels)

. 2B 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches in 1 (because of the hierarchical
dot), unless a name includes a non-hierarchical
dot.

Current
Level

* 1 1 only (no hierarchical boundary crossing)

. 2B 2B only. No search of lower levels even though
the dot is specified, because the scope is Current
Level. No matches, unless a 2B name includes a
non-hierarchical dot.

2A

1

2B

3B33B23B13A23A1

LO

Preface

38 Synplify User Guide, September 2004

Crossprobing
This section describes how to crossprobe from different views. It includes the
following:

• Crossprobing Description, on page 4-38, next

• Crossprobing within an RTL/Technology View, on page 4-39

• Crossprobing from the RTL/Technology View, on page 4-40

• Crossprobing from the Text Editor Window, on page 4-42

Crossprobing Description
Crossprobing is the process of selecting an object in one view and having the
object or the corresponding logic automatically highlighted in other views.
Highlighting a line of text, for example, highlights the corresponding logic in
the schematic views. Crossprobing helps you visualize where coding changes
or timing constraints might help to reduce area or increase performance.

You can crossprobe between the RTL view, Technology view, the log file, the
source files, and some external text files from place-and-route tools. However,
not all objects or source code crossprobe to other views, because some source
code and RTL view logic is optimized away during the compilation or mapping
processes.

Current
Level
and
Below

* 2A 2A only (no hierarchical boundary crossing)

. 1 2A and 2B (*.* from 1)
3A1, 3A2, 3B1, 3B2, and 3B3 (*.* from 2A and 2B)
No matches from 1, because the dot is specified.

. 2B 3B1, 3B2, and 3B3 (*.* from 2B)

. 3A2 No matches (no hierarchy below 3A2)

..* 1 3A1, 3A2, 3B1, 3B2, and 3B3 (*.*.* from 1)
Search ends because there is no hierarchy two
levels below 2A and 2B.

Scope Pattern Starting Point Finds Matches in...

Preface

Synplify User Guide, September 2004 39

For further details, see Crossprobing, on page 4-38 of the Synplify Reference
Manual.

Crossprobing within an RTL/Technology View
Selecting an object name in the Hierarchy Browser highlights the object in the
schematic, and vice versa.

In this example, when you select the DECODE module in the Hierarchy
Browser, the DECODE module is automatically selected in the RTL view.

Selected Object Highlighted Object

Instance in schematic (single-click) Module icon in Hierarchy Browser

Net in schematic Net icon in Hierarchy Browser

Port in schematic Port icon in Hierarchy Browser

Logic icon in Hierarchy Browser Instance in schematic

Net icon in Hierarchy Browser Net in schematic

Port icon in Hierarchy Browser Port in schematic

LO

Preface

40 Synplify User Guide, September 2004

Crossprobing from the RTL/Technology View
1. To crossprobe from an RTL or Technology views to other open views,

select the object by clicking on it.

The software automatically highlights the object in all open views. If the
open view is a schematic, the software highlights the object in the
Hierarchy Browser on the left as well as in the schematic. If the
highlighted object is on another sheet of a multi-sheet schematic, the
view does not automatically track to the page. If the crossprobed object
is inside a hidden instance, the hidden instance is highlighted in the
schematic.

If the open view is a source file, the software tracks to the appropriate
code and highlights it. The following figure shows crossprobing between
the RTL, Technology, and Text Editor (source code) views.

Preface

Synplify User Guide, September 2004 41

2. To crossprobe from the RTL or Technology view to the source file when
the source file is not open, double-click on the object in the RTL or
Technology view.

Double-clicking automatically opens the appropriate source code file,
and highlights the appropriate code. For example, if you double-click an
object in a Technology view, the HDL Analyst tool automatically opens
an editor window with the source code and highlights the code that
contains the selected register.

The following table summarizes the crossprobing capability from the RTL or
Technology view.

3. To crossprobe and trace component cause with Visual Elite software,
select HDL Analyst->Connect to Visual Elite and click the object in the HDL
Analyst view. See Working with Visual Elite, on page 7-12 for details of
the setup and procedure.

4. To crossprobe simulation waveforms from ModelSim, follow the
procedure described in Integrating with ModelSim, on page 7-10.

From To Procedure

RTL Source code Double-click an object. If the source code file is not
open, the software opens the Text Editor window to
the appropriate piece of code. If the source file is
already open, the software scrolls to the correct
section of the code and highlights it.

RTL Technology The Technology view must be open. Click the object
to highlight and crossprobe.

Technology Source code If the source code file is already, open, the software
scrolls to the correct section of the code and
highlights it.
If the source code file is not open, double-click an
object in the Technology view to open the source
code file.

Technology RTL The RTL view must be open. Click the object to
highlight and crossprobe.

LO

Preface

42 Synplify User Guide, September 2004

Crossprobing from the Text Editor Window
To crossprobe from a source code window or the log file to an RTL,
Technology view, use this procedure. You can use this method to crossprobe
from any text file with objects that have the same instance names as in the
synthesis software. For example, you can crossprobe from place-and-route
files. See Example of Crossprobing a Path from a Text File, on page 4-42 for a
practical example of how to use crossprobing.

1. Open the RTL or Technology view to which you want to crossprobe.

2. To crossprobe from a log file, double-click the note, warning, or error to
open the corresponding source code in another Text Editor window.

3. To crossprobe from a third-party text file (not source code or a log file),
select Options->Schematic Options-General, and enable Enhanced Text
Crossprobing.

4. Select the appropriate portion of text in the Text Editor window. In some
cases, you might have to select the entire block of text to crossprobe.

The software highlights the objects corresponding to the selected code in
all the open windows. If an object is on another schematic sheet or on
another hierarchical level, the highlighting might not be obvious. If you
filter the RTL or schematic view (right-click in the source code window
with the selected text and select Filter Schematic from the popup menu),
you can isolate the highlighted objects for easy viewing.

Example of Crossprobing a Path from a Text File
This example selects a path in a log file and crossprobes it in the Technology
view. You can use the same technique to crossprobe from other text files like
place-and-route files, as long as the instance names in the text file match the
instance names in the synthesis tool.

1. Open the log file, the RTL, and Technology views.

2. Select the path objects in the log file.

– Select the column by pressing Alt and dragging the cursor to the end
of the column. On UNIX and Linux platforms, use the key to which
the Alt function is mapped; this is usually the Meta or Diamond key for
UNIX or the Ctrl-Alt key combination for Linux.

Preface

Synplify User Guide, September 2004 43

– To select all the objects in the path, right-click and choose Select All
from the popup menu. Alternatively, you can select certain objects
only, as described next.

The software selects the objects in the column, and highlights the path
in the open RTL and Technology views.

– To further filter the objects in the path, right-click and choose Select
From from the popup menu.On the form, check the objects you want,
and click OK. The corresponding objects are highlighted.

3. To isolate and view only the selected objects, do this in the Technology
view: press F12, or right-click and select the Filter Schematic command
from the popup menu.

You see just the selected objects.

Technology view

LO

Preface

44 Synplify User Guide, September 2004

Analyzing With the HDL Analyst Tool
The HDL Analyst tool is a graphical productivity tool that helps you visualize
your synthesis results, and improve device performance and area results. The
hierarchical RTL-level and technology-primitive level schematics let you
graphically view and analyze your design, as described in subsequent
sections. This section discusses the following topics:

• Viewing Design Hierarchy and Context, next

• Filtering Schematics, on page 4-48

• Expanding Pin and Net Logic, on page 4-50

• Expanding and Viewing Connections, on page 4-54

The HDL Analyst views also let you analyze timing and crossprobe, and these
operations are described in other sections: Basic Operations in the Schematic
Views, on page 4-10, Exploring Design Hierarchy, on page 4-24, Finding
Objects, on page 4-30, Crossprobing, on page 4-38, and Analyzing Timing, on
page 4-61.

Viewing Design Hierarchy and Context
Most large designs are hierarchical, so the synthesis software provides tools
that help you view hierarchy details or put the details in context. Alterna-
tively, you can browse and navigate hierarchy with Push/Pop mode, or flatten
the design to view internal hierarchy.

This section describes how to use interactive hierarchical viewing operations
to better analyze your design. Automatic hierarchy viewing operations that
are built into other commands are described in the context in which they
appear. For example, Viewing Critical Paths, on page 4-62 describes how the
software automatically traces a critical path through different hierarchical
levels using hollow boxes with nested internal logic (transparent instances) to
indicate levels in hierarchical instances.

See Chapter 3 of the Synplify Reference Manual for details about the
commands mentioned here.

1. To view the internal logic of primitives in your design, do either of the
following:

Preface

Synplify User Guide, September 2004 45

– To view the logic of an individual primitive, push into it. This
generates a new schematic view with the internal details. Click the
Back icon to return to the previous view.

– To view the logic of all primitives in the design, select Options->
Schematic Options->General, and enable Show Cell Interior. This command
lets you see internal logic in context, by adding the internal details to
the current schematic view and all subsequent views. If the view is too
cluttered with this option on, filter the view (see Filtering Schematics,
on page 4-48) or push into the primitive. Click the Back icon to return
to the previous view after filtering or pushing into the object.

The following figure compares these two methods:

2. To hide selected hierarchy, select the instance whose hierarchy you want
to exclude, and then select Hide Instances from the HDL Analyst menu or the
right-click popup menu in the schematic view.

You can hide opaque (solid yellow) or transparent (hollow) instances. The
software marks hidden instances with an H in the lower left. Hidden
instances are like black boxes; their hierarchy is excluded from filtering,
expanding, dissolving, or searching in the current window, although
they can be crossprobed. An instance is only hidden in the current view
window; other view windows are not affected. Temporarily hiding unnec-
essary hierarchy focuses analysis and saves time in large designs.

Result of pushing into a primitive (new view
of lower-level logic) Result of enabling Show Cell Interior

option (same view with internal logic)

LO

Preface

46 Synplify User Guide, September 2004

Before you save a design with hidden instances, select Unhide Instances
from the HDL Analyst menu or the right-click popup menu and make the
hidden internal hierarchy accessible again. Otherwise, the hidden
instances are saved as black boxes, without their internal logic.
Conversely, you can use this feature to reduce the scope of analysis in a
large design by hiding instances you do not need, saving the reduced
design to a new name, and then analyzing it.

3. To view the internal logic of a hierarchical instance, you can push into
the instance, dissolve the selected instance with the Dissolve Instances
command, or flatten the design. You cannot use these methods to view
the internal logic of a hidden instance.

‘H’ indicates a
hidden instance

Preface

Synplify User Guide, September 2004 47

4. If the result of filtering or dissolving is a hollow box with no internal
logic, try either of the following, as appropriate, to view the internal
hierarchy:

– Select Options->Schematic Options->Sheet Size and increase the value of
Maximum Filtered Instances. Use this option if the view is not too
cluttered.

– Use the sheet navigation commands to go to the sheets indicated in
the hollow box.

If there is too much internal logic to display in the current view, the
software puts the internal hierarchy on separate schematic sheets. It
displays a hollow box with no internal logic and indicates the schematic
sheets that contain the internal logic.

5. To view the design context of an instance in a filtered view, select the
instance, right-click, and select Show Context from the popup menu.

The software displays an unfiltered view of the hierarchical level that
contains the selected object, with the instance highlighted. This is useful
when you have to go back and forth between different views during
analysis. The context differs from the Expand commands, which show
connections. To return to the original filtered view, click Back.

Pushing into
an instance

Generates a view that shows only the internal logic. You do not
see the internal hierarchy in context. To return to the previous
view, click Back. See Exploring Object Hierarchy by
Pushing/Popping, on page 4-25 for details.

Flattening
the entire
design

Opens a new view where the entire design is flattened, except
for hidden hierarchy. Large flattened designs can be
overwhelming. See Flattening Schematic Hierarchy, on
page 4-56 for details about flattening designs.
Because this is a new view, you cannot use Back to return to
the previous view. To return to the top-level unflattened
schematic, right-click in the view and select Unflatten Schematic.

Flattening
an instance
by dissolving

Generates a view where the hierarchy of the selected instances
is flattened, but the rest of the design is unaffected. This
provides context. See Flattening Schematic Hierarchy, on
page 4-56 for details about dissolving instances.

LO

Preface

48 Synplify User Guide, September 2004

Filtering Schematics
Filtering is a useful first step in analysis, because it focuses analysis on the
relevant parts of the design. Some commands, like the Expand commands,
automatically generate filtered views; this procedure only discusses manual
filtering, where you use the Filter Schematic command to isolate selected
objects. See Chapter 3 of the Synplify Reference Manual for details about
these commands.

This table lists the advantages of using filtering over flattening:

1. Select the objects that you want to isolate. For example, you can select
two connected objects.

If you filter a hidden instance, the software does not display its internal
hierarchy when you filter the design. The following example illustrates
this.

Filter Schematic Command Flatten Commands

Loads part of the design; better
memory usage

Loads entire design

Combine filtering with Push/Pop
mode, and history buttons (Back
and Forward) to move freely
between hierarchical levels

Must use Unflatten Schematic to return to top
level, and flatten the design again to see lower
levels. Cannot return to previous view if the
previous view is not the top-level view.

Preface

Synplify User Guide, September 2004 49

2. Select the Filter Schematic command, using one of these methods:

– Select Filter Schematic from the HDL Analyst menu or the right-click
popup menu.

– Click the Filter Schematic icon (buffer gate) ().

– Press F12.

– Press Alt and draw a narrow V-shaped mouse stroke in the schematic
window. See Help->Mouse Stroke Tutor for details.

The software filters the design and displays the selected objects in a
filtered view. The title bar indicates that it is a filtered view. Hidden
instances have an H in the lower left. The view displays other hierar-
chical instances as hollow boxes with nested internal logic (transparent
instances). For descriptions of filtered views and transparent instances,
see Filtered and Unfiltered Schematic Views, on page 6-2 and Trans-
parent and Opaque Display of Hierarchical Instances, on page 6-7 in the
Synplify Reference Manual. If the transparent instance does not display
internal logic, use one of the alternatives described in Viewing Design
Hierarchy and Context, on page 4-44, step 4.

3. If the filtered view does not display the pin names of technology
primitives and transparent instances that you want to see, do the
following:

– Select Options->Schematic Options->Text and enable Show Pin Name.

Filtered view

LO

Preface

50 Synplify User Guide, September 2004

– To temporarily display a pin name, move the cursor over the pin. The
name is displayed as long as the cursor remains over the pin.
Alternatively, select a pin. The software displays the pin name until
you make another selection. Either of these options can be applied to
individual pins. Use them to view just the pin names you need and
keep design clutter to a minimum.

– To see all the hierarchical pins, select the instance, right-click, and
select Show All Hier Pins.

You can now analyze the problem, and do operations like the following:

4. To return to the previous schematic view, click the Back icon. If you
flattened the hierarchy, right-click and select Unflatten Schematic to return
to the top-level unflattened view.

For additional information about filtering schematics, see Filtering
Schematics, on page 4-48 and Flattening Schematic Hierarchy, on page 4-56
of the Synplify Reference Manual.

Expanding Pin and Net Logic
When you are working in a filtered view, you might need to include more logic
in your selected set to debug your design. This section describes commands
that expand logic fanning out from pins or nets; to expand paths, see
Expanding and Viewing Connections, on page 4-54.

Trace paths, build up logic See Expanding Pin and Net Logic, on page 4-50
and Expanding and Viewing Connections, on
page 4-54

Filter further Select objects and filter again

Find objects See Finding Objects, on page 4-30

Flatten, or hide and flatten See Flattening Schematic Hierarchy, on
page 4-56. You can hide transparent or opaque
instances.

Crossprobe from filtered
view

See Crossprobing from the RTL/Technology
View, on page 4-40

Preface

Synplify User Guide, September 2004 51

Use the Expand commands with the Filter Schematic, Hide Instances, and Flatten
commands to isolate just the logic that you want to examine. Filtering isolates
logic, flattening removes hierarchy, and hiding instances prevents their
internal hierarchy from being expanded. See Filtering Schematics, on
page 4-48 and Flattening Schematic Hierarchy, on page 4-56 for details.
Additional information on filtering and flattening is in Chapter 5 of the
Synplify Reference Manual.

1. To expand logic from a pin hierarchically across boundaries, use the
following commands.

The software expands the logic as specified, working on the current level
and below or working up the hierarchy, crossing hierarchical boundaries
as needed. Hierarchical levels are shown nested in hollow bounding
boxes. The internal hierarchy of hidden instances is not displayed.

For descriptions of the Expand commands, see HDL Analyst Menu, on
page 3-49 of the Synplify Reference Manual.

2. To expand logic from a pin at the current level only, do the following:

– Select a pin, and go to the HDL Analyst->Current Level menu or the right-
click popup menu->Current Level.

– Select Expand or Expand to Register/Ports. The commands work as
described in the previous step, but they do not cross hierarchical
boundaries.

3. To expand logic from a net, use the commands shown in the following
table.

To... Do this (HDL Analyst->Hierarchical/Popup menu)...

See all cells connected
to a pin

Select a pin and select Expand. See Expanding
Filtered Logic Example, on page 4-52.

See all cells that are
connected to a pin,
up to the next register

Select a pin and select Expand to Register/Port. See
Expanding Filtered Logic to Register/Port Example,
on page 4-53.

See internal cells
connected to a pin

Select a pin and select Expand Inwards. The software
filters the schematic and displays the internal cells
closest to the port. See Expanding Inwards
Example, on page 4-53.

LO

Preface

52 Synplify User Guide, September 2004

– To expand at the current level and below, select the commands from
the HDL Analyst->Hierarchical menu or the right-click popup menu.

– To expand at the current level only, select the commands from the
HDL Analyst->Current Level menu or the right-click popup menu->Current
Level.

Expanding Filtered Logic Example

To... Do this...

Select the driver of
a net

Select a net and select Select Net Driver. The result is a
filtered view with the net driver selected (Selecting the Net
Driver Example, on page 4-54).

Trace the driver, across
sheets if needed

Select a net and select Go to Net Driver. The software shows
a view that includes the net driver.

Select all instances on
a net

Select a net and select Select Net Instances. You see a
filtered view of all instances connected to the selected net.

Preface

Synplify User Guide, September 2004 53

Expanding Filtered Logic to Register/Port Example

Expanding Inwards Example

LO

Preface

54 Synplify User Guide, September 2004

Selecting the Net Driver Example

Expanding and Viewing Connections
This section describes commands that expand logic between two or more
objects; to expand logic out from a net or pin, see Expanding Pin and Net
Logic, on page 4-50. You can also isolate the critical path or use the Timing
Analyst to generate a schematic for a path between objects, as described in
Analyzing Timing, on page 4-61.

Use the following path commands with the Filter Schematic and Hide Instances
commands to isolate just the logic that you want to examine. The two
techniques described here differ: Expand Paths expands connections between
selected objects, while Isolate Paths pares down the current view to only
display connections to and from the selected instance.

For detailed descriptions of the commands mentioned here, see Commands
That Result in Filtered Schematics, on page 6-28 in the Synplify Reference
Manual.

1. To expand and view connections between selected objects, do the
following:

– Select two or more points.

– To expand the logic at the current level only, select HDL Analyst->
Current Level->Expand Paths or popup menu->Current Level Expand Paths.

– To expand the logic at the current level and below, select HDL Analyst->
Hierarchical->Expand Paths or popup menu->Expand Paths.

Preface

Synplify User Guide, September 2004 55

Figure 4-1: Expand Paths

2. To view connections from all pins of a selected instance, right-click and
select Isolate Paths from the popup menu.

Unlike the Expand Paths command, the connections are based on the
schematic used as the starting point; the software does not add any
objects that were not in the starting schematic.

Starting Point The Filtered View Traces Paths (Forward and Back) From All
Pins of the Selected Instance...

Filtered view Traces through all sheets of the filtered view, up to the next
port, register, hierarchical instance, or black box.

Unfiltered view Traces paths on the current schematic sheet only, up to the
next port, register, hierarchical instance, or black box.

LO

Preface

56 Synplify User Guide, September 2004

Flattening Schematic Hierarchy
Flattening removes hierarchy so you can view the logic without hierarchical
levels. In most cases, you do not have to flatten your hierarchical schematic
to debug and analyze your design, because you can use a combination of
filtering, Push/Pop mode, and expanding to view logic at different levels.
However, if you must flatten the design, use the following techniques., which
include flattening, dissolving, and hiding instances.

1. To flatten an entire design down to logic cells, use one of the following
commands:

– For an RTL view, select HDL Analyst->RTL->Flattened View. This flattens
the design to generic logic cells.

– For a Technology view, select Flattened View or Flattened to Gates View
from the HDL Analyst->Technology menu. Use the former command to
flatten the design to the technology primitive level, and the latter
command to flatten it further to the equivalent Boolean logic.

The software flattens the top-level design and displays it in a new
window. To return to the top-level design, right-click and select Unflatten
Schematic.

Unless you really need the entire design flattened, use Push/Pop mode
and the filtering commands (Filtering Schematics, on page 4-48) to view
the hierarchy. Alternatively, you can use one of the selective flattening
techniques described in subsequent steps.

2. To selectively flatten transparent instances when you analyze critical
paths or use the Expand commands, select Flatten Current Schematic from
the HDL Analyst menu, or select Flatten Schematic from the right-click
popup menu.

The software generates a new view of the current schematic in the same
window, with all transparent instances at the current level and below
flattened. RTL schematics are flattened down to generic logic cells and
Technology views down to technology primitives. If you want to control
the number of hierarchical levels that are flattened, use the Dissolve
Instances command described in step 4.

If your view only contains hidden hierarchical instances or pale yellow
(opaque) hierarchical instances, nothing is flattened. If you flatten an
unfiltered (usually the top-level design) view, the software flattens all

Preface

Synplify User Guide, September 2004 57

hierarchical instances (transparent and opaque) at the current level and
below. The following figure shows flattened transparent instances.

Because the flattened view is a new view, you cannot use Back to return
to the unflattened view or the views before it. Use Unflatten Schematic to
return to the unflattened top-level view.

3. To selectively flatten the design by hiding instances, select hierarchical
instances whose hierarchy you do not want to flatten, right-click, and
select Hide Instances. Then flatten the hierarchy using one of the Flatten
commands described above.

Use this technique if you want to flatten most of your design. If you want
to flatten only part of your design, use the approach described in the
next step.

When you hide instances, the software generates a new view where the
hidden instances are not flattened, but marked with an H in the lower
left corner. The rest of the design is flattened. If you find unhidden

Flatten Schematic
flattens unhidden
transparent instance.

Hidden transparent
instance is not
flattened.

Flatten Schematic
flattens unhidden
transparent instance.

Opaque hierarchical
instance is unaffected.

LO

Preface

58 Synplify User Guide, September 2004

hierarchical instances are not flattened by this procedure, use the
Flattened View or Flattened to Gates View commands described in step 1
instead of the Flatten Current Schematic command described in step 2,
which only flattens transparent instances in filtered views.

You can select the hidden instances, right-click, and select Unhide
Instances to make their hierarchy accessible again. To return to the
unflattened top-level view, right-click in the schematic and select
Unflatten Schematic.

4. To selectively flatten some hierarchical instances in your design by
dissolving them, do the following:

– If you want to flatten more than one level, select Options->Schematic
Options and change the value of Dissolve Levels. If you want to flatten
just one level, leave the default setting.

– Select the instances to be flattened.

– Right-click and select Dissolve Instances.

The results differ slightly, depending on the kind of view from which you
dissolve instances.

Starting View Software Generates a...

Filtered Filtered view with the internal logic of dissolved instances
displayed within hollow bounding boxes (transparent
instances), and the hierarchy of the rest of the design
unchanged. If the transparent instance does not display
internal logic, use one of the alternatives described in
step 4 of Viewing Design Hierarchy and Context, on
page 4-44. Use the Back button to return to the undissolved
view.

Unfiltered New, flattened view with the dissolved instances flattened in
place (no nesting) to Boolean logic, and the hierarchy of the
rest of the design unchanged. Select Unflatten Schematic to
return to the top-level unflattened view. You cannot use the
Back button to return to previous views because this is a new
view.

Preface

Synplify User Guide, September 2004 59

The following figure illustrates this.

Use this technique if you only want to flatten part of your design while
retaining context. If you want to flatten most of the design, use the
technique described in the previous step. Instead of dissolving instances,
you can use a combination of the filtering commands and Push/Pop
mode.

Dissolved logic for prgmcntr, shown nested when you start from a filtered view.

Dissolved logic for prgmcntr, shown flattened in context when you start from an unfiltered view.

LO

Preface

60 Synplify User Guide, September 2004

Minimizing Memory Usage While Analyzing Designs
When working with large hierarchical designs, use the following techniques
to use memory resources efficiently.

• Before you do any analysis operations like searching, flattening,
expanding, or pushing/popping, hide (HDL Analyst->Hide Instances) the
hierarchical instances you do not need. This saves memory resources,
because the software does not load the hierarchy of the hidden
instances.

• Temporarily divide your design into smaller working files. Before you do
any analysis, hide the instances you do not need. Save the design. The
.srs and .srm files generated are smaller because the software does not
save the hidden hierarchy. Close any open HDL Analyst windows, to free
all memory from the large design. In the Implementation Results view,
double-click one of the smaller files to open the RTL or Technology
schematic. Analyze the design using the smaller, working schematics.

• Filter your design instead of flattening it. If you have to flatten your
design, hide the instances whose hierarchy you do not need before
flattening, or use the Dissolve Instances command. See Flattening
Schematic Hierarchy, on page 4-56 for details. For more information on
the Expand Paths and Isolate Paths commands, see RTL View and
Technology View Popup Menu Commands, on page 3-98 of the Synpli-
fyReference Manual.

• When searching your design, search by instance rather than by net.
Searching by net loads the entire design, which uses memory.

• Limit the scope of a search by hiding instances you do not need to
analyze. You can limit the scope further by filtering the schematic in
addition to hiding the instances you do not want to search.

Preface

Synplify User Guide, September 2004 61

Analyzing Timing
You can use the Timing Analyst and HDL Analyst functionality to analyze
timing. This section describes the following:

• Analyzing Clock Trees in the RTL View, next

• Viewing Critical Paths, on page 4-62

• Handling Negative Slack, on page 4-65

Analyzing Clock Trees in the RTL View
1. In the RTL view Hierarchy Browser, expand Clock Tree, select all the

clocks, and filter the design.

The Hierarchy Browser lists all clocks and the instances that drive them
under Clock Tree. The filtered view shows the selected objects.

2. If necessary, use the filter and expand commands to trace clock
connections back to the ports and check them.

For details about the commands for filtering and expanding paths, see
Filtering Schematics, on page 4-48, Expanding Pin and Net Logic, on
page 4-50 and Expanding and Viewing Connections, on page 4-54. For
more information on filtering schematics, see HDL Analyst Menu:
Filtering and Flattening Commands, on page 3-53 of the Synplify Refer-
ence Manual.

3. Check that your defined clock constraints cover the objects in the
design.

If you do not define your clock constraints accurately, you might not get
the best possible synthesis optimizations.

LO

Preface

62 Synplify User Guide, September 2004

Viewing Critical Paths
The HDL Analyst tool makes it simple to find and examine critical paths and
the relevant source code. The following procedure shows you how to filter and
analyze a critical path.

1. If needed, set the slack time for your design.

– Select HDL Analyst->Set Slack Margin.

– To view only instances with the worst-case slack time, enter a zero.

– To set a slack margin range, type a value for the slack margin, and
click OK. The software gets a range by subtracting this number from
the slack time, and the Technology view displays instances within
this range. For example, if your slack time is -10 ns, and you set a
slack margin of 4 ns, the command displays all instances with slack
times between -6 ns and -10 ns. If your slack margin is 6 ns, you see
all instances with slack times between -4 ns and -10 ns.

2. Display the critical path using one of the following methods. The
Technology view displays a hierarchical view that highlights the
instances and nets in the most critical path of your design.

– To generate a hierarchical view of the critical path, click the Show
Critical Path icon (stopwatch icon), select HDL Analyst-> Technology-
>Hierarchical Critical Path or select the command from the popup menu.
This is a filtered view in the same window, with hierarchical logic
shown in transparent instances. History commands apply, so you
can return to the previous view by clicking Back.

– To flatten the hierarchical critical path described above, right-click
and select Flatten Schematic. The software generates a new view in the
current window, and flattens only the transparent instances needed
to show the critical path; the rest of the design remains hierarchical.
Click Back to go the top-level design.

– To generate a flattened critical path in a new window, select HDL
Analyst->Technology->Flattened Critical Path. This uses more memory
because it flattens the entire design and generates a new view for the
flattened critical path in a new window. Click Back in this window to
go to the flattened top-level design, or return to the previous window.

Preface

Synplify User Guide, September 2004 63

3. Use the timing numbers displayed above each instance to analyze the
path. If no numbers are displayed, enable HDL Analyst->Show Timing
Information. Interpret the numbers as follows:

4. View instances in the critical path that have less than the worst-case
slack time. For additional information on handling slack times, see
Handling Negative Slack, on page 4-65.

If necessary change the slack margin and regenerate the critical path.

5. Crossprobe and check the RTL view and source code. Analyze the code
and the schematic to determine how to address the problem. You can
add more constraints or make code changes.

Flattened Critical Path

Hierarchical Critical Path

8.8, 1.2

Delay
For combinational logic, it is the cumulative delay to
the output of the instance, including the net delay of
the output. For flip-flops, it is the portion of the path
delay attributed to the flip flop. The delay can be
associated with either the input path or output path,
whichever is worse, because the flip flop is the end of
one path and the start of another.

Slack time
Slack of the worst path that
goes through the instance. A
negative value indicates that
timing has failed.

LO

Preface

64 Synplify User Guide, September 2004

6. Click the Back icon to return to the previous view. If you flattened your
design during analysis, select Unflatten Schematic to return to the top-level
design.

There is no need to regenerate the critical path, unless you flattened
your design during analysis or changed the slack margin. When you
flatten your design, the view is regenerated so the history commands do
not apply and you must click the Critical Path icon again to see the critical
path view.

7. Rerun synthesis, and check your results.

If you have fixed the path, the window displays the next most critical
path when you click the icon.

Repeat this procedure and fix the design for the remaining critical paths.
When you are within 5-10 percent of your desired results, place and
route your design to see if you meet your goal. If so, you are done. If your
vendor provides timing-driven place and route, you might improve your
results further by adding timing constraints to place and route.

Preface

Synplify User Guide, September 2004 65

Handling Negative Slack
Positive slack time values (greater than or equal to 0 ns) are good, while
negative slack time values (less than 0 ns) indicate the design has failed
timing requirements. The negative slack value indicates the amount by which
the timing is off because of delays in the critical paths of your design.

LO

Preface

66 Synplify User Guide, September 2004

The following procedure shows you how to add constraints to fix negative
slack. Timing constraints can improve your design by 10% to 20%.

1. Display the critical path in a filtered Technology view.

– For a hierarchical critical path, either click the Critical Path icon, select
HDL Analyst-> Show Critical Path, or select HDL Analyst->Technology->
Hierarchical Critical Path.

– For a flat path, select HDL Analyst->Technology->Flattened Critical Path.

2. Analyze the critical path.

– Check the end points of the path. The start point can be a primary
input or a flip-flop. The end point can be a primary output or a flip-
flop.

– Examine the instances. Use the commands described in Filtering
Schematics, on page 4-48, Expanding Pin and Net Logic, on
page 4-50, and Expanding and Viewing Connections, on page 4-54.
For more information on filtering schematics, see Filtering
Schematics, on page 4-48.

3. Determine whether there is a timing exception, like a false or multicycle
path. If this is the cause of the negative slack, set the appropriate timing
constraint.

If there are fewer start points, pick a start point to add the constraint. If
there are fewer end points, add the constraint to an end point.

4. If your design does not meet timing by 20% or more, you might need to
make structural changes. You could do this by

– Enabling options like resource sharing.

– Modifying the source code.

5. Rerun synthesis and check your results.

Synplify User Guide, September 2004 1

C H A P T E R 5

Design Optimization

This chapter covers techniques for optimizing your design using built-in tools
or attributes. For vendor-specific optimizations, see
Chapter 6, Vendor-Specific Optimizations.

It describes the following:

• Design Guidelines, on page 5-2

• Optimizing Results, on page 5-5

• Defining State Machines for Synthesis, on page 5-13

• Using the Symbolic FSM Compiler, on page 5-17

• Defining Black Boxes for Synthesis, on page 5-22

LO

Preface

2 Synplify User Guide, September 2004

Design Guidelines
The software automatically makes efficient tradeoffs to achieve the best
results. However, you can optimize your results by using the appropriate
control parameters. This section describes general design guidelines for
optimization. The topics have been categorized as follows:

• General Optimization Tips, next

• Area Optimization Tips, on page 5-3

• Timing Optimization Settings, on page 5-4

General Optimization Tips
This section contains general optimization tips that are not directly area or
timing-related. For area optimization tips, see Area Optimization Tips, on
page 5-3. For timing optimization, see Timing Optimization Settings, on
page 5-4.

• In your source code, remove any unnecessary priority structures in
timing-critical designs. For example, use CASE statements instead of
nested IF-THEN-ELSE statements for priority-independent logic.

• If your design includes safe state machines, use the syn_encoding
attribute with a value of safe. This ensures that the synthesized state
machines never lock in an illegal state.

• For FSMs coded in VHDL using enumerated types, use the same
encoding style (syn_enum_encoding attribute value) on both the state
machine enumerated type and the state signal. This ensures that there
are no discrepancies in the type of encoding to negatively affect the final
circuit.

• Make sure that the source code supports inferencing or instantiation by
using architecture-specific resources like memory blocks.

• Some designs benefit from hierarchical optimization techniques. To
enable hierarchical optimization on your design, set the syn_hier
attribute to firm.

Preface

Synplify User Guide, September 2004 3

• For timing-driven synthesis, explicitly define the clock frequency with a
constraint. The software does not use the global clock frequency for
timing-driven synthesis.

Area Optimization Tips
This section contains information on optimizing to reduce area. Optimizing
for area often means larger delays, and you will have to weigh your perfor-
mance needs against your area needs to determine what works best for your
design. For tips on optimizing for performance, see Timing Optimization
Settings, on page 5-4. General optimization tips are in General Optimization
Tips, on page 5-2.

• Increase the fanout limit when you set the implementation options. A
higher limit means less replicated logic and fewer buffers inserted during
synthesis, and a consequently smaller area. In addition, as P&R tools
typically buffer high fanout nets, there is no need for excessive buffering
during synthesis. See Setting Fanout Limits, on page 5-7 for more infor-
mation.

• Check the Resource Sharing option when you set implementation options.
With this option checked, the software shares hardware resources like
adders, multipliers, and counters wherever possible, and minimizes
area.See Sharing Resources, on page 5-5 for details.

• For designs with large FSMs, use the gray or sequential encoding styles,
because they typically use the least area. For details, see Specifying
FSMs with Attributes and Directives, on page 5-15.

• If you are mapping into a CPLD and do not meet area requirements, set
the default encoding style for FSMs to sequential instead of onehot. For
details, see Specifying FSMs with Attributes and Directives, on page 5-15.

• For small CPLD designs (less than 20K gates), you might improve area
by using the syn_hier attribute with a value of flatten. When specified, the
software optimizes across hierarchical boundaries and creates smaller
designs.

LO

Preface

4 Synplify User Guide, September 2004

Timing Optimization Settings
This section contains information on optimizing to meet timing requirements.
Optimizing for timing is often at the expense of area, and you will have to
balance the two to determine what works best for your design. For tips on
optimizing for area, see Area Optimization Tips, on page 5-3. General optimi-
zation tips are in General Optimization Tips, on page 5-2.

• Use realistic design constraints, about 10 - 15% of the real goal.
Overconstraining your design can be counter-productive because you
can get poor implementations. Use clock, false path, and multicycle path
constraints to make the constraints realistic.

• Select a balanced fanout constraint. A large constraint creates nets with
large fanouts, and a low fanout constraint results in replicated logic. See
Setting Fanout Limits, on page 5-7 for information about setting limits.

• If the critical path goes through arithmetic components, try disabling
Resource Sharing. You can get faster times at the expense of increased
area, but use this technique carefully. Adding too many resources can
cause longer delays and defeat your purpose.

• If the P&R and Synplify tools report different critical paths, use a timing
constraint with the -route option. With this option, the software adds
route delay to its calculations when trying to meet the clock frequency
goal. Use realistic values for the constraints.

• For FSMs, use the onehot encoding style, because it is often the fastest
implementation. If a large output decoder follows an FSM, gray or
sequential encoding could be faster.

• For designs with black boxes, characterize the timing models accurately,
using the syn_tpd, syn_tco, and syn_tso directives.

• If you saw warnings about feedback muxes being created for signals
when you compiled your source code, make sure to assign set/resets for
the signals. This improves performance by eliminating the extra mux
delay on the input of the register.

• Make sure that you pass your timing constraints to the place-and-route
tools, so that they can use the constraints to optimize timing.

Preface

Synplify User Guide, September 2004 5

Optimizing Results
You can optimize your results with attributes and directives, some of which
are specific to the technology you are using. Similarly, you can use specify
objects or hierarchy that you want to preserve during synthesis. For a
complete list of all the directives and attributes, see the Reference Manual.
This section describes the following:

• Sharing Resources, next

• Setting Fanout Limits, on page 5-7

• Controlling Buffering and Replication, on page 5-9

• Controlling Hierarchy Flattening, on page 5-10

• Preserving Objects from Optimization, on page 5-10

• Preserving Hierarchy, on page 5-12

Sharing Resources
One of the ways you can optimize area is to use resource sharing. With
resource sharing, the software uses the same arithmetic operators for
mutually exclusive statements; for example, with the branches of a case
statement. Conversely, you can improve timing by disabling resource sharing,
but at the expense of increased area.

1. Specify resource sharing globally for the whole design with one of the methods
below. Enable the option to improve area; disable it to improve timing.

– Select Project->Implementation Options->Options, and enable or disable
Resource Sharing. Alternatively, enable Resource Sharing in the Project
view.

– Apply the syn_sharing directive to the top-level module or architecture
in the source code. See syn_sharing, on page 8-88 of the Synplify
Reference Manual for syntax examples.

Verilog module top(out, in, clk_in) /* synthesis syn_sharing = “on” */;

VHDL architecture rtl of top is
attribute syn_sharing : string;
attribute syn_sharing of rtl : architecture is “off”;

LO

Preface

6 Synplify User Guide, September 2004

You cannot specify syn_sharing from the SCOPE interface, because it is a
compiler directive.

2. To specify resource sharing on an individual basis, or to override the
global setting, specify the syn_sharing attribute for the lower-level
module/architecture, using the syntax described in the previous step.

Multiple adders with syn_sharing off.

Shared adder
resource with
syn_sharing on.

Preface

Synplify User Guide, September 2004 7

Setting Fanout Limits
Optimization affects net fanout. If your design has critical nets with high
fanout, you can set fanout limits. You can only do this in certain technologies.
For details specific to individual technologies, see the Synplify Reference
Manual.

1. To set a global fanout limit for the whole design, do either of the
following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option.

– Apply the syn_maxfan attribute to the top-level view or module.

The value sets the number of fanouts for a given driver, and affects all
the nets in the design. The defaults vary, depending on the technology.
Select a balanced fanout value. A large constraint creates nets with large
fanouts, and a low fanout constraint results in replicated or buffered
logic. Both extremes affect routing and design performance. The right
value depends on your design. The same value of 32 might result in
fanouts of 11 or 12 and large delays on the critical path in one design or
in excessive replication in another design.

The software uses the value as a soft limit, or a guide. It traverses the
inverters and buffers to identify the fanout, and tries to ensure that all
fanouts are under the limit by replicating or buffering where needed (see
Controlling Buffering and Replication, on page 5-9 for details). However,
the synthesis tool does not respect the fanout limit absolutely; it ignores
the limit if the limit imposes constraints that interfere with optimization.

2. For certain Actel technologies, you can set a global hard fanout limit by
doing the following:

– Select Project-> Implementation Options->Device and type a value for the
Fanout Guide option, as described in the previous step.

– On the same tab, check the Hard Fanout Limit option.

This makes the specified value a global hard fanout limit for the design.

3. To override the global fanout guideline and set a soft fanout limit at a
lower level, set the syn_maxfan attribute on modules, views, or
non-primitive instances.

LO

Preface

8 Synplify User Guide, September 2004

These limits override the more global limits for that object (including a
global hard limit in Actel technologies). However, these limits still
function as soft limits, and are replicated or buffered, as described in
Controlling Buffering and Replication, on page 5-9.

4. To set a hard or absolute limit, set the syn_maxfan attribute on a port,
net, register, or primitive instance.

Fanouts that exceed the hard limit are buffered or replicated, as
described in Controlling Buffering and Replication, on page 5-9p.

5. To preserve net drivers from being optimized, attach the syn_keep or
syn_preserve attributes.

For example, the software does not traverse a syn_keep buffer (inserted
as a result of the attribute), and does not optimize it. However, the
software can optimize implicit buffers created as a result of other opera-
tions; for example, it does not respect an implicit buffer created as a
result of syn_direct_enable.

6. Check the results of buffering and replication in

– The log file (click View Log). The log file reports the number of buffered
and replicated objects and the number of segments created for the
net.

– The HDL Analyst views. The software might not follow DRC rules
when buffering or replicating objects, or when obeying hard fanout
limits.

Attribute specified on... Effect

Module or view Soft limit for the module; overrides the global setting.

Non-primitive instance Soft limit; overrides global and module settings

Clock nets or
asynchronous control nets

Soft limit.

Preface

Synplify User Guide, September 2004 9

Controlling Buffering and Replication
To honor fanout limits (see Setting Fanout Limits, on page 5-7) and reduce
fanout, the software either replicates components or adds buffers. The
software reduces fanout on input ports through buffering and reduces fanout
on nets driven by registers or combinatorial logic through replication. The
software first tries replication, replicating the net driver and splitting the net
into segments. This increases the number of register bits in the design. When
replication is not possible, the software buffers the signals. Buffering is more
expnsive in terms of intrinsic delay and resource consumption. The following
table summarizes the behavior.

You can control whether high fanout nets are buffered or replicated, using the
techniques described here:

• To use buffering instead of replication, set syn_replicate with a value of 0
globally, or on modules or registers. The syn_replicate attribute prevents
replication, so that the software uses buffering to satisfy the fanout limit.
For example, you can prevent replication between clock boundaries for a
register that is clocked by clk1 but whose fanin cone is driven by clk2,
even though clk2 is an unrelated clock in another clock group.

• To specify that high-fanout clock ports should not be buffered, set
syn_noclockbuf globally, or on individual input ports. Use this if you want
to save clock buffer resources for nets with lower fanouts but tighter
constraints.

• Turn off buffering and replication entirely, by setting syn_maxfan to a very
high number, like 1000.

Replicates When... Creates Buffers When...

syn_maxfan is set on
a register output

syn_maxfan is set on input ports in Actel 54SX and Actel
42MX

syn_replicate is 1 syn_replicate is 0

syn_maxfan is set on a port/net that is driven by a port or
I/O pad

The net driver has a syn_keep or syn_preserve attribute

The net driver is not a primitive gate or register

LO

Preface

10 Synplify User Guide, September 2004

Controlling Hierarchy Flattening
Optimization flattens hierarchy. To control the flattening, use the syn_hier
attribute as described here. You can also use the attribute to prevent
flattening, as described in Preserving Hierarchy, on page 5-12.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

Preserving Objects from Optimization
Synthesis can collapse or remove nets during optimization. If you want to
retain a net for simulation, probing, or for a different synthesis implementa-
tion, you must specify this with an attribute. Similarly, the software removes
duplicate registers or instances with unused output. If you want to preserve
this logic for simulation or analysis, you must use an attribute. The following
table lists the attributes to use in each situation. For details about the
attributes and their syntax, see the Synplify Reference Manual.

To... Value...

Flatten all levels below, but not the current level flatten

Remove the current level of hierarchy without affecting
the lower levels

remove

Remove the current level of hierarchy and the lower levels flatten, remove

Flatten the current level (if needed for optimization) soft

Preface

Synplify User Guide, September 2004 11

To Preserve... Attach... Result

Nets syn_keep on wire or reg
(Verilog), or signal (VHDL).
For Actel designs (except
500K and PA), use
alspreserve as well as
syn_keep.

Keeps net for simulation, a different
synthesis implementation, or for
passing to the place-and-route tool.

Shared registers syn_keep on input wire or
signal of shared registers

Preserves duplicate driver cells,
prevents sharing

Sequential
components

syn_preserve on reg or
module (Verilog), signal or
architecture (VHDL)

Preserves logic of constant-driven
registers, keeps registers for
simulation, prevents sharing

FSMs syn_preserve on reg or
module (Verilog), signal
(VHDL)

Prevents the output port or internal
signal that holds the value of the
state register from being optimized

Instantiated
components

 syn_noprune on module or
component (Verilog),
architecture or instance
(VHDL)

Keeps instance for analysis,
preserves instances with unused
outputs

LO

Preface

12 Synplify User Guide, September 2004

Preserving Hierarchy
The synthesis process includes cross-boundary optimizations that can flatten
hierarchy. To override these optimizations, use the syn_hier attribute as
described here. You can also use this attribute to direct the flattening process
as described in Controlling Hierarchy Flattening, on page 5-10.

1. Attach the syn_hier attribute to the module or architecture you want to
preserve. You can also add the attribute in SCOPE. If you use SCOPE to
enter the attribute, make sure to use the v: syntax.

2. Set the attribute value:

The software flattens the design as directed. If there is a lower-level
syn_hier attribute, it takes precedence over a higher-level one.

To... Value...

Preserve the interface but allow cell packing across the
boundary

firm

Preserve the interface with no exceptions (Actel (except
ProASIC))

hard

Preserve the interface and contents with no exceptions (Actel
(except PA))

macro

Flatten lower levels but preserve the interface of the specified
design unit

flatten, firm

Preface

Synplify User Guide, September 2004 13

Defining State Machines for Synthesis
A finite state machine (FSM) is a piece of hardware that advances from state
to state at a clock edge. The synthesis software recognizes and extracts the
state machines from the HDL source code. For guidelines on setting up the
source code, see the following:

• Defining State Machines in Verilog, next

• Defining State Machines in VHDL, on page 5-14

• Specifying FSMs with Attributes and Directives, on page 5-15

For information about the attributes used to define state machines, see
Running the FSM Compiler on Individual FSMs, on page 5-19.

Defining State Machines in Verilog
The synthesis software recognizes and automatically extracts state machines
from the Verilog source code if you follow these coding guidelines. The
software attaches the syn_state_machine attribute to each extracted FSM.

For alternative ways to define state machines, see Defining State Machines in
VHDL, on page 5-14 and Specifying FSMs with Attributes and Directives, on
page 5-15.

• In Verilog, model the state machine with case, casex, or casez state-
ments in always blocks. Check the current state to advance to the next
state and then set output values. Do not use if statements.

• Always use a default assignment as the last assignment in the case
statement, and set the state variable to ‘bx. This is a “don’t care” state-
ment and ensures that the software can remove unnecessary decoding
and gates.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

LO

Preface

14 Synplify User Guide, September 2004

• Use explicit state values for states using parameter or ‘define state-
ments. This is an example of a parameter statement that sets the
current state to 2’h2:

parameter state1 = 2’h1, state2 = 2’h2;
...
current_state = state2;

This example shows how to set the current state value with ‘define
statements:

‘define state1 2’h1
‘define state2 2’h2
...
current_state = ‘state2;

Defining State Machines in VHDL
The synthesis software recognizes and automatically extracts state machines
from the VHDL source code if you follow coding guidelines. For alternative
ways to define state machines, see Defining State Machines in Verilog, on
page 5-13 and Specifying FSMs with Attributes and Directives, on page 5-15.

The following are VHDL guidelines for coding. The software attaches the
syn_state_machine attribute to each extracted FSM.

• Use CASE statements to check the current state at the clock edge,
advance to the next state, and set output values. You can also use
IF-THEN-ELSE statements, but CASE statements are preferable.

• If you do not cover all possible cases explicitly, include a WHEN OTHERS
assignment as the last assignment of the CASE statement, and set the
state vector to some valid state.

• If you create implicit state machines with multiple WAIT statements, the
software does not recognize them as state machines.

• Make sure the state machines have a synchronous or asynchronous
reset to set the hardware to a valid state after power-up, or to reset the
hardware when you are operating.

• To choose an encoding style, attach the syn_encoding attribute to the
enumerated type. The software automatically encodes your state
machine with the style you specified.

Preface

Synplify User Guide, September 2004 15

Specifying FSMs with Attributes and Directives
If your design has state machines, the software can extract them automati-
cally with the FSM Compiler (see Using the Symbolic FSM Compiler, on
page 5-17), or you can manually specify attributes to define the state
machines. You attach the attributes to the state registers. For detailed infor-
mation about the attributes and their syntax, see the Synplify Reference
Manual.

The following steps show you how to use attributes to define FSMs for extrac-
tion. For alternative ways to define state machines, see Defining State
Machines in Verilog, on page 5-13 and Defining State Machines in VHDL, on
page 5-14.

1. To determine how state machines are extracted, set attributes in the
source code as shown in the following table:

For information about how to add attributes, see Adding Attributes and
Directives, on page 3-36.

2. To determine the encoding style used for the state machine, set the
syn_encoding attribute in the source code or in the SCOPE window. For
VHDL users there are alternative methods, described in the next step.

The FSM Compiler honors this setting. The different values for this
attribute are briefly described here:

To... Attribute

Specify a state machine for extraction and
optimization

syn_state_machine=1

Prevent state machines from being extracted
and optimized

syn_state_machine=0

Prevent the state machine from being
optimized away

syn_preserve=1

LO

Preface

16 Synplify User Guide, September 2004

3. If you are using VHDL, you have two choices for defining encoding:

– Use syn_encoding as described above, and enable the FSM compiler.

– Use syn_enum_encoding to define the states (sequential, onehot, gray, and
safe) and disable the FSM compiler. If you do not disable the FSM
compiler, the syn_enum_encoding values are not implemented. This is
because the FSM compiler, a mapper operation, overrides
syn_enum_encoding, which is a compiler directive.

Use this method for user-defined FSM encoding. For example:

attribute syn_enum_encoding of state_type : type is "001 010 101";

Situation: If... syn_encoding Value Explanation

Area is important sequential One of the smallest encoding
styles.

Speed is
important

onehot Usually the fastest style and
suited to most FPGA styles.

Recovery from an
invalid state is
important

safe, with another
style. For example:
/* synthesis
syn_encoding =
“safe, onehot” */

Forces the state machine to
reset. For example, where an
alpha particle hit in a hostile
operating environment causes a
spontaneous register change,
you can use safe to reset the
state machine.

There are
<5 states

sequential Default encoding.

Large output
decoder follows
the FSM

sequential or
gray

Could be faster than onehot,
even though the value must be
decoded to determine the state.
For sequential, more than one bit
can change at a time; for gray,
only one bit changes at a time,
but more than one bit can be
hot.

There are a large
number of
flip-flops

onehot Fastest style, because each state
variable has one bit set, and
only one bit of the state register
changes at a time.

Preface

Synplify User Guide, September 2004 17

Using the Symbolic FSM Compiler
The Symbolic FSM Compiler is an advanced state machine optimizer, which
automatically recognizes state machines in your design and optimizes them.
Unlike other synthesis tools that treat state machines as regular logic, the
FSM Compiler extracts the state machines as symbolic graphs, and then
optimizes them by re-encoding the state representations and generating a
better logic optimization starting point for the state machines.

For more information, see the following:

• Choosing When to Use the FSM Compiler, on page 5-17, next

• Running the FSM Compiler on the Whole Design, on page 5-18

• Running the FSM Compiler on Individual FSMs, on page 5-19

• Specifying FSMs with Attributes and Directives, on page 5-15

Choosing When to Use the FSM Compiler
The FSM Compiler is an automatic tool for state machines, but you can also
specify FSMs manually with attributes. For more information about FSM
attributes, see Adding Attributes and Directives, on page 3-36 and Specifying
FSMs with Attributes and Directives, on page 5-15.

Here are the main reasons to use the FSM Compiler:

• To generate better results for your state machines

The software uses optimization techniques that are specifically tuned for
FSMs, like reachability analysis for example. The FSM Compiler also lets
you convert an encoded state machine to another encoding style (to
improve speed and area utilization) without changing the source. For
example, you can use a onehot style to improve results.

• To debug the state machines

State machine description errors result in unreachable states, so if you
have errors, you will have fewer states. You can check whether your
source code describes your state machines correctly.

LO

Preface

18 Synplify User Guide, September 2004

Running the FSM Compiler on the Whole Design
1. Enable the compiler by checking the Symbolic FSM Compiler box in one of

these places:

– The main panel on the left side of the project window

– The Options/Constraints tab of the dialog box that comes up when you
click the New Impl or Impl Options buttons

2. To set a specific encoding style for a state machine, define the style with
the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 5-15.

If you do not specify a style, the FSM Compiler picks an encoding style
based on the number of states.

3. Click Run to run synthesis.

The software automatically recognizes and extracts the state machines
in your design, and instantiates a state machine primitive in the netlist
for each FSM it extracts. It then optimizes all the state machines in the
design, using techniques like reachability analysis, next state logic
optimization, state machine re-encoding and proprietary optimization
algorithms. Unless you have specified encoding styles, it automatically
selects the encoding style based on the number of states.

In the log file, the FSM Compiler writes a report that includes a descrip-
tion of each state machine extracted and the set of reachable states for
each state machine.

4. Select View->View Log File and check the log file for descriptions of the
state machines and the set of reachable states for each one. You see text
like the following:

Number of States Encoding Style

Up to 4 sequential

5-24 onehot

> 24 gray

Preface

Synplify User Guide, September 2004 19

Extracted state machine for register cur_state
State machine has 7 reachable states with original encodings of:

0000001
0000010
0000100
0001000
0010000
0100000
1000000

....
original code -> new code

0000001 -> 0000001
0000010 -> 0000010
0000100 -> 0000100
0001000 -> 0001000
0010000 -> 0010000
0100000 -> 0100000
1000000 -> 1000000

5. Check the state machine implementation in the RTL and Technology
views.

– In the RTL view you see the FSM primitive with one output for each
state.

– In the Technology view, you see a level of hierarchy that contains the
FSM, with the registers and logic that implement the final encoding.

– In the fsm.info text file, you see the state transition information.

Running the FSM Compiler on Individual FSMs
If you have state machines that you do not want automatically optimized by
the FSM Compiler, you can use one of these techniques, depending on the
number of FSMs to be optimized. You might want to exclude state machines
from automatic optimization because you want them implemented with a
specific encoding or because you do not want them extracted as state
machines. The following procedure shows you how to work with both cases.

1. If you have just a few state machines you do not want to optimize, do the
following:

– Enable the FSM Compiler by checking the box in the button panel of
the Project window.

LO

Preface

20 Synplify User Guide, September 2004

– If you do not want to optimize the state machine, add the
syn_state_machine directive to the registers in the Verilog or VHDL
code. Set the value to 0. When synthesized, these registers are not
extracted as state machines.

– If you want to specify a particular encoding style for a state machine,
use the syn_encoding attribute, as described in Specifying FSMs with
Attributes and Directives, on page 5-15. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts all the state
machines, except the ones you marked. It optimizes the FSMs it
extracted from the design, honoring the syn_encoding attribute. It writes
out a log file that contains a description of each state machine extracted,
and the set of reachable states for each FSM.

2. If you have many state machines you do not want optimized, do this:

– Disable the compiler by disabling the Symbolic FSM Compiler box in one
of these places: the main panel on the left side of the project window
or the Options/Constraints tab of the dialog box that comes up when you
click the New Impl or Impl Options buttons. This disables the compiler
from optimizing any state machine in the design. You can now
selectively turn on the FSM compiler for individual FSMs.

– For state machines you want the FSM Compiler to optimize
automatically, add the syn_state_machine directive to the individual
state registers in the VHDL or Verilog code. Set the value to 1. When
synthesized, the FSM Compiler extracts these registers with the
default encoding styles according to the number of states.

Verilog reg [3:0] curstate /* synthesis syn_state_machine=0 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is
false;v

Verilog reg [3:0] curstate /* synthesis syn_state_machine=1 */ ;

VHDL signal curstate : state_type;
attribute syn_state_machine : boolean;
attribute syn_state_machine of curstate : signal is true;

Preface

Synplify User Guide, September 2004 21

– For state machines with specific encoding styles, set the encoding
style with the syn_encoding attribute, as described in Specifying FSMs
with Attributes and Directives, on page 5-15. When synthesized, these
registers have the specified encoding style.

– Run synthesis.

The software automatically recognizes and extracts only the state
machines you marked. It automatically assigns encoding styles to the
state machines with the syn_state_machine attribute, and honors the
encoding styles set with the syn_encoding attribute. It writes out a log file
that contains a description of each state machine extracted, and the set
of reachable states for each state machine.

3. Check the state machine in the log file, the RTL and technology views.

LO

Preface

22 Synplify User Guide, September 2004

Defining Black Boxes for Synthesis
Black boxes are predefined components for which the interface is specified,
but whose internal architectural statements are ignored. They are used as
place holders for IP blocks, legacy designs, or a design under development.

This section discusses the following topics:

• Instantiating Black Boxes and I/Os in Verilog, next

• Instantiating Black Boxes and I/Os in VHDL, on page 5-24

• Adding Black Box Timing Constraints, on page 5-26

• Adding Other Black Box Attributes, on page 5-30

Instantiating Black Boxes and I/Os in Verilog
 Verilog black boxes for macros and I/Os come from two sources:
commonly-used or vendor-specific components that are predefined in Verilog
macro libraries, or black boxes that are defined in another input source like a
schematic. For information abut instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in VHDL, on page 5-24.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined Verilog module as a black box:

– Select the library file with the macro you need from the
Synplify_install_dir/lib/<technology> directory. Files are named
<technology>.v. Most vendor architectures provide macro libraries
that predefine the black boxes for primitives and macros.

– Make sure the library macro file is the first file in the source file list
for your project.

2. To instantiate a module that has been defined in another input source
as a black box:

– Create an empty macro that only contains ports and port directions.

Preface

Synplify User Guide, September 2004 23

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

module myram (out, in, addr, we) /* synthesis syn_black_box */;
output [15:0] out;
input [15:0] in;
input [4:0] addr;
input we;

endmodule

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

– To simulate with a Verilog simulator, you must have a functional
description of the black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use the
translate_off and translate_on constructs. For example:

module adder8(cout, sum, a, b, cin);
// Code that you want to synthesize
/* synthesis translate_off */
// Functional description.
/* synthesis translate_on */
// Other code that you want to synthesize.
endmodule

3. To instantiate a vendor-specific (black box) I/O that has been defined in
another input source:

– Create an empty macro that only contains ports and port directions.

– Put the syn_black_box synthesis directive just before the semicolon in
the module declaration.

– Specify the external pad pin with the black_box_pad_pin directive, as
in this example:

module BBDLHS(D,E,GIN,GOUT,PAD,Q)
/* synthesis syn_black_box black_box_pad_pin="PAD"

– Make an instance of the stub in your design.

– Compile the stub along with the module containing the instantiation
of the stub.

LO

Preface

24 Synplify User Guide, September 2004

4. Add timing constraints and attributes as needed. See Adding Black Box
Timing Constraints, on page 5-26 and Adding Other Black Box Attributes,
on page 5-30.

5. After synthesis, merge the black box netlist and the synthesis results file
using the method specified by your vendor.

Instantiating Black Boxes and I/Os in VHDL
VHDL black boxes for macros and I/Os come from two sources:
commonly-used or vendor-specific components that are predefined in VHDL
macro libraries, or black boxes that are defined in another input source like a
schematic. For information abut instantiating black boxes in VHDL, see
Instantiating Black Boxes and I/Os in Verilog, on page 5-22.

The following process shows you how to instantiate both types as black
boxes. Refer to the Synplify_install_dir/examples directory for examples of
instantiations of low-level resources.

1. To instantiate a predefined VHDL macro (for a component or an I/O),

– Select the library file with the macro you need from the
Synplify_install_dir/lib/vendor directory. Files are named
family.vhd. Most vendor architectures provide macro libraries that
predefine the black boxes for primitives and macros.

– Add the appropriate library and use clauses to the beginning of your
design units that instantiate the macros.

library family ;
use family.components.all;

2. To create a black box for a component from another input source:

– Create a component declaration for the black box.

– Declare the syn_black_box attribute as a boolean attribute.

– Set the attribute to be true.

library synplify;
use synplify.attributes.all;
entity top is

port (clk, rst, en, data: in bit; q; out bit);
end top;

Preface

Synplify User Guide, September 2004 25

architecture structural of top is
component bbox

port(Q: out bit; D, C, CLR: in bit);
end component;

attribute syn_black_box of bbox: component is true;
...

– Instantiate the black box and connect the ports.

begin
my_bbox: my_bbox port map (

Q => q,
D => data_core,
C => clk,
CLR => rst);

– To simulate with a VHDL simulator, you must have the functional
description of a black box. To make sure the synthesis software
ignores the functional description and treats it as a black box, use the
translate_off and translate_on constructs. For example:

architecture behave of ram4 is
begin

synthesis translate_off
stimulus: process (clk, a, b)
-- Functional description

end process;
synthesis translate_on

-- Other source code you WANT synthesized

3. To create a vendor-specific (black box) I/O for an I/O defined in another
input source:

– Create a component declaration for the I/O.

– Declare the black_box_pad_pin attribute as a string attribute.

– Set the attribute value on the component to be the external pin name
for the pad.

library synplify;
use synplify.attributes.all;
...

component mybuf
port(O: out bit; I: in bit);

end component;
attribute black_box_pad_pin of mybuf: component is “I”;

LO

Preface

26 Synplify User Guide, September 2004

– Instantiate the pad and connect the signals.

begin
data_pad: mybuf port map (

O => data_core,
I => data);

4. Add timing constraints and attributes. See Adding Black Box Timing
Constraints, on page 5-26 and Adding Other Black Box Attributes, on
page 5-30.

Adding Black Box Timing Constraints
A black box does not provide the software with any information about
internal timing characteristics. You must characterize black box timing
accurately, because it can critically affect the overall timing of the design. To
do this, you add constraints in the source code or in the SCOPE interface.

You attach black box timing constraints to instances that have been defined
as black boxes. There are three black box timing constraints, syn_tpd,
syn_tsu, and syn_tco. There are additional attributes for black box pins; see
Adding Other Black Box Attributes, on page 5-30.

1. Define the instance as a black box, as described in Instantiating Black
Boxes and I/Os in Verilog, on page 5-22 or Instantiating Black Boxes and
I/Os in VHDL, on page 5-24.

Black Box

D

syn_tpd

syn_tsu

syn_tco

Q

clk

Preface

Synplify User Guide, September 2004 27

2. Determine the kind of constraint for the information you want to specify:

3. In VHDL, use the following syntax for the constraints.

– Use the predefined attributes package by adding this syntax

library synplify;
use synplify.attributes.all;

In VHDL, you must use the predefined attributes package. For each
directive, there are ten predeclared constraints in the attributes
package, from directive_name1 to directive_name10. If you need more
constraints, declare the additional constraints using integers greater
than 10. For example:

attribute syn_tco11 : string;
attribute syn_tco12 : string;

– Define the constraints in either of these ways:

The following table shows the appropriate syntax for att_value. See the
Synplify Reference Manual for complete syntax information.

To define... Use...

Propagation delay through the black box syn_tpd

Setup delay (relative to the clock) for input pins syn_tsu

Clock-to-output delay through the black box syn_tco

VHDL
syntax

attribute attribute_name<n> : “att_value”

Verilog-style
notation

attribute attribute_name<n> of bbox_name :
component is "att_value"

LO

Preface

28 Synplify User Guide, September 2004

The following is an example of black box attributes, using VHDL
signal notation:

architecture top of top is
component rcf16x4z port(

ad0, ad1, ad2, ad3 : in std_logic;
di0, di1, di2, di3 : in std_logic;
wren, wpe : in std_logic;
tri : in std_logic;
do0, do1, do2 do3 : out std_logic;

end component

attribute syn_tpd1 of rcf16x4z : component is
“ad0,ad1,ad2,ad3 -> do0,do1,do2,do3 = 2.1”;

attribute syn_tpd2 of rcf16x4z : component is
“tri -> do0,do1,do2,do3 = 2.0”;

attribute syn_tsu1 of rcf16x4z : component is
“ad0,ad1,ad2,ad3 -> ck = 1.2”;

attribute syn_tsu2 of rcf16x4z : component is
“wren,wpe,do0,do1,do2,do3 -> ck = 0.0”;

4. In Verilog, add the directives as comments, as shown in the following
example. For explanations about the syntax, see the table in the
previous step or the Synplify Reference Manual.

module ram32x4 (z, d, addr, we, clk)
/* synthesis syn_black_box
syn_tpd1=”addr[3:0]->z[3:0]=8.0”
syn_tsu1=”addr[3:0]->clk=2.0”
syn_tsu2=”we->clk=3.0” */;

output [3:0[z;

Attribute Value Syntax

syn_tsu<n> bundle -> [!]clock = value

syn_tco<n> [!]clock -> bundle = value

syn_tpd<n> bundle -> bundle = value

• <n> is a numerical suffix.
• bundle is a comma-separated list of buses and scalar signals, with no

intervening spaces. For example, A,B,C.
• ! indicates (optionally) a negative edge for a clock.
• value is in ns.

Preface

Synplify User Guide, September 2004 29

input [3:0] d;
input [3:0] addr;
input we;
input clk;
endmodule

5. To add black box attributes through the SCOPE interface, do the
following:

– Open the SCOPE spreadsheet and select the Attributes panel.

– In th Object column, select the name of the black-box module or
component declaration from the pull-down list. Manually prefix the
black box name with v: to apply the constraint to the view.

– In the Attribute column, type the name of the timing attribute, followed
by the numerical suffix, as shown in the following table. You cannot
select timing attributes from the pull-down list.

– In the Value column, type the appropriate value syntax, as shown in
the table in step 3.

– Save the constraint file, and add it to the project.

The resulting constraint file contains syntax like this:

define_attribute v:{blackbox_module} attribute<n> {att_value}

6. Synthesize the design, and check black box timing.

LO

Preface

30 Synplify User Guide, September 2004

Adding Other Black Box Attributes
Besides black box timing constraints, you can also add other attributes to
define pin types on the black box. You cannot use the attributes for all
technologies. Check the Synplify Reference Manual for details about which
technologies are supported.

1. To specify that a clock pin on the black box has access to global clock
routing resources, use syn_isclock.

Depending on the technology, different clock resources are inserted. In
Actel, it inserts CLKBUF.

2. To specify that the software need not insert a pad for a black box pin,
use black_box_pad_pin.

Use this for technologies that automatically insert pad buffers for the
I/Os .

3. To define a tristate pin so that you do not get a mixed driver error when
there is another tristate buffer driving the same net, use
black_box_tri_pins.

Pad

Clk

Clk buffer

syn_isclock

black_box_tri_pins

Black Box

black_box_pad_pin

Synplify User Guide, September 2004 1

C H A P T E R 6

Vendor-Specific Optimizations

This chapter covers techniques for optimizing your design for various
vendors. The information in this chapter is intended to be used together with
the information in Chapter 5, Design Optimization.

This chapter describes the following:

• Passing Information to the P&R Tools, on page 6-2

• Generating Vendor-Specific Output, on page 6-4

• Working with Actel Designs, on page 6-4

LO

Preface

2 Synplify User Guide, September 2004

Passing Information to the P&R Tools
The following procedures show you how to pass information to the
place-and-route tool; this information generally has no impact on synthesis.
Typically, you use attributes to pass this information to the place-and-route
tools. This section describes the following:

• Specifying Pin Locations, on page 6-2

• Specifying Locations for Actel Bus Ports, on page 6-3

• Specifying Macro and Register Placement, on page 6-3

Specifying Pin Locations
You can specify pin locations that are forward-annotated to the corre-
sponding place-and-route tool. The following procedure shows you how to
specify the appropriate attributes. For information about other placement
properties, see Specifying Macro and Register Placement, on page 6-3.

1. Start with a design using one of the following technologies: 3200DX,
40MX, 42MX, 54SX/SXA, ACT1, ACT2, ACT3, Axcelerator, and EX.

2. Add the appropriate attribute to the port. For a bus, list all the bus pins,
separated by commas. To specify Actel bus port locations, see Specifying
Locations for Actel Bus Ports, on page 6-3.

– To add the attribute from the SCOPE interface, click the Attributes tab
and specify the appropriate attribute and value.

– To add the attribute in the source files, use the appropriate attribute
and syntax. See the Synplify Reference Manual for syntax details.

Family Attribute and Value

Actel (except 500K, PA,
ProASIC3/3E))

alspin {pin_number}

Preface

Synplify User Guide, September 2004 3

Specifying Locations for Actel Bus Ports
You can specify pin locations for Actel bus ports, except the 500K and PA
technologies. To assign pin numbers to a bus port, or to a single- or
multiple-bit slice of a bus port, do the following:

1. Open the constraint file an add these attributes to the design.

2. Specify the syn_noarrayports attribute globally to bit blast all bus ports in
the design.

define_global_attribute syn_noarrayports {1};

3. Use the alspin attribute to specify pin locations for individual bus bits.
This example shows locations specified for individual bits of bus
ADDRESS0.

define_attribute {ADDRESS0[4]} alspin {26}
define_attribute {ADDRESS0[3]} alspin {30}
define_attribute {ADDRESS0[2]} alspin {33}
define_attribute {ADDRESS0[1]} alspin {38}
define_attribute {ADDRESS0[0]} alspin {40}

The software forward-annotates these pin locations to the
place-and-route software.

Specifying Macro and Register Placement
You can use attributes to specify macro and register placement in Actel and
QuickLogic designs. The information here supplements the pin placement
information described in Specifying Pin Locations, on page 6-2 and bus pin
placement information described in Specifying Locations for Actel Bus Ports,
on page 6-3.

For... Use...

Relative placement of Actel macros
and IP blocks

alsloc
define_attribute {u1} alsloc {R15C6}

LO

Preface

4 Synplify User Guide, September 2004

Generating Vendor-Specific Output

Targeting Output to Your Vendor
You can generate output targeted to your vendor.

1. To specify the output, click the Impl Options button.

2. Click the Implementation Results tab, and check the output files you need.

The following table summarizes the outputs to set for the different
vendors, and shows the P&R tools for which the output is intended.

3. To generate mapped Verilog/VHDL netlists and constraint files, check
the appropriate boxes and click OK.

See Specifying Result Options, on page 3-6 for details about setting the
option. For more information about constraint file output formats and
how constraints get forward-annotated, see Adding Attributes and Direc-
tives, on page 3-36.

Working with Actel Designs
The following procedures describe procedures or tips that are specific to Actel
designs.

• Using Predefined Actel Black Boxes, on page 6-5

• Using ACTGen Macros, on page 6-5

• Working with Radhard Designs, on page 6-6

Vendor Output Netlist P&R Tool

Actel EDIF (.edn) Designer Series

Preface

Synplify User Guide, September 2004 5

Using Predefined Actel Black Boxes
The Actel macro libraries contain predefined black boxes for Actel macros so
that you can manually instantiate them in your design. For information about
using ACTGen macros, see Using ACTGen Macros, on page 6-5.

To instantiate an Actel macro, use the following procedure.

1. Locate the Actel macro library file appropriate to your technology in one
of these subdirectories under synplify_install_dir/lib.

Use the macro file that corresponds to your target architecture. If you
are targeting the 1200XL architecture, use the act2.v or act2.vhd
macro library.

2. Add the Actel macro library at the top of the source file list for your
synthesis project. Make sure that the library file is first in the list.

3. For VHDL, also add the appropriate library and use clauses to the top of
the files that instantiate the macros:

library family ;
use family.components.all ;

Specify the appropriate technology in family; for example, act3.

Using ACTGen Macros
The following procedure shows you how to include ACTgen macros in your
design. For information about using Actel macro libraries, see Using
Predefined Actel Black Boxes, on page 6-5.

1. In ACTgen, generate the function you want to include.

2. Use the Actel netlist translation utility to convert the resulting EDIF
netlist to VHDL or Verilog.

3. For VHDL macros, do the following:

proasic ProASIC (500K) and ProASIC PLUS (PA and ProAsic3E) macros

actel Macros for all other Actel technologies.

LO

Preface

6 Synplify User Guide, September 2004

– Edit the ACTgen VHDL file, and add the appropriate library clause at
the top of the file:

library family ;
use family.components.all

– Include the VHDL version of the ACTgen result in your synthesis
source file list.

4. For Verilog macros, do the following:

– Include the appropriate Actel macro library file for your target
architecture in your the source files list for your project.

– Include the Verilog version of the ACTgen result in your source file
list. Make sure that the Actel macro library is first in the source files
list, followed by the ACTgen Verilog files, followed by the other source
files.

5. Synthesize your design as usual.

Working with Radhard Designs
The following procedure outlines how to specify radhard values for a design
with the syn_radhardlevel attribute. Remember that the attribute is not recur-
sive. It only applies to all registers at the level where it is set and does not
affect lower-level registers.

1. Add to your project the Actel macro files appropriate to the radhard
values you plan to set in the design. The macro files are in
<install_dir>/lib/actel:

2. To set a global or default syn_radhardlevel attribute in the source files, do
the following:

– Set the value in the source file for the module. The following sets all
registers of module_b to cc:

Radhard Value Verilog Macro File VHDL Macro File

cc cc.v cc.vhd

tmr tmr.v tmr.vhd

tmr_cc tmr_cc.v tmr_cc.vhd

Preface

Synplify User Guide, September 2004 7

– Make sure that the corresponding Actel macro file (see step 1) is the
first file listed in the project.

3. To set a global or default syn_radhardlevel attribute with the SCOPE editor,
do the following:

– Compile the design.

– Open the SCOPE window and click the Attributes tab.

– Set Object to a view (v: prefix) to set a global attribute. You can
override the global default as necessary for individual registers. For
details about the syn_radhardlevel values, see syn_radhardlevel, on
page 8-46 in the Reference Manual.

– Save the constraint file and add it to the project.

– Make sure that the corresponding Actel macro file (see step 1) is the
first file listed in the project.

4. To set a syn_radhardlevel value on a per register basis, either use the
SCOPE window or set it in the source file. You can use a register-level
attribute to override a default value with another value, or set it to a
value of none, so that the global default value is not applied to the
register.

– To set the value in the SCOPE window, open the SCOPE Attributes
tab as described in step 2, and add the syn_radhardlevel attribute to a
register.

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
behav: architecture is “cc”;

module module_b (a, b, sub,
clk, rst) /*synthesis
syn_radhardlevel=”cc”*/;

LO

Preface

8 Synplify User Guide, September 2004

– To set the value in the source file, add the attribute to the register.
For example, to set the value of register bl_int to tmr_cc, enter the
following in the module source file:

VHDL Verilog

library synplify;
use synplify.attributes.all;
attribute syn_radhardlevel of
bl_int: signal is “tmr_cc”

reg [15:0] a1_int, b1_int
/*synthesis syn_radhardlevel
= ”tmr_cc”*/;

Synplify User Guide, September 2004 1

C H A P T E R 7

Design Flows and Process
Optimization

This chapter covers topics that can help the advanced user improve produc-
tivity and interoperability with other tools. It includes the following:

• Using Batch Mode, on page 7-2

• Working with Tcl Scripts and Commands, on page 7-4

• Integrating with Third-Party Software, on page 7-10

• Working with the Identify RTL Debugger, on page 7-16

LO

Preface

2 Synplify User Guide, September 2004

Using Batch Mode
Batch mode is a command-line mode where you run scripts from the
command line. You might want to set up multiple synthesis runs with a
batch script. You can run in batch mode if you have a floating license, but
not with a node-locked license.

Batch scripts are in Tcl format. For more information about Tcl syntax and
commands, see Working with Tcl Scripts and Commands, on page 7-4 and the
Synplify Reference Manual.

This section describes the following operations:

• Running Batch Mode on a Project File, next

• Running Batch Mode with a Tcl Script, on page 7-3

Running Batch Mode on a Project File
Use this procedure to run batch mode if you already have a project file set up.

1. Make sure you have a project file (.prj) set up with the implementation
options. For more information about creating this Tcl file, see Creating a
Tcl Synthesis Script, on page 7-5.

2. From a command prompt, go to the directory where the project files are
located, and type the following:

synplify -batch project_file_name.prj

The software runs synthesis in batch mode. Use absolute path names or
a variable instead of a relative path name.

3. If there are errors in the source files, check the standard output for
messages. On UNIX systems, this is generally the monitor; on Windows
systems, it is the sdout.log file.

4. After synthesis, check the result_file.srr log file for error messages
about the run.

Preface

Synplify User Guide, September 2004 3

Running Batch Mode with a Tcl Script
The following procedure shows you how to create a Tcl batch script for
running synthesis.

1. Create a Tcl batch script. See Creating a Tcl Synthesis Script, on page 7-5
for details.

2. Save the file with a *.tcl extension to the directory that contains your
source files and other project files.

3. From a command prompt, go to the directory with the files and type the
following:

synplify -batch Tcl_script.tcl

The software runs synthesis in batch mode. The synthesis (compilation
and mapping) status results and errors are written to the log file
result_file.srr for each implementation. The synthesis tool also
reports success and failure return codes.

4. Check for errors.

– For source file or Tcl script errors, check the standard output for
messages. On UNIX systems, this is generally the monitor in addition
to the stdout.log file; on Windows systems, it is the stdout.log file.

– For synthesis run errors, check the result_file_name.srr log file.
The software uses the following error codes:

:

0 Successful process completion

1 Warnings

2 or any other code Failure

LO

Preface

4 Synplify User Guide, September 2004

Working with Tcl Scripts and Commands
The software uses extensions to the popular Tcl (Tool Command Language)
scripting language to control synthesis and for constraint files. See the
following for more information:

• Using Tcl Scripts, on page 7-4, next

• Generating a Job Script, on page 7-5

• Creating a Tcl Synthesis Script, on page 7-5

• Using Tcl Variables to Try Different Clock Frequencies, on page 7-7

• Using Tcl Variables to Try Several Target Technologies

• Running Bottom-up Synthesis with a Script, on page 7-9

Using Tcl Scripts
1. To get help on Tcl syntax, do any of the following:

– Refer to the online help (Help -> Tcl Help) for general information about
Tcl syntax.

– Refer to the Synplify Reference Manual for information about the
synthesis commands.

2. To run a Tcl script, do the following:

– Create a Tcl script. Refer to Generating a Job Script, on page 7-5 and
Creating a Tcl Synthesis Script, on page 7-5.

– Run the Tcl script by selecting File -> Run Tcl Script, selecting the Tcl file
and clicking Open.

The software runs the selected script and executes the commands in it.
For more information about Tcl scripts, refer to the following sections.

Preface

Synplify User Guide, September 2004 5

Generating a Job Script
You can record Tcl commands from the interface and use it to generate job
scripts.

1. In the Tcl script window, type recording -file logfile to write out a Tcl
log file.

2. Work through a synthesis session.

The software saves the commands from this session into a Tcl file that
you can use as a job script, or as a starting point for creating other
Tcl files.

Creating a Tcl Synthesis Script
Tcl scripts are text files with a *.tcl extension. You can use the graphic user
interface to help you create a Tcl script. Interactive commands that you use
actually execute Tcl commands, which are displayed in the Tcl window as
they are run. You can copy this text in the Tcl window and paste it into a text
file that you build to run as a Tcl script. For example:

add_file -verilog "prep2.v"
set_option -technology PROASIC3
set_option -part EP1SGX40D
set_option -package FC1020

project -run

The following procedure covers general guidelines for creating a synthesis
script from scratch.

1. Use a text file editor or select File->New, click the Tcl Script option and type
a name for your Tcl script.

2. Start the script by specifying the project with the project -new
command. For an existing project, use load project.prj.

3. Add files. This may not be needed for an existing project.

– Add source files with add_file -vhdl or add_file -verilog. Make
sure the top-level file is last:

LO

Preface

6 Synplify User Guide, September 2004

add_file -vhdl "statemach.vhd"
add_file -vhdl "rotate.vhd"
add_file -vhdl "memory.vhd"
add_file -vhdl "top_level.vhd"

– Add constraint files with constraints and vendor-specific attributes.
See Using a Text Editor for Constraint Files, on page 3-33 for details
about this file.

add_file -constraint "design.sdc"

4. Set the design synthesis controls and the output:

– Set vendor-specific set_option controls as needed. See the
appropriate vendor chapter in the Synplify Reference Manual for
details.

set_option -technology VIRTEX2
set_option -part XC2V40
set_option -package CS144
set_option -speed_grade -6

– Use the set_option command for implementation options.

set_option -symbolic_fsm_compiler true
set_option -frequency 30.0

– Set the output file information with project -result_file and
project -log_file.

5. Set the file and run options:

– Save the project with project -save.

– Run the project with project -run.

– Open the RTL and Technology views:

open_file -rtl_view
open_file -technology_view

6. Check the syntax.

– Check case, because Tcl is case-sensitive.

– Start all comments with a hash mark (#).

– Enclose all pathnames and filenames in double quotes.

– Always use a forward slash (/) in directory and pathnames, even on
the PC.

Preface

Synplify User Guide, September 2004 7

Using Tcl Variables to Try Different Clock Frequencies
To create a single script for multiple synthesis runs with different clock
frequencies, you need to create a Tcl variable for the different settings you
want to try. For example, you might want to try different target technologies.

1. To create a variable, use this syntax:

set variable_name {
first_option_to_try
second_option_to_try
...}

2. Create a foreach loop that runs through each option in the list, using
the appropriate Tcl commands. The following example shows a variable
set up to synthesize a design with different frequencies. It also creates a
separate log file for each run.

The following code shows the complete script:

project -load "design.prj"
set try_these {

20.0
24.0
28.0
32.0
36.0
40.0

}

set try_freq {
85.0
90.0
92.0
95.0
97.0
100.0

)
foreach frequency $try_freq {

set_option -frequency $frequency
project -log_file $frequency.srr
project -run}

Tcl commands that set the
frequency, create separate log files
for each run, and run synthesis

Foreach loop

Set of frequencies
to try

LO

Preface

8 Synplify User Guide, September 2004

foreach frequency $try_these {
set_option -frequency $frequency
project -log_file $frequency.srr
project -run
open_file -edit_file $frequency.srr

}

Using Tcl Variables to Try Several Target Technologies
This technique used here to run multiple synthesis implementations with
different target technologies is similar to the one described in Using Tcl
Variables to Try Different Clock Frequencies, on page 7-7. As in that section,
you use a variable to define the target technologies you want to try.

1. Create a variable called try_these with a list of the technologies.

set try_these {

ISPGDX APEX20K Virtex2 # list of technologies
}

2. Add a foreach loop that creates a new implementation for each
technology and opens the RTL view for each implementation.

foreach technology $try_these {
impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

The following code example shows the script:

Open a new project, set frequency, and add files.
project -new
set_option -frequency 33.3
add_file -verilog "D:/test/simpletest/prep2_2.v"

Create the Tcl variable to try different target technologies.
set try_these

ISPGDX APEX20K Virtex2 # list of technologies
}

Preface

Synplify User Guide, September 2004 9

Loop through synthesis for each target technology.
foreach technology $try_these {

impl -add
set_option -technology $technology
project -run -fg
open_file -rtl_view

}

Running Bottom-up Synthesis with a Script
To run bottom-up synthesis, you create Tcl scripts for individual logic blocks,
and a script for the top level that reads the other Tcl scripts.

1. Create a Tcl script for each logic block. The Tcl script must synthesize
the block. See Creating a Tcl Synthesis Script, on page 7-5 for details.

2. Create a top-level script that reads the block scripts. Create the script
with the with project -new command.

3. Add the top-level data:

– Add source files with add_file -vhdl or add_file -verilog.

– Add constraint files with add_file -constraint.

– Set the top-level options with set_option.

– Set the output file information with project -result_file and
project -log_file.

– Save the project with project -save.

– Run the project with project -run.

4. Save the top-level script, and then run it using this syntax:

source “block_script.tcl”

When you run this, the entire design is synthesized, beginning with the
lower-level logic blocks specified in the sourced files, and then the top
level.

LO

Preface

10 Synplify User Guide, September 2004

Integrating with Third-Party Software
This section discusses how to use synthesis results with software from other
vendors to accomplish your design needs. This section discusses the
following topics:

• Integrating with ModelSim, next

• Resynthesizing with QuickLogic SpDE Information, on page 7-11

• Working with Visual Elite, on page 7-12

Integrating with ModelSim
You can integrate the synthesis software with the Model Technology Inc.
ModelSim HDL simulator to crossprobe waveforms and debug your design.
To use the following procedure, you must have a HDL Analyst license and an
installed copy of ModelSim.

1. Synthesize your design.

– Make sure to generate a mapped output file by selecting
Project->Implementation Options, going to the Implementation Results tab,
and checking the Write Mapped Verilog/VHDL Netlist box. This creates a
.vm file (Verilog) or .vhm file (VHDL).

– Set other options, and click Run.

2. Enable crossprobing in the synthesis software.

– Open an RTL or Technology view.

– Select HDL Analyst->External Crossprobing Engaged.

3. Start ModelSim and do the following:

– If you are working on a UNIX platform, open another terminal window
for ModelSim.

– Start ModelSim.

Preface

Synplify User Guide, September 2004 11

– Select File->Directory and select the directory with the .vhm (VHDL) or
.vm (Verilog) file from the popup menu.

– If you are using VHDL , type the following at the ModelSim prompt:

ModelSim> vlib synplify
ModelSim> vcom -work synplify <Synplify_install_dir>/lib/

vhdl_sim/synplify.vhd
ModelSim> vlib work
ModelSim> vcom <Synplify_output_file>.vhm
ModelSim> vcom <testbench>.vhd
ModelSim> vsim <output_file>
ModelSim> run -all
ModelSim> source <synplify_install_dir>/lib/mti/manager.tcl

– If you are using Verilog, type the following at the ModelSim prompt:

ModelSim> vlib synplify
ModelSim> vlog <Synplify_output_file>.vm
ModelSim> vlog <testbench>.v
ModelSim> vsim <output_file>
ModelSim> run -all
ModelSim> source <synplify_install_dir>/lib/mti/manager.tcl

4. Click the Enable CrossProbe button in the ModelSim window. The
ModelSim structure, signal, list, and wave windows open.

5. To crossprobe, select a signal in the RTL or Technology view.

The selected signals are displayed in the ModelSim wave window.

Resynthesizing with QuickLogic SpDE Information
For QuickLogic designs, you can use pad placement information from the
place-and-route run when you resynthesize your design. You might want to
use this methodology to redesign a part so that it works in an existing system,
without having to change FPGA connections.

1. After synthesis, place and route your design with SpDE.

2. Check the following in the .scp command file generated by SpDE:

– Make sure the object names and the case in the .scp file match the
names and case in the source file.

– Use the portprop command to specify pad placement and pad type.

LO

Preface

12 Synplify User Guide, September 2004

– Specify fixed placement for I/O pads with the instprop command.

For the syntax of these commands, see the Synplify Reference Manual.

3. Include the .scp command file in your project by doing one of the
following:

– Add the include directive to your project file, and specify the .scp file
with the pad placement information.

– Add the include directive to a Tcl script file, and specify the .scp file
with the pad placement information. Read the Tcl script into your
project.

For more information about the include directive, see the Synplify Refer-
ence Manual.

4. Resynthesize your design.

When you modify and resynthesize the design, the software keeps the
pin locations specified in the included .scp file.

Working with Visual Elite
Visual Elite™ is a third-party tool that you can use to create and edit HDL
designs. For details about this tool, see http://www.sd.com/. You can
crossprobe to this tool from the synthesis software, if you set it up correctly.
This section covers the following:

• Windows Platform Setup, on page 7-12

• UNIX Platform Setup, on page 7-13

• Launching the Synthesis Software from Visual Elite, on page 7-14

• Crossprobing to the Visual Elite Editor, on page 7-14

Windows Platform Setup
To use Visual Elite and the Synplicity software together on the Microsoft®
Windows® operating system, you need to do the following:

1. Ensure that Visual Elite is installed, with a valid license.

Preface

Synplify User Guide, September 2004 13

2. Set the following variables:

– Set the VSH_LIB environment variable to point to the directory:

synplify_installation_dir\lib\summit\visual

– Point the VSH_VISUAL_COMMAND environment variable to the
executable:

Visual_Elite_installation_dir\bin\visual_elite.exe

– Set the LM_LICENSE_FILE environment variable to include the
Synplicity license.

3. Set the path to include synplify_installation_dir\bin.

4. Edit the synplify.ini file and add the following lines:

[crossprobe]
VisualEnabled = 1

5. Set Visual Elite options:

– Open Visual Elite, and select Tools->Options -> Synthesis -> Remote
Synthesis, which opens a dialog box.

– In the dialog box, set Remote Synthesis to No.

– Set the directory in the Synthesis Directory text box. You can enter the
path to any directory for which you have write permission. Click OK.

UNIX Platform Setup
To use Visual Elite and the Synplicity software together on a UNIX platform,
you must do the following:

1. Make sure that the Visual Elite tool is properly installed on your system,
with a valid license.

2. Set environment variables.

– Set the VSH_LIB to point to the Visual Elite directory:

synplify_installation_dir/lib/summit/visual

– Point the VSH_VISUAL_COMMAND environment variable to either the
Verilog or VHDL version:

Visual_Elite_installation_dir/platform/bin/visual_elite

LO

Preface

14 Synplify User Guide, September 2004

3. Set the path.

set path = (synplify_installation_dir/bin $path)

4. Edit the synplify.ini file and add the following lines:

[crossprobe]
VisualEnabled = 1

Launching the Synthesis Software from Visual Elite
To start the Synplicity software from Visual Elite, do the following:

1. Within Visual Elite, specify that the output HDL generated from your
design is intended for the Synplify tool.

2. Use full paths to specify any libraries.

If you use relative paths, the paths in the synthesis project file are not
correct

3. To run the synthesis software, do either of the following:

– Select Synthesis->Run Synplify in the Visual Elite editing window.

– Open the editing window for the top-level design and select Tools->
Synthesis->Script to open the script editing window.

4. In the script window, select Tools->Run Synthesis.

5. In the dialog box, enter the path to a predefined synthesis project file.
Select the synthesis tool (Synplify or Synplify Pro) and specify whether
you are going to work in batch or interactive mode.

Crossprobing to the Visual Elite Editor
1. Set up Visual Elite for your platform, as described in Windows Platform

Setup, on page 7-12 or UNIX Platform Setup, on page 7-13.

2. Open an RTL or Technology view in the synthesis software.

3. Select HDL Analyst->Connect to Visual Elite.

Preface

Synplify User Guide, September 2004 15

4. Click or double-click the object in the HDL Analyst view.

Clicking Highlights the object in Visual Elite.

Double-clicking Highlights the object in Visual Elite and the associated
HDL text in the Synplicity text editor window.

LO

Preface

16 Synplify User Guide, September 2004

Working with the Identify RTL Debugger
The Identify® RTL debugger provides logic debugging capabilities that allow
the designer to functionally debug the hardware directly in the RTL source
code, in the target system, running at the target speed. This means the
designer can functionally verify RTL designs thousands of times faster than
with RTL simulators, and save results in the standard VCD format supported
by most waveform viewers. This reduces the need for extensive system-level
simulation, and simulation can concentrate on the much simpler and faster
module-level simulation.

You can also use the Identify debugger in conjunction with the synthesis
software to debug system-level functionality. You can add in-system stimuli
for various applications in the Identify software, create a synthesis project,
and debug the results graphically in the RTL view. The following procedure
shows you how to launch the Identify RTL debugger from the synthesis inter-
face and use it with the synthesis software to debug a design.

1. In the synthesis interface, open the design you want to debug, and then
select Run->Launch Identify Instrumentor or select the icon (). If the icon
and menu command are inaccessible, you are either on an unsupported
platform (HP) or are using a technology that does not support this
feature.

– If the synthesis application locates the Identify software, it opens a
dialog box with the path to the Identify instrumentor executable. Set
License Type to the appropriate technology, and click OK.

– If you have the Identify software installed but the synthesis
application can not find it, click Locate in the dialog box that opens.

Preface

Synplify User Guide, September 2004 17

This opens a second dialog box. Either select the current installation
or click the ... button and select the bin directory that contains the
instrumentor executable file. Set License Type to the appropriate
technology, and click OK.

– If you do not have the Identify software installed, click Install in the
dialog box that opens. You are directed to the Synplicity web page
where you can download the Identify software. Install the Identify
software before proceeding as described above.

LO

Preface

18 Synplify User Guide, September 2004

The Identify software interface opens, with an Identify project automati-
cally set up for the design to be debugged.

2. Do the following in the Identify interface:

– Open the RTL files, and instrument the design. For details of using
the Identify instrumentor, refer to the Identify documentation.

– Save the instrumented design.

The Identify tool exports the instrumented design to the synthesis
software. It creates an instrumentation subdirectory under your
synthesis working directory called designName_instr, which contains
the following:

– A synthesis project file

– An instr_sources subdirectory for the instrumented HDL files

– Tcl scripts for loading the instrumented design

3. Return to the synthesis interface and view the instrumented design that
contains the debugging logic.

– In the synthesis interface, open the project file for the instrumented
design, which is in theinstr_sources subdirectory listed in the
Implementations Results view for your original synthesis project.

– Synthesize the design.

– Open the RTL view to see the inserted debugging logic.

4. Place and route the instrumented design after synthesis.

5. Return to the Identify interface and use the Identify debugger to debug
the instrumented design. You do not have access to the Identify
debugger with the evaluation copy; you must have a full-up version of
Identify.

Synplify User Guide, September 2004 Index-1

Index

Symbols
.ini file

adding crossprobing information for
Visual Elite 7-13, 7-14

.sdc file 3-15

.v files. See Verilog

.vhd files. See VHDL

A
Actel

ACTgen macros 6-5
macro libraries 6-5
output netlist 6-4
pin numbers for bus ports 6-3

ACTgen macros 6-5
alspin

bus port pin numbers 6-3
pin locations 6-2

alspreserve
using with syn_keep 5-11

Alt key
column editing 2-6

Alt key mapping 4-42
area, optimizing 5-3
asterisk wildcard

Find command 4-35
async load warning message 4-4
attributes

adding 3-36
from RTL and Technology views 3-40
in constraint files 3-35
in SCOPE 3-38
Verilog 3-37
VHDL 3-36

for FSMs 5-15
syn_encoding 5-15
VHDL package 3-36

audience for the document 1-6

B
B.E.S.T 4-13
Back button

navigating views 4-20
backslash

escaping dot wildcard in Find
command 4-35

batch mode 7-2
Behavior Extraction Synthesis Technology.

See B.E.S.T
black boxes 5-22

adding constraints 5-26
adding constraints in SCOPE 5-29
adding constraints in Verilog 5-28
adding constraints in VHDL 5-27
instantiating in Verilog 5-22
instantiating in VHDL 5-24
pin attributes 5-30
timing constraints 5-26

bookmarks
in source files 2-6
using in log files 4-3

browsers 4-24
buffering

crontrolling 5-9
bus

drag and drop 3-16

C
clock constraints

edge-to-edge delay 3-21
false paths 3-27

clock constraints, setting 3-21
clock domains

setting up 3-25
clock groups

effect on false path constraints 3-27
for global frequency clocks 3-22

clock trees 4-61

Index

Index-2 Synplify User Guide, September 2004

clocks
asymmetrical 3-23
defining 3-22
frequency 3-23
gated 3-25
implicit false path 3-27
limited resources 3-25
overriding false paths 3-28

colors
in text files 2-10

column editing 2-6
comment characters

in text files 2-10
comments in source files 2-6
compiler directives (Verilog)

specifying 3-10
constraint files 3-31

See also SCOPE
colors 2-10
comments 2-10
creating in a text editor 3-33
creating with SCOPE 3-13
Find command 3-24
fonts 2-10
opening 3-15
tabs 2-10
when to use 3-31

constraints
adding in Tcl files 3-33
black box 5-26
defaults 3-18
define_clock 3-34
define_reg_input_delay 3-34
kinds of 3-15
options 3-5
setting 3-16
syn_reference_clock 3-34

context
for object in filtered view 4-47

critical paths
delay 4-63
flat view 4-62
hierarchical view 4-62
slack time 4-63
using -route 5-4
viewing 4-62

crossprobing 4-38
allowing to place-and-route file 4-20
filtering text objects for 4-43
from log file 4-3

from text files 4-42
Hierarchy Browser 4-39
ModelSim 7-10
paths 4-42
RTL view 4-40
Technology view 4-40
Text Editor view 4-40
text file example 4-42
Verilog file 4-40
VHDL file 4-40
with Visual Elite 7-14
within RTL and Technology views 4-39

current level
expanding logic from net 4-52
expanding logic from pin 4-51

current level and below search 4-32
current level search 4-32

D
default enum encoding 3-11
define_attribute 3-40
define_clock constraint 3-34
define_false_paths constraint 3-34
define_input_delay constraint 3-34
define_multicycle_path constraint 3-34
define_output_delay constraint 3-34
define_reg_input_delay constraint 3-34
define_reg_output_delay constraint 3-34
design entry 1-4
design flows

FPGA 1-4
Synplify 1-12
synthesis 1-12

design guidelines 5-2
design hierarchy

viewing 4-44
design size

amount displayed on a sheet 4-21
device options

See alsoimplementation options
directives

adding 3-36
Verilog 3-37
VHDL 3-36

black box 5-27, 5-28
for FSMs 5-15
specifying for the compiler (Verilog) 3-10
syn_state_machine 5-20

Index

Synplify User Guide, September 2004 Index-3

syn_tco 5-28
adding black box constraints 5-27

syn_tpd 5-28
adding black box constraints 5-27

syn_tsu 5-28
adding black box constraints 5-27

Dissolve Instances command
using 4-58

dissolving 4-58
dot wildcard

Find command 4-35
drag and drop 3-16
drivers

preserving duplicates with
syn_keep 5-11

selecting 4-54

E
Edit menu commands

for editing source files 2-5
Editing window 2-5
emacs text editor 2-8
encoding styles

default VHDL 3-12
FSM Compiler 5-18

errors
definition 2-4
source files 2-4
Verilog 2-4
VHDL 2-4

Expand command
using 4-51

Expand commands
connections 4-54
pin and net logic 4-50

Expand Inwards command
using 4-51

Expand Paths command
different from Isolate Paths 4-54

Expand to Register/Port command
using 4-51

expanding
connections 4-54
pin and net logic 4-50

Extract Generic Constants 3-11

F
false paths

defining between clocks 3-27
I/O paths 3-28
impact of clock group assignments 3-27
overriding 3-28
ports 3-27
registers 3-27
setting constraints 3-27

fanouts
buffering vs replication 5-9
hard limits 5-8
soft global limit 5-7
soft module-level limit 5-7
using syn_maxfan 5-7

features 1-2
files

.sdc 3-15

.v 2-2

.vhd 2-2
fsm.info 5-19
log 4-2
output 6-4
rom.info 4-27
Tcl 7-4

See also Tcl commands
Tcl batch script 7-3

Filter Schematic command
using 4-49

Filter Schematic icon
using 4-49

filtering 4-48
advantages over flattening 4-48
using to restrict search 4-32

Find command
4-32

browsing with 4-31
constraint file 3-24
hierarchical search 4-33
long names 4-31
reading long names 4-34
search scope, effect of 4-35
search scope, setting 4-33
setting limit for results 4-34
using in RTL and Technology views 4-32
using wildcards 4-35
wildcard examples 4-37

finding information
information organization 1-10

Flatten Current Schematic command
transparent instances 4-56
using 4-56

Index

Index-4 Synplify User Guide, September 2004

Flatten Schematic command
using 4-56

flattening 4-56
See also dissolving
compared to filtering 4-48
hidden instances 4-57
transparent instances 4-56
using syn_hier 5-10

fonts
setting in text files 2-10

Forward button
navigating views 4-20

FPGA configuration 1-6
FPGA design flow 1-4
frequency

clocks 3-23
internal clocks 3-24
other signals 3-24

FSM Compiler 5-17
advantages 5-17
enabling 5-18

FSM encoding
user-defined 5-16
using syn_enum_encoding 5-16

fsm.info file 5-19
FSMs

See also FSM Compiler, FSM Explorer
attributes and directives 5-15
defining in Verilog 5-13
defining in VHDL 5-14
definition 5-13
optimizing with FSM Compiler 5-17

G
Generics (VHDL panel) 3-11
global optimization options 3-5

H
HDL Analyst

See also RTL view, Technology view
critical paths 4-62
crossprobing 4-38
filtering schematics 4-48
Push/Pop mode 4-27, 4-29
traversing hierarchy with mouse

strokes 4-25
traversing hierarchy with Push/Pop

mode 4-27

using 4-44
HDL Analyst tool

deselecting objects 4-18
selecting/deselecting objects 4-17

HDL file icon 2-2
help

information organization 1-10
hidden instances

consequences of saving 4-46
flattening 4-57
restricting search by hiding 4-32
specifying 4-45
status in other views 4-45

hierarchical design
expanding logic from nets 4-51
expanding logic from pins 4-51

hierarchical instances
dissolving 4-58
hiding. See hidden instances, Hide

Instances command
multiple sheets for internal logic 4-47
pin name display 4-49
viewing internal logic 4-46

hierarchical objects
pushing into with mouse stroke 4-26
traversing with Push/Pop mode 4-27

hierarchical search 4-32
hierarchy

flattening 4-56
traversing 4-24

hierarchy browser
clock trees 4-61
controlling display 4-20
crossprobing from 4-39
defined 4-24
finding objects 4-30
traversing hierarchy 4-24

history commands. See Back button, For-
ward button.

I
I/O paths

false path constraint 3-28
I/Os

Verilog black boxes 5-22
VHDL black boxes 5-24

Identify
flow 7-16

Index

Synplify User Guide, September 2004 Index-5

running from the synthesis
software 7-16

implementation options 3-2
constraint 3-5
device 3-2
global optimization 3-5
part selection 3-2
specifying results 3-6

input constraints, setting 3-26
input files. See source files
instances

preserving with syn_noprune 5-11
properties 4-14
properties of pins 4-14

Isolate Paths command
different from Expand Paths 4-54, 4-55

K
keyboard shortcuts

Ctrl-d 3-17
Ctrl-n 2-2
Ctrl-s 2-3
Ctrl-w 3-18
Shift+F8 2-4
shift-F7 2-4

keywords, completing in source files 2-6

L
latches

warning message 4-6
license, setting up with the wizard 1-8
LM_LICENSE_FILE environment variable

including synthesis in Visual Elite
(Windows) 7-13

log files
checking errors 2-4
checking information 4-2
colors 2-10
fonts 2-10
state machine descriptons 5-18
tabs 2-10
viewing 4-2

logic
expanding between objects 4-54
expanding from net 4-51
expanding from pin 4-51

logic preservation
syn_hier 5-12

syn_keep for nets 5-11
syn_keep for registers 5-11
syn_noprune 5-11
syn_preserve 5-11

logic removal
warning message 4-8

M
memory usage

maximizing with HDL Analyst 4-60
ModelSim

working with 7-10
mouse strokes

navigating between views 4-20
pushing/popping objects 4-25

multicycle paths, setting constraints 3-21
multisheet schematics 4-18

for nested internal logic 4-47
searching just one sheet 4-32
transparent instances 4-19

N
netlists

for ModelSim 7-10
netlists for different vendors 6-4
nets

expanding logic from 4-51
preserving with syn_keep 5-11
properties 4-14
selecting drivers 4-54

New property 4-16
notes, definition 2-4

O
objects

finding on current sheet 4-32
flagging by property 4-15
selecting/deselecting 4-17

optimization
for area 5-3
for timing 5-4
logic preservation. See logic

preservation.
preserving hierarchy 5-12
preserving objects 5-10
tips for 5-2

output constraints, setting 3-26

Index

Index-6 Synplify User Guide, September 2004

output files 6-4
specifying 3-6

P
package library, adding 2-13
part selection options 3-2
path constraints

false paths 3-27
pathnames

using wildcards for long names
(Find) 4-34

paths
tracing between objects 4-54
tracing from net 4-51
tracing from pin 4-51

paths, crossprobing 4-42
PDF

cutting from 2-6
pin names, displaying 4-50
pins

expanding logic from 4-51
properties 4-14

placement, description 1-5
platform setup, Visual Elite GUI

UNIX 7-13
ports

false path constraint 3-27
properties 4-14

preferences
crossprobing to place-and-route

file 4-20
displaying Hierarchy Browser 4-20
displaying labels 4-21
RTL and Technology views 4-20
SCOPE 3-30
sheet size (UI) 4-21

primitives
pin name display 4-49
pushing into with mouse stroke 4-26
viewing internal hierarchy 4-44

probes
using Identify 7-16

project files
adding files 2-11
adding files to 2-16
batch mode 7-2
creating 2-11
definition 2-11
deleting files from 2-16

opening 2-15
replacing files in 2-16
VHDL file order 2-13
VHDL library 2-13

properties
displaying with tooltip 4-14
viewing for individual objects 4-14

Push/Pop mode
HDL Analyst 4-25
keyboard shortcut 4-27
using 4-25, 4-27

Q
question mark wildcard, Find command 4-35
QuickLogic

pad placement 7-11

R
register constraints, setting 3-21
registers

false path constraint 3-27
replication

controlling 5-9
resource sharing

optimization technique 5-3
overriding option with syn_sharing 5-6
results example 5-6
using 5-5

rom.info file 4-27
ROMs

viewing data table 4-27
routing, description 1-6
RTL

debugging with Identify 7-16
RTL view

adding attributes 3-40
crossprobing description 4-38
crossprobing from 4-40
crossprobing from Text Editor 4-42
defined 4-11
description 4-10
filtering 4-48
finding objects with Find 4-32
finding objects with Hierarchy

Browser 4-30
flattening hierarchy 4-56
icon 4-12
opening 4-12

Index

Synplify User Guide, September 2004 Index-7

selecting/deselecting objects 4-17
setting preferences 4-20
state machine implementation 5-19
traversing hierarchy 4-24

RTL view. See also HDL Analyst
RTL views

analyzing clock trees 4-61

S
schematic objects

selecting/deselecting 4-17
schematic page size 4-21
schematics

multisheet. See multisheet schematics
selecting/deselecting objects 4-17

SCOPE
adding attributes 3-38
drag and drop 3-16
setting constraints 3-13
setting display preferences 3-30
state machine attributes 5-15
using the wizard 3-14
using the wizard to generate

defaults 3-18
scope of the document 1-7
search

browsing objects with the Find
command 4-31

browsing with the Hierarchy
Browser 4-30

finding objects on current sheet 4-32
setting limit for results 4-34
setting scope 4-33
using the Find command in HDL

Analyst views 4-32
See also search
selection, in RTL and Technology views 4-17
sensitivity list

warning message 4-7
sentinel driver 1-9
set_option command 3-4
sheet connectors

navigating with 4-19
sheet size

setting number of objects 4-21
Show Cell Interior option 4-44
Show Context command

different from Expand 4-47
using 4-47

Show Critical Path icon 4-62
slack

handling 4-65
setting margins 4-62

Slow property 4-16
source code

defining FSMs 5-13
fixing errors 2-7
opening automatically to

crossprobe 4-41
optimizing 5-2
when to use for constraints 3-31

source files
See also Verilog, VHDL.
adding comments 2-6
adding files 2-11
checking 2-4
colors 2-10
column editing 2-6
comments 2-10
copying examples from PDF 2-6
creating 2-2
crossprobing 4-42
editing operations 2-5
fonts 2-10
specifying default encoding style 3-12
specifying top level file in the

wizard 2-15
specifying top level in Project view 2-13
specifying top-level file in the

Implementation Options dialog
box 3-12

state machine attributes 5-15
tabs 2-10
using bookmarks 2-6

specifying levels 4-58
state machines

See also FSM Compiler, FSM Explorer,
FSM viewer, FSMs.

attributes 5-15
descriptions in log file 5-18
implementation 5-19

syn_encoding attribute 5-15
syn_enum_encoding directive

FSM encoding 5-16
syn_hier attribute

controlling flattening 5-10
preserving hierarchy 5-12

syn_isclock
black box clock pins 5-30

Index

Index-8 Synplify User Guide, September 2004

syn_keep
using with alspreserve 5-11

syn_keep attribute
effect on buffering 5-9
preserving nets 5-11
preserving shared registers 5-11

syn_maxfan
setting fanout limits 5-7

syn_noarrayports
use with alspin 6-3

syn_noprune attribute
preserving instances 5-11

syn_preserve
effect on buffering 5-9

syn_preserve attribute
logic removal warnings 4-8
preserving FSMs from optimization 5-15
preserving logic 5-11

syn_reference_clock constraint 3-34
syn_replicate attribute

using buffering 5-9
syn_sharing directive

overriding default 5-6
syn_state_machine directive

using with value=0 5-20
syn_tco attribute

adding in SCOPE 5-29
syn_tco directive 5-28

adding black box constraints 5-27
syn_tpd attribute

adding in SCOPE 5-29
syn_tpd directive 5-28

adding black box constraints 5-27
syn_tsu attribute

adding in SCOPE 5-29
syn_tsu directive 5-28

adding black box constraints 5-27
Synplify

starting from Visual Elite 7-14
Synplify Pro

starting from Visual Elite 7-14
Synplify software

design flow 1-12
features 1-2
overview 1-2
starting 1-7

syntax
checking source files 2-4
checking Verilog 2-4

checking VHDL 2-4
synthesis

checking source files 2-4
checking Verilog 2-4
checking VHDL 2-4

Synthesis On/Off Implemented as Translate
On/Off 3-11

synthesis_on/off 3-11

T
tabs

setting in text files 2-10
Tcl commands

batch script 7-3
entering in SCOPE 3-22
running 7-4

Tcl files 7-4
adding constraints 3-33
colors 2-10
comments 2-10
creating 7-5
fonts 2-10
for bottom-up synthesis 7-9
guidelines 3-32
naming conventions 3-32
recording from commands 7-5
tabs 2-10
using variables 7-7
wildcards 3-33

Tcl scripts
See Tcl files.

technology mapping, description 1-5
Technology view

See also HDL Analyst
adding attributes 3-40
critical paths 4-62
crossprobing 4-38, 4-40
crossprobing from source file 4-42
filtering 4-48
finding objects with Find 4-32
finding objects with Hierarchy

Browser 4-30
flattening hierarchy 4-56
general description 4-10
opening 4-12
selecting/deselecting objects 4-17
setting preferences 4-20
state machine implementation in 5-19
traversing hierarchy 4-24

Index

Synplify User Guide, September 2004 Index-9

Text editor
using 2-5

text editor
built-in 2-5
external 2-8

Text Editor view
crossprobing 2-7, 4-40

Text Editor window
colors 2-9
fonts 2-9

text files
crossprobing 4-42

time stamp, checking on files 2-17
timing constraints 3-34
timing failures, handling 4-65
timing information

critical paths 4-63
timing optimization 5-4
timing report

specifying format options 3-8
tips

memory usage 4-60
top level entity

specifying in VHDL 3-11
top level module

specifying in VHDL 3-11
transparent hierarchical instances

lower-level logic on multiple sheets 4-19
transparent instances

flattening 4-56

U
UNIX commands, synplify 1-7
UNIX platform setup, Visual Elite GUI 7-13
unused input, warning message 4-7

V
vendor-specific netlists 6-4
Verilog
‘ifdef and ‘define statements 3-10
Actel ACTgen macros 6-6
adding attributes and directives 3-37
black boxes 5-22
black boxes, instantiating 5-22
checking 2-4
choosing a compiler 3-9
creating source files 2-2

crossprobing from HDL Analyst
view 4-40

defining FSMs 5-13
editing operations 2-5
specifying compiler directives 3-10

Verilog 2001
enabling globally 3-9
setting global option from the Project

view 3-9
setting option per file 3-9

Verilog macro libraries
Actel 6-5

VHDL
Actel ACTgen macros 6-5
adding attributes and directives 3-36
black boxes 5-24
black boxes, instantiating 5-24
checking 2-4
creating source files 2-2
crossprobing from HDL Analyst

view 4-40
defining FSMs 5-14
editing operations 2-5
macro libraries, Actel 6-5

VHDL files
adding library 2-13
adding third-party package library 2-13
order in project file 2-13
ordering automatically 2-13

vi text editor 2-8
views

defined 4-20
virtual clock, setting 3-21
Visual Elite

crossprobing 7-14
starting synthesis software from 7-14
UNIX platform setup 7-13
Windows platform setup 7-12

Visual Elite GUI
Unix platform setup 7-13

VSH_LIB environment variable
UNIX 7-13
Windows 7-13

VSH_VISUAL_COMMAND environment
variable 7-13

UNIX 7-13

W
warning messages

Index

Index-10 Synplify User Guide, September 2004

async load 4-4
definition 2-4
latch generation 4-6
logic removal 4-8
sensitivity list 4-7
unused input 4-7

warnings
feedback muxes 5-4
handling 4-4

wildcards
effect of search scope 4-35
Find command examples 4-37

wildcards (Find)
how they work 4-35

Index

Synplify User Guide, September 2004 Index-11

Index

Index-12 Synplify User Guide, September 2004

	Online Document Menu
	Reference Manual
	Release Notes
	License Configuration

	Preface
	Disclaimer of Warranty
	Copyright Notice
	Trademarks
	Restricted Rights Legend
	Synplicity Software License Agreement

	Contents
	Introduction
	The Synplify Synthesis Tool
	About the Software
	Synplicity Product Family

	The Generic FPGA Design Flow
	HDL Design Entry
	Logic Optimization (Compilation)
	Technology Mapping
	Placement
	Routing
	FPGA Configuration

	Audience
	Scope of the Document
	Starting the Software
	Getting Started
	Using the License Wizard
	Getting Help

	User Interface Overview
	The Design Flow

	File Setup
	Setting Up HDL Source Files
	Creating Source Files
	Checking Source Files
	Editing Source Files with the Built-in Text�Editor
	Using an External Text Editor
	Setting Editing Window Preferences

	Setting Up Project Files
	Creating a Project File Without the Project Wizard
	Creating a Project File with the Project Wizard
	Opening an Existing Project File
	Making Changes to a Project
	Setting Project View Display Preferences

	Constraints, Attributes, and Options
	Setting Implementation Options
	Setting Device Options
	Setting Constraint and Optimization Options
	Specifying Result Options
	Specifying Timing Report Output
	Setting Verilog and VHDL Options

	Setting Constraints in the SCOPE Window
	Opening the SCOPE Window
	Entering and Editing Constraints in the SCOPE Window
	Entering Default Constraints
	Setting Clock and Path Constraints
	Defining Clocks
	Defining I/O Constraints
	Defining False Paths
	Defining From/To/Through for Timing Exceptions
	Setting SCOPE Display Preferences

	Working with Constraint Files
	When to Use Constraint Files over Source Code
	Tcl Syntax Guidelines for Constraint Files
	Using a Text Editor for Constraint Files

	Adding Attributes and Directives
	Adding Attributes and Directives in VHDL
	Adding Attributes and Directives in Verilog
	Adding Attributes in the SCOPE Window
	Adding Attributes to a Tcl Constraint File
	Adding Attributes From the RTL and Technology Views

	Result �Analysis
	Checking Log Results
	Viewing the Log File
	Analyzing Results Using the Log File Reports
	Handling Warnings

	Basic Operations in the Schematic Views
	Differentiating Between the Views
	Opening the Views
	Analyzing Your Design Graphically
	Viewing Object Properties
	Selecting Objects in the RTL/Technology Views
	Working with Multisheet Schematics
	Moving Between Views in a Schematic Window
	Setting Schematic View Preferences
	Managing Windows

	Exploring Design Hierarchy
	Traversing Design Hierarchy with the Hierarchy Browser
	Exploring Object Hierarchy by Pushing/Popping
	Exploring Object Hierarchy of Transparent Instances

	Finding Objects
	Browsing to Find Objects
	Using Find for Hierarchical and Restricted Searches
	Using Wildcards with the Find Command

	Crossprobing
	Crossprobing Description
	Crossprobing within an RTL/Technology View
	Crossprobing from the RTL/Technology View
	Crossprobing from the Text Editor Window

	Analyzing With the HDL�Analyst Tool
	Viewing Design Hierarchy and Context
	Filtering Schematics
	Expanding Pin and Net Logic
	Expanding and Viewing Connections
	Flattening Schematic Hierarchy
	Minimizing Memory Usage While Analyzing Designs

	Analyzing Timing
	Analyzing Clock Trees in the RTL View
	Viewing Critical Paths
	Handling Negative Slack

	Design Optimization
	Design Guidelines
	General Optimization Tips
	Area Optimization Tips
	Timing Optimization Settings

	Optimizing Results
	Sharing Resources
	Setting Fanout Limits
	Controlling Buffering and Replication
	Controlling Hierarchy Flattening
	Preserving Objects from Optimization
	Preserving Hierarchy

	Defining State Machines for Synthesis
	Defining State Machines in Verilog
	Defining State Machines in VHDL
	Specifying FSMs with Attributes and Directives

	Using the Symbolic FSM Compiler
	Choosing When to Use the FSM Compiler
	Running the FSM Compiler on the Whole Design
	Running the FSM Compiler on Individual FSMs

	Defining Black Boxes for Synthesis
	Instantiating Black Boxes and I/Os in Verilog
	Instantiating Black Boxes and I/Os in VHDL
	Adding Black Box Timing Constraints
	Adding Other Black Box Attributes

	Vendor-Specific Optimizations
	Passing Information to the P&R Tools
	Specifying Pin Locations
	Specifying Locations for Actel Bus Ports
	Specifying Macro and Register Placement

	Generating Vendor-Specific Output
	Targeting Output to Your Vendor

	Working with Actel Designs
	Using Predefined Actel Black Boxes
	Using ACTGen Macros
	Working with Radhard Designs

	Design Flows and Process Optimization
	Using Batch Mode
	Running Batch Mode on a Project File
	Running Batch Mode with a Tcl Script

	Working with Tcl Scripts and Commands
	Using Tcl Scripts
	Generating a Job Script
	Creating a Tcl Synthesis Script
	Using Tcl Variables to Try Different Clock Frequencies
	Using Tcl Variables to Try Several Target Technologies
	Running Bottom-up Synthesis with a Script

	Integrating with Third-Party Software
	Integrating with ModelSim
	Resynthesizing with QuickLogic SpDE Information
	Working with Visual Elite

	Working with the Identify RTL Debugger

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Helvetica-Bold
 /Tahoma-Bold
 /Times-Italic
 /Times-Roman
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

