
Actel HDL Coding

Style Guide

Hdl_code.book Page 1 Thursday, February 26, 2004 4:23 PM

Actel Corporation, Mountain View, CA 94043

© 2003 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029105-6/05.04

Release: May 2004

No part of this document may be copied or reproduced in any form or by any means
without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any
implied warranties of merchantability or fitness for a particular purpose. Information
in this document is subject to change without notice. Actel assumes no responsibility
for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be
disclosed to any unauthorized person without prior written consent of Actel
Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks
of their respective holders.

Hdl_code.book Page 2 Thursday, February 26, 2004 4:23 PM

Table of Contents

Hdl_code.book Page 3 Thursday, February 26, 2004 4:23 PM
Introduction . 7
Document Organization . 7

Document Assumptions . 7

Document Conventions . 8

HDL Keywords and Naming Conventions . 8

VHDL . 8

Verilog . 9

Your Comments . 10

Actel Manuals . 11

Related Manuals . 12

Online Help . 13

1 Design Flow . 15
Design Flow Illustrated . 15

Design Flow Overview . 16

Design Creation/Verification . 16

Design Implementation . 17

Programming . 17

System Verification . 18

2 Technology Independent Coding Styles 19
Sequential Devices . 19

Flip-Flops (Registers) . 19

D-Latches . 27

Operators . 31

Datapath . 33

Priority Encoders Using If-Then-Else . 33

Multiplexors Using Case . 34

Decoders . 39

Counters . 40

Arithmetic Operators . 44

Relational Operators . 45

Equality Operator . 46
Actel HDL Coding Style Guide 3

Table of Contents

Hdl_code.book Page 4 Thursday, February 26, 2004 4:23 PM
Shift Operators . 48

Finite State Machine . 49

Mealy Machine . 51

Moore Machine . 55

Input-Output Buffers . 58

Tri-State Buffer . 59

Bi-Directional Buffer . 61

Generics and Parameters . 63

3 Performance Driven Coding . 65
Reducing Logic Levels on Critical Paths . 65

Example 1 . 65

Example 2 . 66

Resource Sharing . 68

Example 1 . 68

Example 2 . 68

Operators Inside Loops . 70

Coding for Combinability . 71

Register Duplication . 72

Partitioning a Design . 75

Registers Embedded Within a Module . 75

Registers Pushed Out at the Hierarchical Boundary 76

4 Technology Specific Coding Techniques 77
Multiplexors . 77

Internal Tri-State to Multiplexor Mapping . 77

Registers . 80

Synchronous Clear or Preset . 81

Clock Enabled . 82

Asynchronous Preset . 84

Asynchronous Preset and Clear . 86

Registered I/Os . 87

CLKINT/CLKBUF for Reset and/or High Fanout Networks 88
4 Actel HDL Coding Style Guide

Table of Contents

Hdl_code.book Page 5 Thursday, February 26, 2004 4:23 PM
QCLKINT/QCLKBUF for Medium Fanout Networks 90

ACTgen Counter . 91

Dual Architecture Coding in VHDL . 92

RTL Architecture . 92

Structural Architecture . 93

Instantiating “CNT5” in the Top Level Design 94

SRAM . 95

Register-Based Single Port SRAM . 95

Register-Based Dual-Port SRAM . 97

ACTgen RAM . 99

FIFO . 101

Register-Based FIFO . 101

ACTgen FIFO . 107

A Product Support . 109
Customer Service . 109

Actel Customer Technical Support Center 109

Actel Technical Support . 109

Website . 109

Contacting the Customer Technical Support Center 110

Email . 110

Phone . 110

Index . 111
Actel HDL Coding Style Guide 5

Hdl_code.book Page 6 Thursday, February 26, 2004 4:23 PM

Hdl_code.book Page 7 Thursday, February 26, 2004 4:23 PM
Introduction

VHDL and Verilog® HDL are high level description languages for system and circuit design. These
languages support various abstraction levels of design, including architecture-specific design. At the
higher levels, these languages can be used for system design without regard to a specific technology.
To create a functional design, you only need to consider a specific target technology. However, to
achieve optimal performance and area from your target device, you must become familiar with the
architecture of the device and then code your design for that architecture.

Efficient, standard HDL code is essential for creating good designs. The structure of the design is a
direct result of the structure of the HDL code. Additionally, standard HDL code allows designs to
be reused in other designs or by other HDL designers.

This document provides the preferred coding styles for the Actel architecture. The information is
reference material with instructions to optimize your HDL code for the Actel architecture.
Examples in both VHDL and Verilog code are provided to illustrate these coding styles and to help
implement the code into your design.

For further information about HDL coding styles, synthesis methodology, or application notes,
please visit Actel’s web site at the following URL: http://www.actel.com/

Document Organization
The Actel HDL Coding Style Guide is divided into the following chapters:

Chapter 1 - Design Flow describes the basic design flow for creating Actel designs with HDL
synthesis and simulation tools.

Chapter 2 - Technology Independent Coding Styles describes basic high level HDL coding styles
and techniques.

Chapter 3 - Performance Driven Coding illustrates efficient design practices and describes synthesis
implementations and techniques that can be used to reduce logic levels on a critical path.

Chapter 4 - Technology Specific Coding Techniques describes how to implement technology
specific features and technology specific macros for optimal area and performance utilization.

Appendix A - Product Support provides information about contacting Actel for customer and
technical support.

Document Assumptions
The information in this manual is based on the following assumptions:

• You are familiar with Verilog or VHDL hardware description language, and HDL design
methodology for designing logic circuits.
Actel HDL Coding Style Guide 7

Introduction

Hdl_code.book Page 8 Thursday, February 26, 2004 4:23 PM
• You are familiar with FPGA design software, including design synthesis and simulation tools.

Document Conventions
The following conventions are used throughout this manual.

Information input by the user follows this format:

keyboard input

The contents of a file follows this format:

file contents

HDL code appear as follows, with HDL keyword in bold:

entity actel is
port (
a: in bit;
y: out bit);

end actel;
Messages that are displayed on the screen appear as follows:

HDL Keywords and Naming Conventions
There are naming conventions you must follow when writing Verilog or VHDL code. Additionally,
Verilog and VHDL have reserved words that cannot be used for signal or entity names. This section
lists the naming conventions and reserved keywords for each.

VHDL
The following naming conventions apply to VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_” character.

• Names must begin with an alphabetic letter.

• You may not use two underscores in a row, or use an underscore as the last character in the name.

Screen Message
8 Actel HDL Coding Style Guide

HDL Keywords and Naming Conventions

Hdl_code.book Page 9 Thursday, February 26, 2004 4:23 PM
• Spaces are not allowed within names.

• Object names must be unique. For example, you cannot have a signal named A and a bus named
A(7 downto 0).

The following is a list of the VHDL reserved keywords:

Verilog
The following naming conventions apply to Verilog HDL designs:

• Verilog is case sensitive.

• Two slashes “//” are used to begin single line comments. A slash and asterisk “/*” are used to begin
a multiple line comment and an asterisk and slash “*/” are used to end a multiple line comment.

• Names can use alphanumeric characters, the underscore “_” character, and the dollar “$” character.

• Names must begin with an alphabetic letter or the underscore.

• Spaces are not allowed within names.

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configuration inout out sla

constant is package sra

disconnect label port srl
Actel HDL Coding Style Guide 9

Introduction

Hdl_code.book Page 10 Thursday, February 26, 2004 4:23 PM
The following is a list of the Verilog reserved keywords:

Your Comments
Actel Corporation strives to produce the highest quality online help and printed documentation. We
want to help you learn about our products, so you can get your work done quickly. We welcome your
feedback about this guide and our online help. Please send your comments to
documentation@actel.com.

always endmodule medium reg tranif0

and endprimitive module release tranif1

assign endspecify nand repeat tri

attribute endtable negedge rnmos tri0

begin endtask nmos rpmos tri1

buf event nor rtran triand

bufif0 for not rtranif0 trior

bufif1 force notif0 rtranif1 trireg

case forever notif1 scalared unsigned

casex fork or signed vectored

casez function output small wait

cmos highz0 parameter specify wand

deassign highz1 pmos specparam weak0

default if posedge strength weak1

defparam ifnone primitive strong0 while

disable initial pull0 strong1 wire

edge inout pull1 supply0 wor

else input pulldown supply1 xnor

end integer pullup table xor

endattribute join remos task

endcase large real time

endfunction macromodule realtime tran
10 Actel HDL Coding Style Guide

Actel Manuals

Hdl_code.book Page 11 Thursday, February 26, 2004 4:23 PM
Actel Manuals
Designer and Libero include printed and online manuals. The online manuals are in PDF format
and available from Libero and Designer’s Start Menus and on the CD-ROM. From the Start menu
choose:

• Programs > Libero 2.2 > Libero 2.2 Documentation.

• Programs > Designer Series > R1-2002 Documentation

Also, the online manuals are in PDF format on the CD-ROM in the
“/manuals” directory. These manuals are also installed onto your system when you install the
Designer software. To view the online manuals, you must install Adobe® Acrobat Reader® from the
CD-ROM.

The Designer Series includes the following manuals, which provide additional information on
designing Actel FPGAs:

Getting Started User’s Guide. This manual contains information for using the Designer Series
Development System software to create designs for, and program, Actel devices.

Designer User’s Guide. This manual provides an introduction to the Designer series software as well
as an explanation of its tools and features.

PinEdit User’s Guide. This guide provides a detailed description of the PinEdit tool in Designer. It
includes cross-platform explanations of all the PinEdit features.

ChipEdit User’s Guide. This guide provides a detailed description of the ChipEdit tool in Designer.
It includes a detailed explanation of the ChipEdit functionality.

Timer User’s Guide. This guide provides a detailed description of the Timer tool in Designer. It
includes a detailed explanation of the Timer functionality.

SmartPower User’s Guide. This guide provides a detailed description of using the SmartPower tool to
perform power analysis.

Netlist Viewer User’s Guide. This guide provides a detailed description of the Netlist Viewer.
Information on using the Netlist Viewer with Timer and ChipEdit to debug your netlist is provided.

A Guide to ACTgen Macros. This Guide provides descriptions of macros that can be generated using
the Actel ACTgen Macro Builder software.

Actel HDL Coding Style Guide. This guide provides preferred coding styles for the Actel architecture
and information about optimizing your HDL code for Actel devices.

Silicon Expert User’s Guide. This guide contains information to assist designers in the use of Actel’s
Silicon Expert tool.
Actel HDL Coding Style Guide 11

Introduction

Hdl_code.book Page 12 Thursday, February 26, 2004 4:23 PM
Cadence® Interface Guide. This guide contains information to assist designers in the design of Actel
devices using Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information to assist designers in the design of
Actel devices using Mentor Graphics CAE software and the Designer Series software.

Synopsys®Synthesis Methodology Guide. This guide contains preferred HDL coding styles and
information to assist designers in the design of Actel devices using Synopsys CAE software and the
Designer Series software.

Innoveda® eProduct Designer Interface Guide (Windows). This guide contains information to assist
designers in the design of Actel devices using eProduct Designer CAE software and the Designer
Series software.

VHDL Vital Simulation Guide. This guide contains information to assist designers in simulating
Actel designs using a Vital compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information to assist designers in simulating Actel
designs using a Verilog simulator.

Activator and APS Programming System
Installation and User’s Guide. This guide contains information about how to program and debug
Actel devices, including information about using the Silicon Explorer diagnostic tool for system
verification.

Silicon Sculptor User’s Guide. This guide contains information about how to program Actel devices
using the Silicon Sculptor software and device programmer.

Flash Pro User’s Guide. This guide contains information about how to program Actel ProASIC and
ProASIC PLUS devices using the Flash Pro software and device programmer.

Silicon Explorer II. This guide contains information about connecting the Silicon Explorer
diagnostic tool and using it to perform system verification.

Macro Library Guide. This guide provides descriptions of Actel library elements for Actel device
families. Symbols, truth tables, and module count are included for all macros.

ProASICPLUS Macro Library Guide. This guide provides descriptions of Actel library elements for
Actel ProASIC and ProASICPLUS device families. Symbols, truth tables, and tile usage are included
for all macros.

Related Manuals
The following manuals provide additional information about designing and programming Actel
FPGAs using HDL design methodology:
12 Actel HDL Coding Style Guide

Online Help

Hdl_code.book Page 13 Thursday, February 26, 2004 4:23 PM
Digital Design and Synthesis with Verilog HDL. Madhavan, Rajeev, and others. San Jose, CA:
Automata Publishing Company, 1993. This book contains information to allow designers to write
synthesizable designs with Verilog HDL.

HDL Chip Design. Smith, Douglas J. Madison, AL: Doone Publications, 1996. This book describes
and gives examples of how to design FPGAs using VHDL and Verilog.

IEEE Standard VHDL Language Reference Manual. New York: Institute of Electrical and
Electronics Engineers, Inc., 1994. This manual specifies IEEE Standard 1076-1993, which defines
the VHDL standard and the use of VHDL in the creation of electronic systems.

Online Help
The Designer Series software comes with online help. Online help specific to each software tool is
available in Libero, Designer, ACTgen, ACTmap, Silicon Expert, Silicon Explorer II, Silicon
Sculptor, and APSW.
Actel HDL Coding Style Guide 13

Hdl_code.book Page 14 Thursday, February 26, 2004 4:23 PM

Hdl_code.book Page 15 Thursday, February 26, 2004 4:23 PM
1
Design Flow

This chapter illustrates and describes the basic design flow for creating Actel designs using HDL
synthesis and simulation tools.

Design Flow Illustrated
Figure 1-1 illustrates the HDL synthesis-based design flow for an Actel FPGA using third party
CAE tools and Designer software1.

Figure 1-1. Actel HDL Synthesis-Based Design Flow

Design Creation/Verification

Silicon Explorer II

Data I/O

System General

Fuse
File

Actel
Device

BP Microsystems

SMS Sprint

Design Implementation

Programming

System Verification

Silicon Sculptor

APS Software
Activator 2/2s Programmer

Timing
File

Structural
HDL

Netlist

Library
Synthesis

EDIF
Netlist

3rd Party Synthesis Tool

DCF
File

Simulation Tool
Behavioral/Structural/Timing

Simulation

Behavioral
HDL

Libraries

VITAL/VerilogACTgen
Macro Builder

Silicon Expert
(Optional)

Structural
Netlist

Compile Layout Fuse

x

PinEdit ChipEdit Timer
Back

Annotate

User Tools

Export Command
in File Menu
Actel HDL Coding Style Guide 15

Design Flow

Hdl_code.book Page 16 Thursday, February 26, 2004 4:23 PM
Design Flow Overview
The Actel HDL synthesis-based design flow has four main steps: design creation/verification,
design implementation, programming, and system verification. These steps are described in detail in
the following sections.

Design Creation/Verification
During design creation/verification, a design is captured in an RTL-level (behavioral) HDL source
file. After capturing the design, a behavioral simulation of the HDL file can be performed to verify
that the HDL code is correct. The code is then synthesized into an Actel gate-level (structural)
HDL netlist. After synthesis, a structural simulation of the design can be performed. Finally, an
EDIF netlist is generated for use in Designer and an HDL structural netlist is generated for timing
simulation.

HDL Design Source Entry

Enter your HDL design source using a text editor or a context-sensitive HDL editor. Your HDL
source file can contain RTL-level constructs, as well as instantiations of structural elements, such as
ACTgen macros.

Behavioral Simulation

You can perform a behavioral simulation of your design before synthesis. Behavioral simulation
verifies the functionality of your HDL code. Typically, unit delays are used and a standard HDL test
bench can be used to drive simulation. Refer to the documentation included with your simulation
tool for information about performing behavioral simulation.

Synthesis

After you have created your behavioral HDL source file, you must synthesize it before placing and
routing it in Designer. Synthesis translates the behavioral HDL file into a gate-level netlist and
optimizes the design for a target technology. Refer to the documentation included with your
synthesis tool for information about performing design synthesis.

Netlist Generation

After you have created, synthesized, and verified your design, you may place-and-route in Designer
using an EDIF, Verilog, or VHDL netlist. This netlist is also used to generate a structural HDL
netlist for use in structural simulation. Refer to the Designer Series documentation for information
about generating a netlist.

1. Actel-specific utilities/tools are denoted by grey boxes in Figure 1-1.
16 Actel HDL Coding Style Guide

Design Flow Overview

Hdl_code.book Page 17 Thursday, February 26, 2004 4:23 PM
Structural Netlist Generation

You can generate a structural HDL netlist from your EDIF netlist for use in structural simulation by
either exporting it from Designer or by using the Actel “edn2vhdl” or “edn2vlog” program. Refer to
the Designer Series documentation for information about generating a structural netlist.

Structural Simulation

You can perform a structural simulation of your design before placing and routing it. Structural
simulation verifies the functionality of your post-synthesis structural HDL netlist. Default unit
delays included in the compiled Actel VITAL libraries are used for every gate. Refer to the
documentation included with your simulation tool for information about performing structural
simulation.

Design Implementation
During design implementation, a design is placed-and-routed using Designer. Additionally, timing
analysis is performed on a design in Designer with the Timer tool. After place-and-route, post-
layout (timing) simulation is performed.

Place-and-Route

Use Designer to place-and-route your design. Refer to the Designer Series documentation for
information about using Designer.

Timing Analysis

Use the Timer tool in Designer to perform static timing analysis on your design. Refer to the Timer

User’s Guide for information about using Timer.

Timing Simulation

After placing-and-routing your design, you perform a timing simulation to verify that the design
meets timing constraints. Timing simulation requires timing information exported from Designer,
which overrides default unit delays in the compiled Actel VITAL libraries. Refer to the Designer
Series documentation for information about exporting timing information from Designer.

Programming
Programming a device requires software and hardware from Actel or a supported 3rd party
programming system. Refer to the Getting Started User’s Guide, the Using Designer manual, and the
Activator Installation and APS Programming Guide for information on programming an Actel device.
Actel HDL Coding Style Guide 17

Design Flow

Hdl_code.book Page 18 Thursday, February 26, 2004 4:23 PM
System Verification
You can perform system verification on a programmed device using Actel’s Silicon Explorer. Refer
to the Activator Installation and APS Programming Guide or Silicon Explorer II Quick Start for
information on using Silicon Explorer.
18 Actel HDL Coding Style Guide

Hdl_code.book Page 19 Thursday, February 26, 2004 4:23 PM
2
Technology Independent Coding Styles

This chapter describes basic HDL coding styles and techniques. These coding styles are essential
when writing efficient, standard HDL code and creating technology independent designs.

Sequential Devices
A sequential device, either a flip-flop or a latch, is a one-bit memory device. A latch is a level-
sensitive memory device and a flip-flop is an edge-triggered memory device.

Flip-Flops (Registers)
Flip-flops, also called registers, are inferred in VHDL using wait and if statements within a process
using either a rising edge or falling edge detection expression. There are two types of expressions
that can be used, a 'event attribute or a function call. For example:

(clk'event and clk='1') --rising edge 'event attribute
(clk'event and clk='0') --falling edge 'event attribute
rising_edge(clock) --rising edge function call
falling_edge(clock) --falling edge function call

The examples in this guide use rising edge 'event attribute expressions, but falling edge expressions
could be used. The 'event attribute expression is used because some VHDL synthesis tools may not
recognize function call expressions. However, using a function call expression is preferred for
simulation because a function call only detects an edge transition (0 to 1 or 1 to 0) but not a
transition from X to 1 or 0 to X, which may not be a valid transition. This is especially true if using a
multi-valued data type like std_logic, which has nine possible values (U, X, 0, 1, Z, W, L, H, -).

This section describes and gives examples for different types of flip-flops. Refer to “Registers” on
page 80 for additional information about using specific registers in the Actel architecture.

Rising Edge Flip-Flop

The following examples infer a D flip-flop without asynchronous or synchronous reset or preset.
This flip-flop is a basic sequential cell in the Actel antifuse architecture.

data

clk

q

Figure 2-2. D Flip Flop
Actel HDL Coding Style Guide 19

Technology Independent Coding Styles

Hdl_code.book Page 20 Thursday, February 26, 2004 4:23 PM
VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff is
port (data, clk : in std_logic;

q : out std_logic);
end dff;
architecture behav of dff is
begin
process (clk) begin

if (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff (data, clk, q);

input data, clk;
output q;
reg q;

always @(posedge clk)
q = data;

endmodule

Rising Edge Flip-Flop with Asynchronous Reset

The following examples infer a D flip-flop with an asynchronous reset. This flip-flop is a basic
sequential cell in the Actel antifuse architecture.

Figure 2-3. D Flip-Flop with Asynchronous Reset

data

clk

q

reset
20 Actel HDL Coding Style Guide

Sequential Devices

Hdl_code.book Page 21 Thursday, February 26, 2004 4:23 PM
VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_async_rst is
port (data, clk, reset : in std_logic;

q : out std_logic);
end dff_async_rst;
architecture behav of dff_async_rst is
begin
process (clk, reset) begin

if (reset = '0') then
q <= '0';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async_rst (data, clk, reset, q);

input data, clk, reset;
output q;
reg q;

always @(posedge clk or negedge reset)
if (~reset)
q = 1'b0;

else
q = data;

endmodule

Rising Edge Filp-Flop with Asynchronous Preset

The following examples infer a D flip-flop with an asynchronous preset. Refer to “Registers” on
page 80 for additional information about using preset flip-flops with the Actel architecture.

data

clk

q

preset

Figure 2-4. D Flip-Flop with Asynchronous Preset
Actel HDL Coding Style Guide 21

Technology Independent Coding Styles

Hdl_code.book Page 22 Thursday, February 26, 2004 4:23 PM
VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_async_pre is
port (data, clk, preset : in std_logic;

q : out std_logic);
end dff_async_pre;
architecture behav of dff_async_pre is
begin
process (clk, preset) begin

if (preset = '0') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async_pre (data, clk, preset, q);
input data, clk, preset;
output q;
reg q;
always @(posedge clk or negedge preset)
if (~preset)
q = 1'b1;

else
q = data;

endmodule
22 Actel HDL Coding Style Guide

Sequential Devices

Hdl_code.book Page 23 Thursday, February 26, 2004 4:23 PM
Rising Edge Filp-Flop with Asynchronous Reset and Preset

The following examples infer a D flip-flop with an asynchronous reset and preset. Refer to
“Registers” on page 80 for additional information about using preset flip-flops with the Actel
architecture.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_async is
port (data, clk, reset, preset : in std_logic;

q : out std_logic);
end dff_async;
architecture behav of dff_async is
begin
process (clk, reset, preset) begin

if (reset = '0') then
q <= '0';

elsif (preset = '1') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module dff_async (reset, preset, data, q, clk);

input clk;
input reset, preset, data;
output q;
reg q;

data

clk

preset

q

reset

Figure 2-5. D Flip-Flop
Actel HDL Coding Style Guide 23

Technology Independent Coding Styles

Hdl_code.book Page 24 Thursday, February 26, 2004 4:23 PM
always @ (posedge clk or negedge reset or posedge preset)
if (~reset)
q = 1'b0;

else if (preset)
q = 1'b1;

else q = data;
endmodule

Rising Edge Flip-Flop with Synchronous Reset

The following examples infer a D flip-flop with a synchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_sync_rst is
port (data, clk, reset : in std_logic;

q : out std_logic);
end dff_sync_rst;
architecture behav of dff_sync_rst is
begin
process (clk) begin

if (clk'event and clk = '1') then
if (reset = '0') then
q <= '0';

else q <= data;
end if;

end if;
end process;
end behav;

Verilog
module dff_sync_rst (data, clk, reset, q);

Figure 2-6. D Flip-Flop with Synchronous Reset

data

gnd

clk

reset

q

24 Actel HDL Coding Style Guide

Sequential Devices

Hdl_code.book Page 25 Thursday, February 26, 2004 4:23 PM
input data, clk, reset;
output q;
reg q;

always @ (posedge clk)
if (~reset)
q = 1'b0;

else q = data;
endmodule

Rising Edge Flip-Flop with Synchronous Preset

The following examples infer a D flip-flop with a synchronous preset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_sync_pre is
port (data, clk, preset : in std_logic;

q : out std_logic);
end dff_sync_pre;
architecture behav of dff_sync_pre is
begin
process (clk) begin

if (clk'event and clk = '1') then
 if (preset = '0') then
 q <= '1';
 else q <= data;
 end if;
end if;

end process;
end behav;

Verilog
module dff_sync_pre (data, clk, preset, q);

Figure 2-7. D Flip-Flop with Synchronous Preset

data

vcc

clk

preset

q

Actel HDL Coding Style Guide 25

Technology Independent Coding Styles

Hdl_code.book Page 26 Thursday, February 26, 2004 4:23 PM
input data, clk, preset;
output q;
reg q;

always @ (posedge clk)
if (~preset)
q = 1'b1;

else q = data;
endmodule

Rising Edge Flip-Flop with Asynchronous Reset and Clock Enable

The following examples infer a D type flip-flop with an asynchronous reset and clock enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity dff_ck_en is
port (data, clk, reset, en : in std_logic;

q : out std_logic);
end dff_ck_en;
architecture behav of dff_ck_en is
begin
process (clk, reset) begin

if (reset = '0') then
q <= '0';

elsif (clk'event and clk = '1') then
if (en = '1') then
q <= data;

end if;
end if;

end process;
end behav;

Verilog
module dff_ck_en (data, clk, reset, en, q);

input data, clk, reset, en;
output q;

data

en

clk

q

reset

Figure 2-8. D Flip-Flop
26 Actel HDL Coding Style Guide

Sequential Devices

Hdl_code.book Page 27 Thursday, February 26, 2004 4:23 PM
reg q;
always @ (posedge clk or negedge reset)

if (~reset)
q = 1'b0;

else if (en)
q = data;

endmodule

D-Latches
This section describes and gives examples of different types of D-latches.

D-Latch with Data and Enable

The following examples infer a D-latch with data and enable inputs.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity d_latch is
port(enable, data: in std_logic;

y : out std_logic);
end d_latch;
architecture behave of d_latch is
begin
process (enable, data)
begin

if (enable = '1') then
y <= data;

end if;
end process;
end behave;

Verilog
module d_latch (enable, data, y);

Figure 2-9. D-Latch

data

enable

y

Actel HDL Coding Style Guide 27

Technology Independent Coding Styles

Hdl_code.book Page 28 Thursday, February 26, 2004 4:23 PM
input enable, data;
output y;
reg y;

always @(enable or data)
if (enable)

y = data;
endmodule

D-Latch with Gated Asynchronous Data

The following examples infer a D-latch with gated asynchronous data.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity d_latch_e is
port (enable, gate, data : in std_logic;

q : out std_logic);
end d_latch_e;
architecture behave of d_latch_e is
begin
process (enable, gate, data) begin

if (enable = '1') then
q <= data and gate;

end if;
end process;
end behave;

Verilog
module d_latch_e(enable, gate, data, q);

input enable, gate, data;
output q;
reg q;

Figure 2-10. D-Latch with Gated Asynchronous Data

data

enable

q
gate
28 Actel HDL Coding Style Guide

Sequential Devices

Hdl_code.book Page 29 Thursday, February 26, 2004 4:23 PM
always @ (enable or data or gate)
if (enable)
q = (data & gate);

endmodule

D-Latch with Gated Enable

The following examples infer a D-latch with gated enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity d_latch_en is
port (enable, gate, d: in std_logic;

q : out std_logic);
end d_latch_en;
architecture behave of d_latch_en is
begin
process (enable, gate, d) begin

if ((enable and gate) = '1') then
q <= d;

end if;
end process;
end behave;

Verilog
module d_latch_en(enable, gate, d, q);

input enable, gate, d;
output q;
reg q;

always @ (enable or d or gate)
if (enable & gate)

Figure 2-11. D-Latch with Gated Enable

enable

d q

gate
Actel HDL Coding Style Guide 29

Technology Independent Coding Styles

Hdl_code.book Page 30 Thursday, February 26, 2004 4:23 PM
q = d;
endmodule

D-Latch with Asynchronous Reset

The following examples infer a D-latch with an asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity d_latch_rst is
port (enable, data, reset: in std_logic;

q : out std_logic);
end d_latch_rst;
architecture behav of d_latch_rst is
begin
process (enable, data, reset) begin

if (reset = '0') then
q <= '0';

elsif (enable = '1') then
q <= data;

end if;
end process;
end behav;

Verilog
module d_latch_rst (reset, enable, data, q);

input reset, enable, data;
output q;
reg q;

always @ (reset or enable or data)
if (~reset)
q = 1'b0;

data

enable

reset

q

Figure 2-12. D-Latch
30 Actel HDL Coding Style Guide

Operators

Hdl_code.book Page 31 Thursday, February 26, 2004 4:23 PM
else if (enable)
q = data;

endmodule

Operators
A number of bit-wise operators are available to you: Arithmetic, Concentration and Replication,
Conditional, Equality, Logical Bit-wise, Logical Comparison, Reduction, Relational, Shift, and
Unary Arithmetic (Sign). These operators and their availability in VHDL or Verilog are compared
in Table 2-1.

Table 2-1. VHDL and Verilog Operators

Operation
Operator

VHDL Verilog

Arithmetic Operators
exponential
multiplication
division
addition
subtraction
modulus
remainder
absolute value

**
*
/
+
-
mod
rem
abs

*
/
+
-
%

Concentration and Replication Operators
concentration
replication

& { }
{{ }}

Conditional Operator
conditional ?:

Equality Operators
equality
inequality

=
/=

==
!=
Actel HDL Coding Style Guide 31

Technology Independent Coding Styles

Hdl_code.book Page 32 Thursday, February 26, 2004 4:23 PM
Logical Bit-wise Operators
unary negation NOT
binary AND
binary OR
binary NAND
binary NOR
binary XOR
binary XNOR

not
and
or
nand
nor
xor
xnor

~
&
|

^
^~ or ~^

Logial Comparison Operators
NOT
AND
OR

not
and
or

!
&&
||

Reduction Operators
AND
OR
NAND
NOR
XOR
XNOR

&
|
~&
~|
^
^~ or ~^

Relational Operators
less than
less than or equal to
greater than
greater than or equal to

<
<=
>
>=

<
<=
>
>=

Shift Operators
logical shift left
logical shift right
arithmetic shift left
arithmetic shift right
logical rotate left
logical rotate right

sll
srl
sla
sra
rol
ror

<<
>>

Unary Arithmetic Operators
identity
negotiation

+
-

+
-

Table 2-1. VHDL and Verilog Operators (Continued)

Operation
Operator

VHDL Verilog
32 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 33 Thursday, February 26, 2004 4:23 PM
Datapath
Datapath logic is a structured repetitive function. These structures are modeled in various different
implementations based on area and timing constraints. Most synthesis tools generate optimal
implementations for the target technology.

Priority Encoders Using If-Then-Else
An if-then-else statement is used to conditionally execute sequential statements based on a value.
Each condition of the if-then-else statement is checked in order against that value until a true
condition is found. Statements associated with the true condition are then executed and the rest of
the statement is ignored. If-then-else statements should be used to imply priority on a late arriving
signal. In the following examples, shown in Figure 2-13, signal c is a late arriving signal.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity my_if is
port (c, d, e, f: in std_logic;

s : in std_logic_vector(1 downto 0);
pout : out std_logic);

end my_if;
architecture my_arc of my_if is
begin
myif_pro: process (s, c, d, e, f) begin

if s = “00” then

f

e

d

c
s=10

s=01

s=00

pout

Three C modules

Figure 2-13. Priority Encoder Using an If-Then-Else Statement
Actel HDL Coding Style Guide 33

Technology Independent Coding Styles

Hdl_code.book Page 34 Thursday, February 26, 2004 4:23 PM
pout <= c;
elsif s = “01” then
pout <= d;

elsif s = “10” then
pout <= e;

else pout <= f;
end if;

end process myif_pro;
end my_arc;

Verilog
module IF_MUX (c, d, e, f, s, pout);

input c, d, e, f;
input [1:0]s;
output pout;
reg pout;

always @(c or d or e or f or s) begin
if (s == 2'b00)
pout = c;

else if (s ==2'b01)
pout = d;

else if (s ==2'b10)
pout = e;

else pout = f;
end

endmodule

Multiplexors Using Case
A case statement implies parallel encoding. Use a case statement to select one of several alternative
statement sequences based on the value of a condition. The condition is checked against each choice
in the case statement until a match is found. Statements associated with the matching choice are
then executed. The case statement must include all possible values for a condition or have a default
choice to be executed if none of the choices match. The following examples infer multiplexors using
a case statement. Refer to “Multiplexors” on page 77 for additional information about using
multiplexors with the Actel architecture.

VHDL synthesis tools automatically assume parallel operation without priority in case statements.
However, some Verilog tools assume priority, and you may need to add a directive to your case
34 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 35 Thursday, February 26, 2004 4:23 PM
statement to ensure that no priority is assumed. refer to the documentation provided with your
synthesis tool for information about creating case statements without priority.

4:1 Multiplexor

The following examples infer a 4:1 multiplexor using a case statement.

VHDL
--4:1 Multiplexor
library IEEE;
use IEEE.std_logic_1164.all;
entity mux is
port (C, D, E, F : in std_logic;

S : in std_logic_vector(1 downto 0);
mux_out : out std_logic);

end mux;
architecture my_mux of mux is
begin
mux1: process (S, C, D, E, F) begin
case s is

when “00” => muxout <= C;
when “01” => muxout <= D;
when “10” => muxout <= E;
when others => muxout <= F;

end case;
end process mux1;
end my_mux;

Verilog
//4:1 Multiplexor
module MUX (C, D, E, F, S, MUX_OUT);

input C, D, E, F;
input [1:0] S;

C

F

MUX_OUT
D

E
MUX

S(1:0)

Figure 2-14. Multiplexor Using a Case Statement
Actel HDL Coding Style Guide 35

Technology Independent Coding Styles

Hdl_code.book Page 36 Thursday, February 26, 2004 4:23 PM
output MUX_OUT;
reg MUX_OUT;

always @(C or D or E or F or S)
begin
case (S)

2'b00 : MUX_OUT = C;
2'b01 : MUX_OUT = D;
2'b10 : MUX_OUT = E;
default : MUX_OUT = F;

endcase
end
endmodule

12:1 Multiplexor

The following examples infer a 12:1 multiplexor using a case statement.

VHDL
-- 12:1 mux
library ieee;
use ieee.std_logic_1164.all;
-- Entity declaration:
entity mux12_1 is
port
(
mux_sel: in std_logic_vector (3 downto 0);-- mux select
A: in std_logic;
B: in std_logic;
C: in std_logic;
D: in std_logic;
E: in std_logic;
F: in std_logic;
G: in std_logic;
H: in std_logic;
I: in std_logic;
J: in std_logic;
K: in std_logic;
M: in std_logic;
mux_out: out std_logic -- mux output

);
end mux12_1;
-- Architectural body:
architecture synth of mux12_1 is
begin
36 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 37 Thursday, February 26, 2004 4:23 PM
proc1: process (mux_sel, A, B, C, D, E, F, G, H, I, J, K, M)
begin
case mux_sel is
when "0000" => mux_out<= A;
when "0001" => mux_out <= B;
when "0010" => mux_out <= C;
when "0011” => mux_out <= D;
when "0100" => mux_out <= E;
when "0101" => mux_out <= F;
when "0110" => mux_out <= G;
when "0111" => mux_out <= H;
when "1000" => mux_out <= I;
when "1001" => mux_out <= J;
when "1010" => mux_out <= K;
when "1011" => mux_out <= M;
when others => mux_out<= '0';

end case;
end process proc1;

end synth;

Verilog
// 12:1 mux
module mux12_1(mux_out,

mux_sel,M,L,K,J,H,G,F,E,D,C,B,A
);

output mux_out;
input [3:0] mux_sel;
input M;
input L;
input K;
input J;
input H;
input G;
input F;
input E;
input D;
input C;
input B;
input A;

reg mux_out;
Actel HDL Coding Style Guide 37

Technology Independent Coding Styles

Hdl_code.book Page 38 Thursday, February 26, 2004 4:23 PM
// create a 12:1 mux using a case statement
always @ ({mux_sel[3:0]} or M or L or K or J or H or G or F or E or D or C
or B or A)
begin: mux_blk
case ({mux_sel[3:0]}) // synthesis full_case parallel_case

4'b0000 : mux_out = A;
4'b0001 : mux_out = B;
4'b0010 : mux_out = C;
4'b0011 : mux_out = D;
4'b0100 : mux_out = E;
4'b0101 : mux_out = F;
4'b0110 : mux_out = G;
4'b0111 : mux_out = H;
4'b1000 : mux_out = J;
4'b1001 : mux_out = K;
4'b1010 : mux_out = L;
4'b1011 : mux_out = M;
4'b1100 : mux_out = 1'b0;
4'b1101 : mux_out = 1'b0;
4'b1110 : mux_out = 1'b0;
4'b1111 : mux_out = 1'b0;

endcase
end

endmodule

Case X Multiplexor

The following Verilog example infers a multiplexor using a don’t care case x statement. Actel does
not recommend using don’t care case x statements in VHDL. VHDL synthesis tools do not
typically support the don’t care value as well as Verilog tools.

Verilog
//8 bit 4:1 multiplexor with don't care X, 3:1 equivalent mux
module mux4 (a, b, c, sel, q);
input [7:0] a, b, c;
input [1:0] sel;
output [7:0] q;
reg [7:0] q;
always @ (sel or a or b or c)
casex (sel)

2'b00: q = a;
2'b01: q = b;
2'b1x: q = c;
default: q = c;

endcase
38 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 39 Thursday, February 26, 2004 4:23 PM
endmodule

Decoders
Decoders are used to decode data that has been previously encoded using binary or another type of
encoding. The following examples infer a 3-8 line decoder with an enable.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity decode is

port (Ain : in std_logic_vector (2 downto 0);
En: in std_logic;
Yout : out std_logic_vector (7 downto 0));

end decode;
architecture decode_arch of decode is
begin

process (Ain)
begin

if (En='0') then
Yout <= (others => '0');

else
case Ain is

when "000" => Yout <= "00000001";
when "001" => Yout <= "00000010";
when "010" => Yout <= "00000100";
when "011" => Yout <= "00001000";
when "100" => Yout <= "00010000";
when "101" => Yout <= "00100000";
when "110" => Yout <= "01000000";
when "111" => Yout <= "10000000";
when others => Yout <= "00000000";

end case;
end if;

end process;
end decode_arch;

Verilog
module decode (Ain, En, Yout);

input En;
input [2:0] Ain;
output [7:0] Yout;
Actel HDL Coding Style Guide 39

Technology Independent Coding Styles

Hdl_code.book Page 40 Thursday, February 26, 2004 4:23 PM
reg [7:0] Yout;
always @ (En or Ain)
begin
if (!En)
Yout = 8'b0;

else
case (Ain)
3'b000 : Yout = 8'b00000001;
3'b001 : Yout = 8'b00000010;
3'b010 : Yout = 8'b00000100;
3'b011 : Yout = 8'b00001000;
3'b100 : Yout = 8'b00010000;
3'b101 : Yout = 8'b00100000;
3'b110 : Yout = 8'b01000000;
3'b111 : Yout = 8'b10000000;
default : Yout = 8'b00000000;

endcase
end

endmodule

Counters
Counters count the number of occurrences of an event that occur either randomly or at uniform
intervals. You can infer a counter in your design. However, most synthesis tools cannot infer optimal
implementations of counters higher than 8-bits. If your counter is in the critical path of a speed and
area critical design, Actel recommends that you use the ACTgen Macro Builder to build a counter.
Once generated, instantiate the ACTgen counter in your design. Refer to “ACTgen Counter” on
page 91 for examples of ACTgen counter instantiation. The following examples infer different types
of counters.

8-bit Up Counter with Count Enable and Asynchronous Reset

The following examples infer an 8-bit up counter with count enable and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
entity counter8 is
port (clk, en, rst : in std_logic;

count : out std_logic_vector (7 downto 0));
end counter8;
40 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 41 Thursday, February 26, 2004 4:23 PM
architecture behav of counter8 is
signal cnt: std_logic_vector (7 downto 0);
begin
process (clk, en, cnt, rst)

begin
if (rst = '0') then

cnt <= (others => '0');
elsif (clk'event and clk = '1') then

if (en = '1') then
cnt <= cnt + '1';

end if;
end process;

count <= cnt;
end behav;

Verilog
module count_en (en, clock, reset, out);

parameter Width = 8;
input clock, reset, en;
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clock or negedge reset)
if(!reset)

out = 8'b0;
else if(en)

out = out + 1;
endmodule

8-bit Up Counter with Load and Asynchronous Reset

The following examples infer an 8-bit up counter with load and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
entity counter is

port (clk, reset, load: in std_logic;
data: in std_logic_vector (7 downto 0);
count: out std_logic_vector (7 downto 0));

end counter;
architecture behave of counter is

signal count_i : std_logic_vector (7 downto 0);
begin
Actel HDL Coding Style Guide 41

Technology Independent Coding Styles

Hdl_code.book Page 42 Thursday, February 26, 2004 4:23 PM
process (clk, reset)
begin
if (reset = '0') then

count_i <= (others => '0');
elsif (clk'event and clk = '1') then
if load = '1' then

count_i <= data;
else

count_i <= count_i + '1';
end if;

end if;
end process;
count <= count_i;

end behave;

Verilog
module count_load (out, data, load, clk, reset);

parameter Width = 8;
input load, clk, reset;
input [Width-1:0] data;
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clk or negedge reset)
if(!reset)

out = 8'b0;
else if(load)

out = data;
else

out = out + 1;
endmodule

8-bit Up Counter with Load, Count Enable, Terminal Count and
Asynchronous Reset

The following examples infer an 8-bit up counter with load, count enable, terminal count, and
asynchronous reset.

Verilog
module count_load (out, cout, data, load, clk, en, reset);
parameter Width = 8;

input load, clk, en, reset;
input [Width-1:0] data;
output cout; // carry out
output [Width-1:0] out;
reg [Width-1:0] out;

always @(posedge clk or negedge reset)
if(!reset)
42 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 43 Thursday, February 26, 2004 4:23 PM
out = 8'b0;
else if(load)
out = data;

else if(en)
out = out + 1;

// cout=1 when all out bits equal 1
assign cout = &out;
endmodule

N-bit Up Counter with Load, Count Enable, and Asynchronous Reset

The following examples infer an n-bit up counter with load, count enable, and asynchronous reset.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
entity counter is
generic (width : integer := n);
port (data : in std_logic_vector (width-1 downto 0);

 load, en, clk, rst : in std_logic;
 q : out std_logic_vector (width-1 downto 0));

end counter;
architecture behave of counter is
signal count : std_logic_vector (width-1 downto 0);
begin
process(clk, rst)
begin
if rst = '1' then
count <= (others => '0');

elsif (clk'event and clk = '1') then
if load = '1' then
count <= data;

elsif en = '1' then
count <= count + '1';

end if;
end if;

end process;
q <= count;
end behave;
Actel HDL Coding Style Guide 43

Technology Independent Coding Styles

Hdl_code.book Page 44 Thursday, February 26, 2004 4:23 PM
Arithmetic Operators
Synthesis tools generally are able to infer arithmetic operators for the target technology. The
following examples infer addition, subtraction, division and multiplication operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity arithmetic is
port (A, B: in std_logic_vector(3 downto 0);
 Q1: out std_logic_vector(4 downto 0);
 Q2, Q3: out std_logic_vector(3 downto 0);
 Q4: out std_logic_vector(7 downto 0));

end arithmetic;
architecture behav of arithmetic is
begin
process (A, B)
begin
Q1 <= ('0' & A) + ('0' & B); --addition
Q2 <= A - B; --subtraction
Q3 <= A / B; --division
Q4 <= A * B; --multiplication

end process;
end behav;

If the multiply and divide operands are powers of 2, replace them with shift registers. Shift registers
provide speed optimized implementations with large savings in area. For example:

Q <= C/16 + C*4;

can be represented as:

Q <= shr (C, “100”) + shl (C, “10”);

or

VHDL Q <= “0000” & C (8 downto 4) + C (6 downto 0) & ”00”;

The functions “shr” and “shl” are available in the IEEE.std_logic_arith.all library.

Verilog
module arithmetic (A, B, Q1, Q2, Q3, Q4);
44 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 45 Thursday, February 26, 2004 4:23 PM
input [3:0] A, B;
output [4:0] Q1;
output [3:0] Q2, Q3;
output [7:0] Q4;
reg [4:0] Q1;
reg [3:0] Q2, Q3;
reg [7:0] Q4;

always @ (A or B)
begin
Q1 = A + B; //addition
Q2 = A - B; //subtraction
Q3 = A / 2; //division
Q4 = A * B; //multiplication

end
endmodule

If the multiply and divide operands are powers of 2, replace them with shift registers. Shift registers
provide speed optimized implementations with large savings in area. For example:

Q = C/16 + C*4;

can be represented as:

Q = {4b'0000 C[8:4]} + {C[6:0] 2b'00};

Relational Operators
Relational operators compare two operands and indicate whether the comparison is true or false.
The following examples infer greater than, less than, greater than equal to, and less than equal to
comparators. Synthesis tools generally optimize relational operators for the target technology.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
entity relational is
port (A, B : in std_logic_vector(3 downto 0);
 Q1, Q2, Q3, Q4 : out std_logic);

end relational;
architecture behav of relational is
begin
process (A, B)
begin
-- Q1 <= A > B; -- greater than
-- Q2 <= A < B; -- less than
Actel HDL Coding Style Guide 45

Technology Independent Coding Styles

Hdl_code.book Page 46 Thursday, February 26, 2004 4:23 PM
-- Q3 <= A >= B; -- greater than equal to
if (A <= B) then –- less than equal to
Q4 <= '1';

else
Q4 <= '0';

end if;
end process;
end behav;

Verilog
module relational (A, B, Q1, Q2, Q3, Q4);
input [3:0] A, B;
output Q1, Q2, Q3, Q4;
reg Q1, Q2, Q3, Q4;

always @ (A or B)
begin
 // Q1 = A > B; //greater than
 // Q2 = A < B; //less than
 // Q3 = A >= B; //greater than equal to
 if (A <= B) //less than equal to
Q4 = 1;

 else
Q4 = 0;

 end
endmodule

Equality Operator
The equality and non-equality operators indicate a true or false output based on whether the two
operands are equivalent or not. The following examples infer equality operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity equality is
port (

 A: in STD_LOGIC_VECTOR (3 downto 0);
 B: in STD_LOGIC_VECTOR (3 downto 0);
 Q1: out STD_LOGIC;
 Q2: out STD_LOGIC
);

end equality;
architecture equality_arch of equality is
begin
process (A, B)
46 Actel HDL Coding Style Guide

Datapath

Hdl_code.book Page 47 Thursday, February 26, 2004 4:23 PM
begin
Q1 <= A = B; -- equality
if (A /= B) then -- inequality
Q2 <= '1';

else
Q2 <= '0';

end if;
end process;

end equality_arch;

OR
library IEEE;
use IEEE.std_logic_1164.all;
entity equality is
port (

 A: in STD_LOGIC_VECTOR (3 downto 0);
 B: in STD_LOGIC_VECTOR (3 downto 0);
 Q1: out STD_LOGIC;
 Q2: out STD_LOGIC
);

end equality;
architecture equality_arch of equality is
begin

Q1 <= '1' when A = B else '0'; -- equality
Q2 <= '1' when A /= B else '0'; -- inequality

end equality_arch;

Verilog
module equality (A, B, Q1, Q2);
input [3:0] A;
input [3:0] B;
output Q1;
output Q2;
reg Q1, Q2;

always @ (A or B)
begin
Q1 = A == B; //equality
if (A != B) //inequality
Q2 = 1;

else
Q2 = 0;

end
endmodule
Actel HDL Coding Style Guide 47

Technology Independent Coding Styles

Hdl_code.book Page 48 Thursday, February 26, 2004 4:23 PM
Shift Operators
Shift operators shift data left or right by a specified number of bits. The following examples infer left
and right shift operators.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity shift is
port (data : in std_logic_vector(3 downto 0);
q1, q2 : out std_logic_vector(3 downto 0));

end shift;
architecture rtl of shift is
begin
process (data)
begin
 q1 <= shl (data, "10"); -- logical shift left
 q2 <= shr (data, "10"); --logical shift right
end process;

end rtl;

OR
library IEEE;
use IEEE.std_logic_1164.all;
entity shift is
port (data : in std_logic_vector(3 downto 0);

q1, q2 : out std_logic_vector(3 downto 0));
end shift;
architecture rtl of shift is
begin
process (data)
begin
 q1 <= data(1 downto 0) & “10”; -- logical shift left
 q2 <= “10” & data(3 downto 2); --logical shift right
end process;

end rtl;
48 Actel HDL Coding Style Guide

Finite State Machine

Hdl_code.book Page 49 Thursday, February 26, 2004 4:23 PM
Verilog
module shift (data, q1, q2);
input [3:0] data;
output [3:0] q1, q2;
parameter B = 2;
reg [3:0] q1, q2;

always @ (data)
begin
q1 = data << B; // logical shift left
q2 = data >> B; //logical shift right

end
endmodule

Finite State Machine
A finite state machine (FSM) is a type of sequential circuit that is designed to sequence through
specific patterns of finite states in a predetermined sequential manner. There are two types of FSM,
Mealy and Moore. The Moore FSM has outputs that are a function of current state only. The
Mealy FSM has outputs that are a function of the current state and primary inputs. An FSM
consists of three parts:

1. Sequential Current State Register: The register, a set of n-bit flip-flops (state vector flip-flops)
clocked by a single clock signal is used to hold the state vector (current state or simply state) of
the FSM. A state vector with a length of n-bit has 2

n
 possible binary patterns, known as state

encoding. Often, not all 2
n
 patterns are needed, so the unused ones should be designed not to

occur during normal operation. Alternatively, an FSM with m-state requires at least log2(m)
state vector flip-flops.

2. Combinational Next State Logic: An FSM can only be in one state at any given time, and each
active transition of the clock causes it to change from its current state to the next state, as defined
by the next state logic. The next state is a function of the FSM’s inputs and its current state.

3. Combinational Output Logic: Outputs are normally a function of the current state and possibly
the FSM’s primary inputs (in the case of a Mealy FSM). Often in a Moore FSM, you may want
to derive the outputs from the next state instead of the current state, when the outputs are
registered for faster clock-to-out timings.
Actel HDL Coding Style Guide 49

Technology Independent Coding Styles

Hdl_code.book Page 50 Thursday, February 26, 2004 4:23 PM
Moore and Mealy FSM structures are shown in Figure 2-15 and Figure 2-16.

Use a reset to guarantee fail-safe behavior. This ensures that the FSM is always initialized to a
known valid state before the first active clock transition and normal operation begins. In the absence
of a reset, there is no way of predicting the initial value of the state register flip-flops during the
“power up” operation of an Actel FPGA. It could power up and become permanently stuck in an
unencoded state. The reset should be implemented in the sequential current state process of the
FSM description.

An asynchronous reset is generally preferred over a synchronous reset because an asynchronous reset
does not require decoding unused states, minimizing the next state logic.

Because FPGA technologies are register rich, “one hot” state machine implementations generated
by the synthesis tool may generate optimal area and performance results

Inputs
OutputsNext State

Logic
(Combinatorial)

Current State
Register*

(Sequential)

Output
Logic

(Combinatorial)

Asychronous ResetSychronous Reset

Next

State

Current

State

* State Vector Flip-flops

Figure 2-15. Basic Structure of a Moore FSM

Inputs
OutputsNext State

Logic
(Combinatorial)

Current State
Register*

(Sequential)

Output
Logic

(Combinatorial)

Asychronous ResetSychronous Reset

Next

State
Current

State

* State Vector Flip-flops

Figure 2-16. Basic Structure of a Mealy FSM
50 Actel HDL Coding Style Guide

Finite State Machine

Hdl_code.book Page 51 Thursday, February 26, 2004 4:23 PM
Mealy Machine
The following examples represent a Mealy FSM model for the Mealy state diagram shown in Figure
2-17.

VHDL
-- Example of a 5-state Mealy FSM

library ieee;
use ieee.std_logic_1164.all;
entity mealy is
port (clock, reset: in std_logic;
data_out: out std_logic;
data_in: in std_logic_vector (1 downto 0));

end mealy;
architecture behave of mealy is
type state_values is (st0, st1, st2, st3, st4);
signal pres_state, next_state: state_values;

begin
-- FSM register

Figure 2-17. Mealy State Diagram

x0/1

x1/1 1x/1

10/1

11/1

00/0 x1/0

11/1 0x/0

00/0

01/1

10/1
0x/0

10/0

ST3

ST2

ST1ST0

ST4
Actel HDL Coding Style Guide 51

Technology Independent Coding Styles

Hdl_code.book Page 52 Thursday, February 26, 2004 4:23 PM
statereg: process (clock, reset)
begin
if (reset = '0') then
pres_state <= st0;

elsif (clock'event and clock ='1') then
pres_state <= next_state;

end if;
end process statereg;

-- FSM combinational block
fsm: process (pres_state, data_in)
begin

case pres_state is
when st0 =>
case data_in is
when "00" => next_state <= st0;
when "01" => next_state <= st4;
when "10" => next_state <= st1;
when "11" => next_state <= st2;
when others => next_state <= (others <= ‘x’);

end case;
when st1 =>
case data_in is
when "00" => next_state <= st0;
when "10" => next_state <= st2;
when others => next_state <= st1;

end case;
when st2 =>
case data_in is
when "00" => next_state <= st1;
when "01" => next_state <= st1;
when "10" => next_state <= st3;
when "11" => next_state <= st3;
when others => next_state <= (others <= ‘x’);

end case;
when st3 =>
case data_in is
when "01" => next_state <= st4;
when "11" => next_state <= st4;
when others => next_state <= st3;

end case;
when st4 =>
case data_in is
when "11" => next_state <= st4;
when others => next_state <= st0;

end case;
when others => next_state <= st0;
52 Actel HDL Coding Style Guide

Finite State Machine

Hdl_code.book Page 53 Thursday, February 26, 2004 4:23 PM
end case;
end process fsm;
-- Mealy output definition using pres_state w/ data_in
outputs: process (pres_state, data_in)
begin

case pres_state is
when st0 =>
case data_in is
when "00" => data_out <= '0';
when others => data_out <= '1';

end case;
when st1 => data_out <= '0';
when st2 =>
case data_in is
when "00" => data_out <= '0';
when "01" => data_out <= '0';
when others => data_out <= '1';

end case;
when st3 => data_out <= '1';
when st4 =>
case data_in is
when "10" => data_out <= '1';
when "11" => data_out <= '1';
when others => data_out <= '0';

end case;
when others => data_out <= '0';

end case;
end process outputs;
end behave;

Verilog
// Example of a 5-state Mealy FSM

module mealy (data_in, data_out, reset, clock);
output data_out;
input [1:0] data_in;
input reset, clock;
reg data_out;
reg [2:0] pres_state, next_state;
parameter st0=3'd0, st1=3'd1, st2=3'd2, st3=3'd3, st4=3'd4;
// FSM register

always @ (posedge clock or negedge reset)
Actel HDL Coding Style Guide 53

Technology Independent Coding Styles

Hdl_code.book Page 54 Thursday, February 26, 2004 4:23 PM
begin: statereg
if(!reset)// asynchronous reset
pres_state = st0;

else
pres_state = next_state;

end // statereg

// FSM combinational block
always @(pres_state or data_in)
begin: fsm

case (pres_state)
st0: case(data_in)
2'b00: next_state=st0;
2'b01: next_state=st4;
2'b10: next_state=st1;
2'b11: next_state=st2;

endcase
st1: case(data_in)
2'b00: next_state=st0;
2'b10: next_state=st2;
default: next_state=st1;

endcase
st2: case(data_in)
2'b0x: next_state=st1;
2'b1x: next_state=st3;

endcase
st3: case(data_in)
2'bx1: next_state=st4;
default: next_state=st3;

endcase
st4: case(data_in)
2'b11: next_state=st4;
default: next_state=st0;

endcase
default: next_state=st0;
endcase

end // fsm

// Mealy output definition using pres_state w/ data_in
always @(data_in or pres_state)
begin: outputs
case(pres_state)
st0: case(data_in)
2'b00: data_out=1'b0;
default: data_out=1'b1;

endcase
54 Actel HDL Coding Style Guide

Finite State Machine

Hdl_code.book Page 55 Thursday, February 26, 2004 4:23 PM
st1: data_out=1'b0;
st2: case(data_in)
2'b0x: data_out=1'b0;
default: data_out=1'b1;

endcase
st3: data_out=1'b1;
st4: case(data_in)
2'b1x: data_out=1'b1;
default: data_out=1'b0;

endcase
default: data_out=1'b0;
endcase

end // outputs
endmodule

Moore Machine
The following examples represent a Moore FSM model for the Mealy state diagram shown in
Figure 2-17 on page 51.

VHDL
-- Example of a 5-state Moore FSM

library ieee;
use ieee.std_logic_1164.all;
entity moore is
port (clock, reset: in std_logic;
data_out: out std_logic;
data_in: in std_logic_vector (1 downto 0));

end moore;
architecture behave of moore is
type state_values is (st0, st1, st2, st3, st4);
signal pres_state, next_state: state_values;

begin
-- FSM register
statereg: process (clock, reset)
begin
if (reset = '0') then
pres_state <= st0;

elsif (clock ='1' and clock'event) then
pres_state <= next_state;

end if;
end process statereg;
Actel HDL Coding Style Guide 55

Technology Independent Coding Styles

Hdl_code.book Page 56 Thursday, February 26, 2004 4:23 PM
-- FSM combinational block
fsm: process (pres_state, data_in)
begin
 case pres_state is

when st0 =>
case data_in is
when "00" => next_state <= st0;
when "01" => next_state <= st4;
when "10" => next_state <= st1;
when "11" => next_state <= st2;
when others => next_state <= (others <= ‘x’);

end case;
when st1 =>
case data_in is
when "00" => next_state <= st0;
when "10" => next_state <= st2;
when others => next_state <= st1;

end case;
when st2 =>
case data_in is
when "00" => next_state <= st1;
when "01" => next_state <= st1;
when "10" => next_state <= st3;
when "11" => next_state <= st3;
when others => next_state <= (others <= ‘x’);

end case;
when st3 =>
case data_in is
when "01" => next_state <= st4;
when "11" => next_state <= st4;
when others => next_state <= st3;

end case;
when st4 =>
case data_in is
when "11" => next_state <= st4;
when others => next_state <= st0;

end case;
when others => next_state <= st0;

 end case;
end process fsm;
-- Moore output definition using pres_state only
outputs: process (pres_state)
begin
 case pres_state is
56 Actel HDL Coding Style Guide

Finite State Machine

Hdl_code.book Page 57 Thursday, February 26, 2004 4:23 PM
when st0 => data_out <= '1';
 when st1 => data_out <= '0';
 when st2 => data_out <= '1';
 when st3 => data_out <= '0';
 when st4 => data_out <= '1';
when others => data_out <= '0';

end case;
end process outputs;
end behave;

Verilog
// Example of a 5-state Moore FSM

module moore (data_in, data_out, reset, clock);
output data_out;
input [1:0] data_in;
input reset, clock;
reg data_out;
reg [2:0] pres_state, next_state;
parameter st0=3'd0, st1=3'd1, st2=3'd2, st3=3'd3, st4=3'd4;

//FSM register
always @(posedge clock or negedge reset)
begin: statereg
if(!reset)
pres_state = st0;

else
pres_state = next_state;

end // statereg

// FSM combinational block
always @(pres_state or data_in)
begin: fsm
case (pres_state)
st0: case(data_in)

2'b00: next_state=st0;
2'b01: next_state=st4;
2'b10: next_state=st1;
2'b11: next_state=st2;

endcase
st1: case(data_in)

2'b00: next_state=st0;
2'b10: next_state=st2;
Actel HDL Coding Style Guide 57

Technology Independent Coding Styles

Hdl_code.book Page 58 Thursday, February 26, 2004 4:23 PM
default: next_state=st1;
endcase
st2: case(data_in)

2'b0x: next_state=st1;
2'b1x: next_state=st3;

endcase
st3: case(data_in)

2'bx1: next_state=st4;
default: next_state=st3;

endcase
st4: case(data_in)

2'b11: next_state=st4;
default: next_state=st0;

endcase
default: next_state=st0;

endcase
end // fsm

// Moore output definition using pres_state only
always @(pres_state)
begin: outputs
case(pres_state)
st0: data_out=1'b1;
st1: data_out=1'b0;
st2: data_out=1'b1;
st3: data_out=1'b0;
st4: data_out=1'b1;
default: data_out=1'b0;

endcase
end // outputs

endmodule // Moore

Input-Output Buffers
You can infer or instantiate a I/O buffers in your design. The following examples represent both
techniques. Regardless of which method you use, all I/O buffers should be declared at the top level
of the design.
58 Actel HDL Coding Style Guide

Input-Output Buffers

Hdl_code.book Page 59 Thursday, February 26, 2004 4:23 PM
Tri-State Buffer
A tri-state buffer is an output buffer with high-impedance capability. The following examples show
how to infer and instantiate a tri-state buffer.

Inference

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity tristate is
port (e, a : in std_logic;

 y : out std_logic);
end tristate;
architecture tri of tristate is
begin
process (e, a)
begin
if e = '1' then
y <= a;

else
y <= 'Z';

end if;
end process;

end tri;

OR
library IEEE;
use IEEE.std_logic_1164.all;
entity tristate is
port (e, a : in std_logic;

y : out std_logic);
end tristate;
architecture tri of tristate is
begin
Y <= a when (e = '1') else 'Z';

a

e

y

Figure 2-18. Tri-State Buffer
Actel HDL Coding Style Guide 59

Technology Independent Coding Styles

Hdl_code.book Page 60 Thursday, February 26, 2004 4:23 PM
end tri;

Verilog
module TRISTATE (e, a, y);
input a, e;
output y;
reg y;

always @ (e or a) begin
if (e)
y = a;

else
y = 1'bz;

end
endmodule

OR
module TRISTATE (e, a, y);
input a, e;
output y;

assign y = e ? a : 1'bZ;
endmodule

Instantiation

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity tristate is
port (e, a : in std_logic;
y : out std_logic);
end tristate;
architecture tri of tristate is
component TRIBUFF
port (D, E: in std_logic;
PAD: out std_logic);

end component;
begin
U1: TRIBUFF port map (D => a,

E => e,
60 Actel HDL Coding Style Guide

Input-Output Buffers

Hdl_code.book Page 61 Thursday, February 26, 2004 4:23 PM
PAD => y);
end tri;

Verilog
module TRISTATE (e, a, y);
input a, e;
output y;
TRIBUFF U1 (.D(a), .E(e), .PAD(y));

endmodule

Bi-Directional Buffer
A bi-directional buffer can be an input or output buffer with high impedance capability. The
following examples show how to infer and instantiate a bi-directional buffer.

Inference

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity bidir is
port (y : inout std_logic;

e, a: in std_logic;
b : out std_logic);

end bidir;
architecture bi of bidir is
begin
process (e, a)
begin
case e is
when '1' => y <= a;
when '0' => y <= 'Z';

e

ya

b

Figure 2-19. Bi-Directional Buffer
Actel HDL Coding Style Guide 61

Technology Independent Coding Styles

Hdl_code.book Page 62 Thursday, February 26, 2004 4:23 PM
when others => y <= 'X';
end case;

end process;
b <= y;
end bi;

Verilog
module bidir (e, y, a, b);

input a, e;
inout y;
output b;
reg y_int;
wire y, b;

always @ (a or e)
begin
if (e == 1'b1)
y_int <= a;

else
y_int <= 1'bz;

end
assign y = y_int;
assign b = y;
endmodule

Instantiation

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity bidir is
port (y : inout std_logic;
e, a: in std_logic;
b : out std_logic);
end bidir;
architecture bi of bidir is
component BIBUF
port (D, E: in std_logic;
Y : out std_logic;
PAD: inout std_logic);

end component;
62 Actel HDL Coding Style Guide

Generics and Parameters

Hdl_code.book Page 63 Thursday, February 26, 2004 4:23 PM
begin
U1: BIBUF port map (D => a,

 E => e,
 Y => b,
 PAD => y);

end bi;

Verilog
module bidir (e, y, a, b);

input a, e;
inout y;
output b;

BIBUF U1 (.PAD(y), .D(a), .E(e), .Y(b));

endmodule

Generics and Parameters
Generics and parameters are used to define the size of a component. This allows the design of
parameterized components for the size and feature sets that may be defined by values of the
instantiation parameters. The following examples show how to use generics and parameters when
describing a parameterized adder. Furthermore, this adder is instantiated for varying widths.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity adder is
generic (WIDTH : integer := 8);
port (A, B: in UNSIGNED(WIDTH-1 downto 0);

CIN: in std_logic;
COUT: out std_logic;
Y: out UNSIGNED(WIDTH-1 downto 0));

end adder;
architecture rtl of adder is
begin
process (A,B,CIN)
variable TEMP_A,TEMP_B,TEMP_Y:UNSIGNED(A'length downto 0);
begin
TEMP_A := '0' & A;
TEMP_B := '0' & B;
Actel HDL Coding Style Guide 63

Technology Independent Coding Styles

Hdl_code.book Page 64 Thursday, February 26, 2004 4:23 PM
TEMP_Y := TEMP_A + TEMP_B + CIN;
Y <= TEMP_Y (A'length-1 downto 0);
COUT <= TEMP_Y (A'length);

end process;
end rtl;

“Width” indicates the width of the adder. The instantiation for this parameterized adder for a bit
width of 16 is:

U1: adder generic map(16) port map (A_A, B_A, CIN_A, COUT_A,
Y_A);

Verilog
module adder (cout, sum, a, b, cin);
parameter Size = 8;
output cout;
output [Size-1:0] sum;
input cin;
input [Size-1:0] a, b;

assign {cout, sum} = a + b + cin;
endmodule

“Size” indicates the width of the adder. The instantiation for this parameterized adder for a bit width
of 16 is:

adder #(16) adder16(cout_A, sun_A, a_A, b_A, cin_A)
64 Actel HDL Coding Style Guide

Hdl_code.book Page 65 Thursday, February 26, 2004 4:23 PM
3
Performance Driven Coding

Unlike ASICs, FPGAs are module based arrays. Each logic level used on a path can add delay. As a
result, meeting timing constraints on a critical path with too many logic levels becomes difficult.
Using an efficient coding style is very important because it dictates the synthesis logic
implementation. This chapter describes synthesis implementations, techniques, and efficient design
practices that can be used to reduce logic levels on a critical path.

Reducing Logic Levels on Critical Paths
Each logic level on the critical path in an FPGA can add significant delay. To ensure that timing
constraints can be met, logic level usage must be considered when describing the behavior of a
design. The following examples illustrate how to reduce logic levels on critical paths.

Example 1
In the following VHDL example, the signal “critical” goes through three logic levels.

if (((Crtical='0' and Obi='1' and Sar='1')
or CpuG='0') and CpuR='0') then
Des <= Adr;

elsif (((Crtical='0' and Obi='1' and Sar='1')
or CpuG='0') and CpuR='1') then
Des <= Bdr;

elsif (Sar='0' and

Critical
Obi

CpuG

CpuR

Sar

Des
Actel HDL Coding Style Guide 65

Performance Driven Coding

Hdl_code.book Page 66 Thursday, February 26, 2004 4:23 PM
The signal “critical” is a late arriving signal. To reduce the logic level usage on “critical”, imply
priority by using an if-then-else statement. As a result, the signal “critical” goes through one logic
level, as shown below.

if (Critical='0') then
if (((Obi='1' and Sar='1')
or CpuG='0') and CpuR='0') then
Des <= Adr;

elsif (((Obi='1' and Sar='1')
or CpuG='0' and CpuR='1') then
Des <= Bdr;

end if;
end if;

Example 2
In the following example, the signal “critical” goes through two logic levels.

if (clk'event and clk ='1') then
if (non_critical and critical) then
out1 <= in1 ;

else
out1 <= in2 ;

end if;
end if;

Critical

Obi

CpuG

CpuR

Sar

Des

in1

in2

out1

clk

non_critical

critical
66 Actel HDL Coding Style Guide

Reducing Logic Levels on Critical Paths

Hdl_code.book Page 67 Thursday, February 26, 2004 4:23 PM
To reduce the logic level usage on “critical”, multiplex inputs “in1” and “in2” based on “non_critical”,
and call this output “out_temp”. Then multiplex “out_temp” and “in2” based on “critical”. As a
result, the signal “critical” goes through one logic level, as shown below.

signal out_temp : std_logic
if (non_critical)

out_temp <= in1;
else out_temp <= in2;

if (clk'event and clk ='1') then
if (critical) then

out1 <= out_temp;
else out1 <= in2;
end if;

end if;
end if;

in1

in2 out1

clk

non_critical

critical
Actel HDL Coding Style Guide 67

Performance Driven Coding

Hdl_code.book Page 68 Thursday, February 26, 2004 4:23 PM
Resource Sharing
Resource sharing can reduce the number of logic modules needed to implement HDL operations.
Without it, each HDL description is built into a separate circuit. The following VHDL examples
illustrate how to use resource sharing to reduce logic module utilization.

Example 1
This example implements four adders.

if (...(siz == 1)...)
count = count + 1;

else if (...((siz ==2)...)
count = count + 2;

else if (...(siz == 3)...)
count = count + 3;

else if (...(siz == 0)...)
count = count + 4;

By adding the following code, two adders can be eliminated:

if (...(siz == 0)...)
count = count + 4;

else if (...)
count = count + siz

Example 2
This example uses poor resource sharing to implement adders.

if (select)
sum <= A + B;

else
sum <= C + D;

A

B

sum

sel

C

D

MUX
68 Actel HDL Coding Style Guide

Resource Sharing

Hdl_code.book Page 69 Thursday, February 26, 2004 4:23 PM
Adders use valuable resources. To reduce resource usage, rewrite the code to infer two multiplexors
and one adder, as shown below.

if (sel)
temp1 <= A;
temp2 <= B;

else
temp1 <= C;
temp2 <= D;

sum <= temp1 + temp2;

Note: This example assumes the select line is not a late arriving signal.

A

C

sum

B

sel

D

temp 1

temp 2
Actel HDL Coding Style Guide 69

Performance Driven Coding

Hdl_code.book Page 70 Thursday, February 26, 2004 4:23 PM
Operators Inside Loops
Operators are resource intensive compared to multiplexors. If there is an operator inside a loop, the
synthesis tool has to evaluate all conditions. In the following VHDL example, the synthesis tool
builds four adders and one multiplexor. This implementation is only advisable if the select line “req”
is a late arriving signal.

vsum := sum;
for i in 0 to 3 loop

if (req(i)='1') then
vsum <= vsum + offset(i);

end if;
end loop;

offset[3]

vsum

vsum

sum

req[3:0]

offset[2]

offset[1]

vsum

offset[0]

vsum
70 Actel HDL Coding Style Guide

Coding for Combinability

Hdl_code.book Page 71 Thursday, February 26, 2004 4:23 PM
If the select line “req” is not critical, the operator should be moved outside the loop so the synthesis
tool can multiplex the data before performing the adder operation. The area efficient design is
implemented in a larger multiplexor and a single adder, as shown below.

vsum := sum;
for i in 0 to 3 loop

if (req(i)='1') then
offset_1 <= offset(i);

end if;
end loop;
vsum <= vsum + offset_1;

Coding for Combinability
Combinatorial modules can be merged into sequential modules in the antifuse architecture. This
results in a significant reduction in delay on the critical path as well as area reduction. However, cells
are only merged if the combinatorial module driving a basic flip-flop has a load of 1. In the following
VHDL example, the AND gate driving the flip-flop has a load of 2. As a result, the AND gate
cannot be merged into the sequential module.

offset[2]
offset[3]

offset[1]

req[3:0]

vsum

offset[0]

offset_1

a
b q1

q2

c

clk

en
Actel HDL Coding Style Guide 71

Performance Driven Coding

Hdl_code.book Page 72 Thursday, February 26, 2004 4:23 PM
one :process (clk, a, b, c, en) begin
if (clk'event and clk ='1') then

if (en = '1') then
q2 <= a and b and c;

end if;
q1 <= a and b and c;

end if;
end process one;

To enable merging, the AND gate has to be duplicated so that it has a load of 1. To duplicate the
AND gate, create two independent processes, as shown below. Once merged, one logic level has
been removed from the critical path.

Note: Some synthesis tools automatically duplicate logic on the critical path. Other synthesis tools
detect the function “a & b & c” in the two processes and share the function on a single gate.
If the function is shared, the logic is not duplicated and you should consider instantiation.

part_one: process (clk, a, b, c, en) begin
if (clk'event and clk ='1') then

if (en = '1') then
q2 <= a and b and c;

end if;
end if;
end process part_one;
part_two: process (clk, a, b, c) begin
if (clk'event and clk ='1') then

q1 <= a and b and c;
end if;
end process part_two;

Register Duplication
The delay on a net rises as the number of loads increase in the antifuse architecture. This is
acceptable for networks such as reset, but not others such as tri-state enable, etc. It is important to

a
b q1

q2

c

a
b
c en

clk

clk
72 Actel HDL Coding Style Guide

Register Duplication

Hdl_code.book Page 73 Thursday, February 26, 2004 4:23 PM
keep the fanout of a network below 16. In the following VHDL example, the signal “Tri_en” has a
fanout of 24.

architecture load of four_load is
signal Tri_en std_logic;

begin
loadpro: process (Clk)

begin
if (clk'event and clk ='1') then

Tri_end <= Tri_en;
end if;

end process loadpro;
endpro : process (Tri_end, Data_in)
begin

if (Tri_end = '1') then
out <= Data_in;

else
out <= (others => 'Z');

end if;
end process endpro;
end load;

To decrease the fanout by half, registers are duplicated on the signal “Tri_en” so the load is split in
half, as shown in the following example.

Clk

Tri_en Tri_end

Out(23:0)Data_in(23:0)

24 Loads
Actel HDL Coding Style Guide 73

Performance Driven Coding

Hdl_code.book Page 74 Thursday, February 26, 2004 4:23 PM
Note: Some synthesis tools duplicate registers to resolve timing and fanout violations and do not
require this coding technique.

architecture loada of two_load is
signal Tri_en1, Tri_en2 : std_logic;

begin
loadpro: process (Clk)

begin
if (clk'event and clk ='1') then

Tri_en1 <= Tri_en;
Tri_en2 <= Tri_en;

end if;
end process loadpro;
process (Tri_en1, Data_in)

begin
if (Tri_en1 = '1') then

out(23:12) <= Data_in(23:12);
else

out(23:12) <= (others => 'Z');
end if;

end process;
process (Tri_en2, Data_in)

begin
if (Tri_en2 = '1') then

out(11:0) <= Data_in(11:0);
else

Clk

Tri_en

Out(23:0)

Data_in(23:0)

12 Loads

12 Loads

Clk

Tri_en
Tri_en2

Tri_en1
74 Actel HDL Coding Style Guide

Partitioning a Design

Hdl_code.book Page 75 Thursday, February 26, 2004 4:23 PM
out(11:0) <= (others => 'Z');
end if;

end process;

Partitioning a Design
Most synthesis tools work best when optimizing medium sized blocks, approximately two to five
thousand gates at a time. To reduce synthesis time, you should partition designs so that module
block sizes do not exceed the recommendations of the synthesis tool vendor. When partitioning a
design into various blocks, it is good design practice to have registers at hierarchical boundaries. This
eliminates the need for time budgeting on the inputs and outputs. The following example shows
how to modify your HDL code so that registers are placed at hierarchical boundaries.

Registers Embedded Within a Module

a1

b1

b

clk

clk

a

c

Actel HDL Coding Style Guide 75

Performance Driven Coding

Hdl_code.book Page 76 Thursday, February 26, 2004 4:23 PM
process (clk, a, b) begin
if (clk'event and clk = '1') then
a1 <= a;
b1 <=b;

end if;
end process;
process (a1, b1)
begin c <= a1 + b1;
end process;

Registers Pushed Out at the Hierarchical Boundary

process (clk, a, b) begin
if (clk'event and clk = '1') then

c <= a + b;
end if;

end process;

clk

c
a

b

76 Actel HDL Coding Style Guide

Hdl_code.book Page 77 Thursday, February 26, 2004 4:23 PM
4
Technology Specific Coding Techniques

In addition to technology independent and performance driven coding, there are coding techniques
that you can use to take advantage of the Actel architecture to improve speed and area utilization of
your design. Additionally, most synthesis tools can implement random logic, control logic and
certain datapath macros. However, they may not generate technology optimal implementations for
datapath elements that cannot be inferred using operators, such as counters, RAM, FIFO, etc. This
chapter describes coding techniques to take advantage of technology specific features and how to
instantiate technology specific macros generated by the ACTgen Macro Builder tool for optimal
area and performance.

Multiplexors
Using case statements with the multiplexor based Actel architecture provides area and speed
efficient solutions and is more efficient than inference of priority encoders using if-then-else
statements. Actel recommends that you use case statements instead of long, nested if-then-else
statements to force mapping to multiplexors in the Actel architecture. Refer to “Multiplexors Using
Case” on page 34 for examples of multiplexor coding.

VHDL synthesis tools automatically assume parallel operation without priority in case statements.
However, some Verilog tools assume priority, and you may need to add a directive to your case
statement to ensure that no priority is assumed. Refer to the documentation provided with your
synthesis tool for information about creating case statements without priority.

Internal Tri-State to Multiplexor Mapping
All internal tri-states must be mapped to multiplexors. The antifuse technology only supports tri-
states as in/out ports, but not internal tri-states. The following examples show an internal tri-state
followed by a multiplexor that the internal tri-state should change to.
Actel HDL Coding Style Guide 77

Technology Specific Coding Techniques

Hdl_code.book Page 78 Thursday, February 26, 2004 4:23 PM
Note: Some synthesis tools automatically map internal tri-states to multiplexors.

VHDL Tri-State
library IEEE;
use IEEE.std_logic_1164.all;
entity tribus is
port (A, B, C, D : in std_logic_vector(7 downto 0);

E0, E1, E2, E3 : in std_logic;
Q : out std_logic_vector(7 downto 0));

end tribus;
architecture rtl of tribus is
begin
Q <= A when(E0 = '1') else "ZZZZZZZZ";
Q <= B when(E1 = '1') else "ZZZZZZZZ";
Q <= C when(E2 = '1') else "ZZZZZZZZ";
Q <= D when(E3 = '1') else "ZZZZZZZZ";

end rtl;

VHDL Multiplexor
library IEEE;
use IEEE.std_logic_1164.all;
entity muxbus is
port (A, B, C, D : in std_logic_vector(7 downto 0);
E0, E1, E2, E3 : in std_logic;
Q : out std_logic_vector(7 downto 0));
end muxbus;
architecture rtl of muxbus is
signal E_int : std_logic_vector(1 downto 0);
begin
process (E0, E1, E2, E3)

A[7:0]

E0

E1

E2

E3

D[7:0]

Q[7:0]B[7:0]

C[7:0]

TRI-STATE

TRI-STATE

TRI-STATE

TRI-STATE

A[7:0]

D[7:0]

Q[7:0]
B[7:0]

C[7:0]
MUX

E3..E0
78 Actel HDL Coding Style Guide

Internal Tri-State to Multiplexor Mapping

Hdl_code.book Page 79 Thursday, February 26, 2004 4:23 PM
variable E : std_logic_vector(3 downto 0);
begin
E := E0 & E1 & E2 & E3;

case E is
when "0001" => E_int <= "00";
when "0010" => E_int <= "01";
when "0100" => E_int <= "10";
when "1000" => E_int <= "11";
when others => E_int <= "--";

end case;
end process;

process (E_int, A, B, C, D)
begin
 case E_int is
 when "00" => Q <= D;
 when "01" => Q <= C;
 when "10" => Q <= B;
 when "11" => Q <= A;
 when others => Q <= (others => '-');
end case;

end process;
end rtl;

Verilog Tri-State
module tribus (A, B, C, D, E0, E1, E2, E3, Q);

input [7:0]A, B, C, D;
output [7:0]Q;
input E0, E1, E2, E3;

assign Q[7:0] = E0 ? A[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E1 ? B[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E2 ? C[7:0] : 8'bzzzzzzzz;
assign Q[7:0] = E3 ? D[7:0] : 8'bzzzzzzzz;
endmodule

Verilog Multiplexor
module muxbus (A, B, C, D, E0, E1, E2, E3, Q);

input [7:0]A, B, C, D;
output [7:0]Q;
input E0, E1, E2, E3;
wire [3:0] select4;
reg [1:0] select2;
reg [7:0]Q;

assign select4 = {E0, E1, E2, E3};
always @ (select4)
Actel HDL Coding Style Guide 79

Technology Specific Coding Techniques

Hdl_code.book Page 80 Thursday, February 26, 2004 4:23 PM
begin
case(select4)
4'b0001 : select2 = 2'b00;
4'b0010 : select2 = 2'b01;
4'b0100 : select2 = 2'b10;
4'b1000 : select2 = 2'b11;
default : select2 = 2'bxx;

endcase
end
always @ (select2 or A or B or C or D)
begin
case(select2)
2'b00 : Q = D;
2'b01 : Q = C;
2'b10 : Q = B;
2'b11 : Q = A;

endcase
end
endmodule

Registers
The XL, DX, MX, SX and ACT 3 families have dedicated asynchronous reset registers in the
sequential modules (SMOD). In each SMOD is a 4:1 multiplexor with some gating logic on the
select lines. Implementing a simple register or an asynchronous reset register allows the gating logic
in front of the register to be pulled into the SMOD, reducing the path delay by one level. This is
called full combinability. Full combinability offers improved speed, increasing a 50MHz operation
to 75MHz in some designs. The following examples show how to use registers for combinability and
discuss any speed or area penalty associated with using the register.
80 Actel HDL Coding Style Guide

Registers

Hdl_code.book Page 81 Thursday, February 26, 2004 4:23 PM
Synchronous Clear or Preset
The synchronous clear or preset register only uses part of the SMOD multiplexor, allowing for some
combinability. The following example shows how to share a synchronous register with a 2:1
multiplexor.

Figure 4-20. Single Module Implementation of a Synchronous
Clear or Preset Register

VHDL
-- register with active low sync preset shared with a 2-to-1 mux.

library ieee;
use ieee.std_logic_1164.all;
entity dfm_sync_preset is
PORT (d0, d1: in std_logic;
clk, preset, sel: in std_logic;
q: out std_logic;

end dfm_sync_preset;
architecture behav of dfm_sync_preset is
signal tmp_sel: std_logic_vector(1 downto 0);
signal q_tmp: std_logic;
begin
process (clk) begin
tmp_sel <= preset & sel;
if (clk'event and clk ='1') then

case tmp_sel is
when "00" => q_tmp <= '1';
when "01" => q_tmp <= '1';
when "10" => q_tmp <= d0;
when "11" => q_tmp <= d1;
when others => q_tmp <= '1';

end case;
end if;

end process;
q <= q_tmp;

clk
sel

sync_preset

d1
d0 q

D00
D01
D10
D11

S0
S1

SMOD
Actel HDL Coding Style Guide 81

Technology Specific Coding Techniques

Hdl_code.book Page 82 Thursday, February 26, 2004 4:23 PM
end behav;

Verilog
/* register with active-low synchronous preset shared with
2-to-1 mux */

module dfm_sync_preset (d0, d1, clk, sync_preset, sel, q);
input d0, d1;
input sel;
input clk, sync_preset;
output q;
reg q;
always @ (posedge clk)
begin
case ({sync_preset, sel})
 2'b00: q = 1'b1;
 2'b01: q = 1'b1;
 2'b10: q = d0;
 2'b11: q = d1;
endcase

end
endmodule

Clock Enabled
The clock enabled register uses a 2:1 multiplexor with output feedback, which uses some of the
SMOD multiplexor. The following example shows how to share a clock enabled register with the
input logic.

Figure 4-21. Single Module Implementation of a Clock Enabled Register

VHDL
-- register with active low async reset, shared with a 2-to-1

clk
sel

clken

d1
d0

q

D00
D01
D10
D11

S0
S1

SMOD
82 Actel HDL Coding Style Guide

Registers

Hdl_code.book Page 83 Thursday, February 26, 2004 4:23 PM
-- mux, and an active high clock enable.

library ieee;
use ieee.std_logic_1164.all;
entity dfm_clken is
PORT (d0, d1: in std_logic;
clk, reset, clken, sel: in std_logic;
q: out std_logic;

end dfm_clken;
architecture behav of dfm_clken is
signal tmp_sel: std_logic_vector(1 downto 0);
signal q_tmp: std_logic;
begin
process (clk, reset) begin
tmp_sel <= clken & sel;
if (reset = '0') then

q_tmp <= '0';
elsif (clk'event and clk ='1') then

case tmp_sel is
when "00" => q_tmp <= d0;
when "01" => q_tmp <= d1;
when "10" => q_tmp <= q_tmp;
when "11" => q_tmp <= q_tmp;
when others => q_tmp <= q_tmp;

end case;
end if;

end process;
q <= q_tmp;

end behav;

Verilog
/* register with asynchronous reset, clock enable,
shared with a 2-to-1 mux */
Actel HDL Coding Style Guide 83

Technology Specific Coding Techniques

Hdl_code.book Page 84 Thursday, February 26, 2004 4:23 PM
module dfm_clken (d0, d1, clk, reset, clken, sel, q);
input d0, d1;
input sel;
input clk, reset, clken;
output q;
reg q;
always @ (posedge clk or negedge reset)
begin
if (!reset)
q = 1'b0;

else
case ({clken, sel})
2'b00: q = d0;
2'b01: q = d1;
2'b10: q = q;
2'b11: q = q;

endcase
end
endmodule

Asynchronous Preset
Some synthesis tools automatically translate an asynchronous preset register into an asynchronous
reset register without performance penalties. The bubbled logic can then be pushed into the
surrounding logic without any delay penalty. There are various types of preset registers in the Actel
libraries. Some of the registers use two combinatorial modules (CMOD) and most use an inverter,
which consumes part of the SMOD multiplexor. If your synthesis tool does not automatically
translate an asynchronous preset register into a functionally equivalent asynchronous preset register
using an asynchronous reset register, use the following examples to design an asynchronous reset
register.

d

clk

q

preset

Figure 4-22. Asynchronous Reset

d

clk

q

preset

Figure 4-23. Equivalent
Asynchronous Reset
84 Actel HDL Coding Style Guide

Registers

Hdl_code.book Page 85 Thursday, February 26, 2004 4:23 PM
Verilog Asynchronous Preset
// Active-low async preset flip-flop

module dfp (q, d, clk, preset);
input d, clk, preset;
output q;
reg q;

always @(posedge clk or negedge preset)
if (!preset)
q = 1'b1;

else
q = d;

endmodule

Verilog Equivalent Asynchronous Preset
/* Equivalent active-low async preset flip-flop, using an async reset flop
with bubbled d and q */
module dfp_r (q, d, clk, preset);
input d, clk, preset;
output q;
wire d_inv, reset;
reg q_inv;
assign d_inv = !d;
assign q = !q_inv;
assign reset = preset;
always @(posedge clk or negedge reset)
if (!reset)
q_inv = 1'b0;

else
q_inv = d_inv;

endmodule

VHDL Asynchronous Preset
-- register with active low async preset.

library ieee;
use ieee.std_logic_1164.all;
entity dfp is

port (d, clk, preset : in std_logic;
q : out std_logic;

end dfp;
architecture behav of dfp is
begin
Actel HDL Coding Style Guide 85

Technology Specific Coding Techniques

Hdl_code.book Page 86 Thursday, February 26, 2004 4:23 PM
process (clk, preset) begin
if (preset = '0') then
q <= '1';

elsif (clk'event and clk = '1') then
q <= d;

end if;
end process;
end behav;

VHDL Equivalent Asynchronous Preset
-- register with active low async preset.

library ieee;
use ieee.std_logic_1164.all;
entity dfp_r is

port (d, clk, preset : in std_logic;
q : out std_logic);

end dfp_r;
architecture behav of dfp_r is
signal reset, d_tmp, q_tmp : std_logic;
begin
reset <= preset;
d_tmp <= NOT d;
process (clk, reset) begin
if (reset = '0') then
q_tmp <= '0';

elsif (clk'event and clk ='1') then
q_tmp <= d_tmp;

end if;
end process;
q <= NOT q_tmp;
end behav;

Asynchronous Preset and Clear
This is the most problematic register for the ACT 2, XL, DX, MX, SX and ACT 3 architectures.
You can only use one cell (the DFPC cell) to design an asynchronous preset and clear register. The
DFPC uses two CMODs to form a master latch and a slave latch that together form one register.
This uses two CMODs per register and offers no logic combinability with the SMOD. The DFPC
requires more setup time and no combinability. The net timing loss can often be as high as 10ns.
Actel recommends that you do not use any asynchronous preset and clear registers on critical paths.
Use a synchronous preset with asynchronous clear or a synchronous clear register instead.
86 Actel HDL Coding Style Guide

Registered I/Os

Hdl_code.book Page 87 Thursday, February 26, 2004 4:23 PM
You can use an asynchronous preset and clear register if it does not affect a critical path or cause high
utilization in the design.

Registered I/Os
The ACT 3 technology has registers in the I/O ring, with both reset and preset, which allow for fast
input setup and clock-to-out delays. Because most synthesis tools do not infer these special
resources, the following example shows how to instantiate a registered I/O cell, BREPTH, in your
design.

Figure 4-24. Registered I/O Cell

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity regio is

port (data, en, Tri_en, clock, preset : in std_logic;
 bidir : inout std_logic;
 q_pad : out std_logic);

end regio;
architecture rtl of regio is
-- Component Declaration
component BREPTH

port (D, ODE, E, IOPCL, CLK : in std_logic;
 Y : out std_logic;

data Q_pad

en

clock

preset

bidir

D

ODE

CLK

Y

D Q

ODE

CLK

PRE

E
BREPTH

Tri_en

PAD
Actel HDL Coding Style Guide 87

Technology Specific Coding Techniques

Hdl_code.book Page 88 Thursday, February 26, 2004 4:23 PM
 PAD : inout std_logic);
end component;
begin
-- Concurrent Statement
U0 : BREPTH port map (D => data,

ODE => en,
E => Tri_en,
IOPCL => preset,
CLK => clock,
Y => q_pad,
PAD => bidir);

end rtl;

Verilog
module regio (data, Q_pad, clock, preset, Tri_en, en, bidir);

input data, clock, preset, Tri_en, en;
output Q_pad;
inout bidir;

BREPTH U1 (.PAD(Q_pad), .D(data), .CLK(clock), .IOPCL(preset),
.E(Tri_en), .ODE(en), .Y(bidir));

endmodule

Note: As a good design practice, instantiate all input/output cells at the top level of your design.

CLKINT/CLKBUF for Reset and/or High Fanout Networks
Many designs have internally generated clocks, high fanout control signals, or internally generated
reset signals. These signals need a large internal driver, CLKINT, to meet both area and
performance goals for the circuit. If the high fanout signals come directly into the design through an
I/O, a CLKBUF driver is used. Most synthesis tools do not automatically use these drivers. Instead,
the synthesis tool builds a buffer tree that consumes one module per driver. On a high fanout net
this can affect both the area and timing for that signal. If the global drivers for a given array are still
available, you should instantiate the CLKINT or CLKBUF driver into the design. The following
example shows how to instantiate these drivers.
88 Actel HDL Coding Style Guide

CLKINT/CLKBUF for Reset and/or High Fanout Networks

Hdl_code.book Page 89 Thursday, February 26, 2004 4:23 PM
CLKINT

The following examples instantiate the CLKINT driver.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity design is

port (………………… : in std_logic;
 ………………… : out std_logic);

end design;
architecture rtl of design is

signal neta, int_clk : std_logic;
-- Component Declaration
component CLKINT

port (A : in std_logic;
 Y : out std_logic);

end component;
begin
-- Concurrent Statement
U2 : CLKINT port map (A => neta,

Y => int_clk);
end rtl;

Verilog
module design (……………);

input …………………;
output …………………;

CLKINT U2 (.Y(int_clk), .A(neta));
……………………
……………………

endmodule

CLKINT

U2

neta int_clk
YA
Actel HDL Coding Style Guide 89

Technology Specific Coding Techniques

Hdl_code.book Page 90 Thursday, February 26, 2004 4:23 PM
CLKBUF

The following examples instantiate a CLKBUF driver.

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity design is
port (PAD : in std_logic;

 Y : out std_logic);
end component;
begin
-- Concurrent Statement

U2 : CLKBUF port map (PAD => reset, Y => rst_rst);
end rtl;

Verilog
module design (……………);

input …………………;
output …………………;

CLKBUF U2 (.Y(rst), .PAD(reset));
……………………
……………………

endmodule

QCLKINT/QCLKBUF for Medium Fanout Networks
The 32100DX, 32200DX, 32300DX, and 42MX36 have four quadrant clocks that can be used to
drive internally generated high fanout nets (QCLKINT) or high fanout nets generated from I/O
ports (QCLKBUF). The methodology and instantiation are similar to the CLKINT/CLKBUF
drivers. However, the QCLK drivers can only drive within a quadrant. Although the placement of
the cells into a quadrant is automated by the Designer place-and-route software, you must limit the
number of fanouts and prevent the use of multiple QCLK signals to drive the same cell or gate.

CLKBUF

U2reset

rst
90 Actel HDL Coding Style Guide

ACTgen Counter

Hdl_code.book Page 91 Thursday, February 26, 2004 4:23 PM
You can double your fanout limit and drive half the chip by combining two drivers into one to drive
2 quadrants. However, each time you combine drivers, you reduce the number of available QCLKs
by one. The Designer place-and-route software automatically combines QCLKs when necessary

ACTgen Counter
Several synthesis tools cannot build an optimal counter implementation for the Actel architecture. If
a counter is on a critical path, this implementation can increase logic level usage and decrease
performance. To reduce critical path delays and to achieve optimal results from your design, Actel
recommends that you instantiate counters generated by the ACTgen Macro Builder. The ACTgen
Macro Builder supports a wide variety of counters for area and performance needs.

The following example uses a 5-bit counter with load, count enable, and asynchronous reset that has
been generated with ACTgen and saved as a structural HDL netlist called “CNT5”. The counter is
instantiated as follows:

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity counter is

port (bus_d : in std_logic_vector(4 downto 0);
 bus_q : out std_logic_vector(4 downto 0);
 net_clock, net_aclr, net_enable : in std_logic;
 net_sload : in std_logic);

end counter;
architecture rtl of counter is
-- Component Declaration
component CNT5

port (Data : in std_logic_vector(4 downto 0);
 Sload, Enable, Aclr, Clock : in std_logic;
 Q : out std_logic_vector(4 downto 0));

net_sload
net_enable

net_aclr

net_clock

bus_d<4:0>

sload
enable
aclr

clock

data<4:0>

bus_q<4:0>Q<4:0>

CNT5
UO
Actel HDL Coding Style Guide 91

Technology Specific Coding Techniques

Hdl_code.book Page 92 Thursday, February 26, 2004 4:23 PM
end component;
begin
-- Concurrent Statement
U0 : CNT5 port map (Data => bus_d,

 Sload => net_sload,
 Enable => net_enable,
 Aclr => net_aclr,
 Clock => net_clock,
 Q => bus_q);

end rtl;

Verilog
module counter (bus_q, bus_d, net_clock, net_aclr, net_enable,

net_sload);
input [4:0] data;
input net_sload, net_enable, net_aclr, net_clock;
output [4:0] bus_q;

CNT5 U0 (.Q(bus_q), .Data(bus_d), .Clock(net_clock), .Aclr(net_aclr),
.Enable(net_enable), .Sload(net_sload));

endmodule

Dual Architecture Coding in VHDL
It is possible to maintain technology independence after instantiating an ACTgen macro into your
design. By adding a second technology independent architecture, you can maintain two functionally
equivalent architectures of the same entity in your design. The ACTgen macro is Actel specific and
instantiated in your design to take advantage of the architectural features of the target Actel FPGA.
This allows you to meet your design goals quickly. The technology independent architecture is
functionally equivalent to the Actel specific architecture (verified by simulation) and can be used to
synthesize the design to another technology if necessary. The following example shows the
technology independent (RTL) and Actel specific (structural) architecture for a counter called
“CNT5” and illustrates how to write your code so that you can choose which architecture to use.

RTL Architecture
This implementation of “CNT5” is written as a behavioral description directly into the design.

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
92 Actel HDL Coding Style Guide

Dual Architecture Coding in VHDL

Hdl_code.book Page 93 Thursday, February 26, 2004 4:23 PM
entity CNT5 is
port (Data: in std_logic_vector(4 downto 0);

 Sload, Enable, Aclr, Clock: in std_logic;
 Q: out std_logic_vector(4 downto 0));

end CNT5;
architecture RTL of CNT5 is
signal cnt: std_logic_vector(4 downto 0);
begin
counter : process (Aclr, Clock)
begin
if (Aclr = '0') then
cnt <= (others => '0'); -- asynchronous reset

elsif (Clock'event and Clock = '1') then
if (Sload = '1') then
cnt <= Data;-- synchronous load

elsif (Enable = '1') then
cnt <= cnt + '1'; -- increment counter

end if;
end if;
end process;
Q <= cnt; -- assign counter output to output port
end RTL;

Structural Architecture
This implementation of “CNT5” is created by the ACTgen macro builder. The port names for the
RTL description must match the port names of the structural “CNT5” netlist generated by
ACTgen.

library ieee;
use ieee.std_logic_1164.all;
library ACT3;
entity CNT5 is
port (Data : in std_logic_vector(4 downto 0);Enable, Sload,

 Aclr, Clock : in std_logic; Q : out std_logic_vector(4
 downto 0)) ;

end CNT5;
architecture DEF_ARCH of CNT5 is
component DFM7A
port(D0, D1, D2, D3, S0, S10, S11, CLR, CLK : in
std_logic; Q : out std_logic);

end component;
Actel HDL Coding Style Guide 93

Technology Specific Coding Techniques

Hdl_code.book Page 94 Thursday, February 26, 2004 4:23 PM
. . .

end DEF_ARCH;

Instantiating “CNT5” in the Top Level Design
Once you have created both architectures, instantiate “CNT5” into your design, adding binding
statements for both architectures. The binding statements are used to specify which architecture the
synthesis tool uses in the design. The technology independent RTL architecture might not meet the
performance requirements. The Actel specific DEF_ARCH architecture is optimized for the Actel
FPGA architecture and may provide higher performance. By removing the comment on one of the
“use” statements in the code, a particular architecture can be chosen to meet the design needs.

library IEEE;
use IEEE.std_logic_1164.all;
entity counter is
port (bus_d: in std_logic_vector(4 downto 0);

 bus_q: out std_logic_vector(4 downto 0);
 net_clock, net_aclr, net_enable: in std_logic;
 net_sload: in std_logic);

end counter;
architecture RTL of counter is
-- Component Declaration
component CNT5
port (Data : in std_logic_vector(4 downto 0);Enable, Sload,

 Aclr, Clock : in std_logic; Q : out std_logic_vector(4
 downto 0));

end component;
-- Binding statements to specify which CNT5 architecture to use
-- RTL architecture for behavioral CNT5
-- DEF_ARCH architecture for structural (ACTgen) CNT5
-- for all: CNT5 use entity work.CNT5(RTL);
-- for all: CNT5 use entity work.CNT5(DEF_ARCH);
begin
-- Concurrent Statement
U0: CNT5 port map (Data => bus_d,

Sload => net_sload,
Enable => net_enable,
Aclr => net_aclr;
Clock => net_clock,
Q => bus_q);
94 Actel HDL Coding Style Guide

SRAM

Hdl_code.book Page 95 Thursday, February 26, 2004 4:23 PM
end rtl;

SRAM
The following examples show how to create register-based SRAM for non-SRAM based Actel
devices.

Figure 4-25. RAM Behavioral Simulation Model

Register-Based Single Port SRAM
The following example shows the behavioral model for a 8x8 RAM cell. To modify the width or
depth, simply modify the listed parameters in the code. The code assumes that you want to use
“posedge clk” and “negedge reset.” Modify the “always” blocks if that is not the case.

VHDL
-- ***
-- Behavioral description of a single-port SRAM with:
-- Active High write enable (WE)
-- Rising clock edge (Clock)
-- ***

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity reg_sram is

Register Array (8x8)

Write
Address
Decode

Read
Address
Decode
Actel HDL Coding Style Guide 95

Technology Specific Coding Techniques

Hdl_code.book Page 96 Thursday, February 26, 2004 4:23 PM
generic (width : integer:=8;
depth : integer:=8;
addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
Q : out std_logic_vector (width-1 downto 0);
Clock : in std_logic;
WE : in std_logic;
Address : in std_logic_vector (addr-1 downto 0));

end reg_sram;
architecture behav of reg_sram is
type MEM is array (0 to depth-1) of std_logic_vector(width-1
downto 0);
signal ramTmp : MEM;

begin
process (Clock)
begin
if (clock'event and clock='1') then
if (WE = '1') then
ramTmp (conv_integer (Address)) <= Data;

end if;
end if;

end process;
Q <= ramTmp(conv_integer(Address));
end behav;

Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral single-port SRAM description :
//# Active High write enable (WE)
//# Rising clock edge (Clock)
//###

module reg_sram (Data, Q, Clock, WE, Address);
parameter width = 8;
parameter depth = 8;
parameter addr = 3;
input Clock, WE;
input [addr-1:0] Address;
input [width-1:0] Data;
output [width-1:0] Q;
wire [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];

always @(posedge Clock)
if(WE)

mem_data[Address] = #1 Data;

assign Q = mem_data[Address];
96 Actel HDL Coding Style Guide

SRAM

Hdl_code.book Page 97 Thursday, February 26, 2004 4:23 PM
endmodule

Register-Based Dual-Port SRAM
The following example shows the behavioral model for a 8x8 RAM cell. This code was designed to
imitate the behavior of the Actel DX family dual-port SRAM and to be synthesizeable to a register
based SRAM module. To modify the width or depth, modify the listed parameters in the code. The
code assumes that you want to use “posedge clk” and “negedge reset.” Modify the “always” blocks if
that is not the case.

VHDL
-- Behavioral description of dual-port SRAM with :
-- Active High write enable (WE)
-- Active High read enable (RE)
-- Rising clock edge (Clock)

library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
entity reg_dpram is
generic (width : integer:=8;

depth : integer:=8;
addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
Q : out std_logic_vector (width-1 downto 0);
Clock : in std_logic;
WE : in std_logic;
RE : in std_logic;

WAddress: in std_logic_vector (addr-1 downto 0);
RAddress: in std_logic_vector (addr-1 downto 0));

end reg_dpram;

architecture behav of reg_dpram is
type MEM is array (0 to depth-1) of std_logic_vector(width-1
downto 0);
signal ramTmp : MEM;

begin
-- Write Functional Section

process (Clock)
begin
if (clock'event and clock='1') then
if (WE = '1') then
ramTmp (conv_integer (WAddress)) <= Data;

end if;
end if;
Actel HDL Coding Style Guide 97

Technology Specific Coding Techniques

Hdl_code.book Page 98 Thursday, February 26, 2004 4:23 PM
end process;
-- Read Functional Section

process (Clock)
begin
if (clock'event and clock='1') then
if (RE = '1') then
Q <= ramTmp(conv_integer (RAddress));

end if;
end if;

end process;
end behav;

Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral dual-port SRAM description :
//# Active High write enable (WE)
//# Active High read enable (RE)
//# Rising clock edge (Clock)
//###

module reg_dpram (Data, Q, Clock, WE, RE, WAddress, RAddress);
parameter width = 8;
parameter depth = 8;
parameter addr = 3;
input Clock, WE, RE;
input [addr-1:0] WAddress, RAddress;
input [width-1:0] Data;
output [width-1:0] Q;
reg [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];
// ###
// # Write Functional Section
// ###
always @(posedge Clock)
begin

if(WE)
mem_data[WAddress] = #1 Data;

end
//###
//# Read Functional Section
//###
always @(posedge Clock)
begin

if(RE)
98 Actel HDL Coding Style Guide

SRAM

Hdl_code.book Page 99 Thursday, February 26, 2004 4:23 PM
Q = #1 mem_data[RAddress];
end
endmodule

ACTgen RAM
The RAM cells in the 3200DX and 42 MX families of devices support asynchronous and
synchronous dual-port RAM. The basic RAM cells can be configured as 32x8 or 64x4. However,
most synthesis tools cannot infer technology specific features (such as RAM cells). The following
example shows an ACTgen structural implementation for instantiation. Although the behavioral
description is synthesizeable, the implementation is not optimal for speed and area.

Using ACTgen, generate a 32x16 dual port RAM with the configuration shown in the figure below.
Save the structured Verilog or VHDL implementations as “ram.”

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity ram32_16 is

port (WAddress, RAddress:in std_logic_vector(4 downto 0);
 Data : in std_logic_vector (15 downto 0);
 Aclr, WClock, RClock,WE,RE:in std_logic;
 Q :out std_logic_vector (15 downto 0));

end ram32_16;
architecture rtl of ram32_16 is
component ram

port (Data : in std_logic_vector (15 downto 0);
 Aclr : in std_logic;
 WE : in std_logic ;
 RE : in std_logic ;
 WClock : in std_logic ;

32x16Data Q

RE

WE

WClock

RClock

WAddress

RAddress
Actel HDL Coding Style Guide 99

Technology Specific Coding Techniques

Hdl_code.book Page 100 Thursday, February 26, 2004 4:23 PM
 RClock : in std_logic ;
 WAddress : in std_logic_vector (4 downto 0);
 RAddress : in std_logic_vector (4 downto 0);
 Q : out std_logic_vector (15 downto 0));

end component;
begin
R_32_16: ram

port map (Data => Data,
 Aclr => Aclr,
 WE => WE,
 WAddress => WAddress,
 RE => RE,
 RAddress => RAddress,
 WClock => WClock,
 RClock => RClock,
 Q => Q);

end rtl;

Verilog
module ram (WAddress, RAddress, Data, WClock, WE,

 RE, Rclock, Q);
input [4:0] WAddress, RAddress;
input [15:0] Data;
input Rclock, WClock;
input WE, RE;
output [15:0] Q;

ram R_32_16 (.Data(Data), .WE(WE), .RE(RE), .WClock(WClock),
.Rclock(Rclock), .Q(Q), .WAddress(WAddress),
.RAddress(RAddress));

endmodule
100 Actel HDL Coding Style Guide

FIFO

Hdl_code.book Page 101 Thursday, February 26, 2004 4:23 PM
FIFO
The following example shows how to create a register-based FIFO for non-SRAM based Actel
devices.

Figure 4-26. FIFO Behavioral Simulation Mode

Register-Based FIFO
The following example show the behavioral model for an 8x 8 FIFO. This code was designed to
imitate the behavior of the Actel DX family dual-port SRAM based FIFO and to be synthesizeable
to a register-based FIFO. To modify the width or depth, simply modify the listed parameters in the
code. However, the code does assume that you want to use posedge clk and negedge reset. Modify
the always blocks if that is not the case.

VHDL
-- ***
-- Behavioral description of dual-port FIFO with :
-- Active High write enable (WE)
-- Active High read enable (RE)
-- Active Low asynchronous clear (Aclr)
-- Rising clock edge (Clock)
-- Active High Full Flag
-- Active Low Empty Flag
-- ***

library ieee;
use ieee.std_logic_1164.all;

fifo_ff_ef (8x8)

Counter Comparator
Actel HDL Coding Style Guide 101

Technology Specific Coding Techniques

Hdl_code.book Page 102 Thursday, February 26, 2004 4:23 PM
use IEEE.std_logic_arith.all;
entity reg_fifo is
generic (width : integer:=8;

 depth : integer:=8;
 addr : integer:=3);

port (Data : in std_logic_vector (width-1 downto 0);
 Q : out std_logic_vector (width-1 downto 0);
 Aclr : in std_logic;
 Clock : in std_logic;
 WE : in std_logic;
 RE : in std_logic;
 FF : out std_logic;
 EF : out std_logic);

end reg_fifo;
library ieee;
use ieee.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
architecture behavioral of reg_fifo is
type MEM is array(0 to depth-1) of std_logic_vector(width-1 downto 0);
signal ramTmp : MEM;
signal WAddress : std_logic_vector (addr-1 downto 0);
signal RAddress : std_logic_vector (addr-1 downto 0);
signal words : std_logic_vector (addr-1 downto 0);

begin
-- ##
-- # Write Functional Section
-- ##

WRITE_POINTER : process (Aclr, Clock)
begin
if (Aclr = '0') then
WAddress <= (others => '0');

elsif (Clock'event and Clock = '1') then
if (WE = '1') then
if (WAddress = words) then
WAddress <= (others => '0');

else
102 Actel HDL Coding Style Guide

FIFO

Hdl_code.book Page 103 Thursday, February 26, 2004 4:23 PM
WAddress <= WAddress + '1';

end if;
end if;

end if;
end process;
WRITE_RAM : process (Clock)
begin
if (Clock'event and Clock = '1') then

if (WE = '1') then
ramTmp (conv_integer (WAddress)) <= Data;

end if;
end if;

end process;
-- ##
-- # Read Functional Section
-- ##

READ_POINTER : process (Aclr, Clock)
begin
if (Aclr = '0') then
RAddress <= (others => '0');

elsif (Clock'event and Clock = '1') then
if (RE = '1') then
if (RAddress = words) then
RAddress <= (others => '0');

else
RAddress <= RAddress + '1';

end if;
end if;

end if;
end process;
READ_RAM : process (Clock)
begin
if (Clock'event and Clock = '1') then
if (RE = '1') then
Q <= ramTmp(conv_integer(RAddress));

end if;
end if;

end process;

-- ##
-- # Full Flag Functional Section : Active high
Actel HDL Coding Style Guide 103

Technology Specific Coding Techniques

Hdl_code.book Page 104 Thursday, February 26, 2004 4:23 PM
-- ##

FFLAG : process (Aclr, Clock)
begin
if (Aclr = '0') then
FF <= '0';

elsif (Clock'event and Clock = '1') then
if (WE = '1' and RE = '0') then
if ((WAddress = RAddress-1) or

((WAddress = depth-1) and (RAddress = 0))) then
FF <= '1';

end if;
else
FF <= '0';

end if;
end if;

end process;
-- ##
-- # Empty Flag Functional Section : Active low
-- ##

EFLAG : process (Aclr, Clock)
begin
if (Aclr = '0') then
EF <= '0';

elsif (Clock'event and Clock = '1') then
if (RE = '1' and WE = '0') then
if ((WAddress = RAddress+1) or

((RAddress = depth-1) and (WAddress = 0))) then
EF <= '0';

end if;
else
EF <= '1';

end if;
end if;

end process;
end behavioral;
104 Actel HDL Coding Style Guide

FIFO

Hdl_code.book Page 105 Thursday, February 26, 2004 4:23 PM
Verilog
`timescale 1 ns/100 ps
//##
//# Behavioral description of FIFO with :
//# Active High write enable (WE)
//# Active High read enable (RE)
//# Active Low asynchronous clear (Aclr)
//# Rising clock edge (Clock)
//# Active High Full Flag
//# Active Low Empty Flag
//###

module reg_fifo (Data, Q, Aclr, Clock, WE, RE, FF, EF);
parameter width = 8;
parameter depth = 8;
parameter addr = 3;
input Clock, WE, RE, Aclr;
input [width-1:0] Data;
output FF, EF;//Full & Empty Flags
output [width-1:0] Q;
reg [width-1:0] Q;
reg [width-1:0] mem_data [depth-1:0];
reg [addr-1:0] WAddress, RAddress;
reg FF, EF;
// ###
// # Write Functional Section
// ###
// WRITE_ADDR_POINTER
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
WAddress = #2 0;

else if (WE)
WAddress = #2 WAddress + 1;

end
// WRITE_REG
always @ (posedge Clock)
begin

if(WE)
mem_data[WAddress] = Data;

end
Actel HDL Coding Style Guide 105

Technology Specific Coding Techniques

Hdl_code.book Page 106 Thursday, February 26, 2004 4:23 PM
//###
//# Read Functional Section
//###
// READ_ADDR_POINTER
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
RAddress = #1 0;

else if (RE)
RAddress = #1 RAddress + 1;

end
// READ_REG
always @ (posedge Clock)
begin

if (RE)
Q = mem_data[RAddress];

end
//###
//# Full Flag Functional Section : Active high
//###
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
FF = #1 1'b0;

else if ((WE & !RE) && ((WAddress == RAddress-1) ||
((WAddress == depth-1) && (RAddress == 1'b0))))
FF = #1 1'b1;

else
FF = #1 1'b0;

end
//###
//# Empty Flag Functional Section : Active low
//###
always @ (posedge Clock or negedge Aclr)
begin

if(!Aclr)
EF = #1 1'b0;

else if ((!WE & RE) && ((WAddress == RAddress+1) ||
((RAddress == depth-1) && (WAddress == 1'b0))))
EF = #1 1'b0;

else
EF = #1 1'b1;

end
endmodule
106 Actel HDL Coding Style Guide

FIFO

Hdl_code.book Page 107 Thursday, February 26, 2004 4:23 PM
ACTgen FIFO
The RAM cells in the 3200DX and 42MX families of devices can be used to implement a variety of
FIFOs. The behavioral description of a 32x8 FIFO for simulation is shown below. However, most
synthesis tools cannot infer technology specific features such as RAM cells. Synthesizing this model
will result in high area utilization. ACTgen can generate an area and performance optimized
structured HDL netlist for instantiation.

Using ACTgen, generate a 32x8 FIFO with the configuration shown in the figure below. Save it as
a Verilog or VHDL netlist called “fifo_ff_ef.”

VHDL
library IEEE;
use IEEE.std_logic_1164.all;
entity fifo_32_8 is
port (D : in std_logic_vector(7 downto 0);

 OUT : out std_logic_vector(7 downto 0);
 Reset : in std_logic;
 Rd_En, Wr_En : in std_logic;
 Rd_En_F, Wr_En_F : in std_logic;
 clk : in std_logic;
 E_Flag, F_Flag : out std_logic);

end fifo_32_8;
architecture fifo_arch of fifo_32_8 is
component fifo_ff_ef

generic (width : integer;
depth : integer;
clrPola : integer;
clkEdge : integer);

port (Data : in std_logic_vector (width-1 downto 0);
 Aclr : in std_logic;
 WE : in std_logic ;

fifo_ff_ef

fifo_32_8

Reset

OUT[7:0]D[7:0]

CLK

Rd_En

Rd_En_F

Wr_En

Wr_En_F

Aclr

Data[7:0]

Clock

RE

REF

WE

WEF

F_Flag

E_Flag

Q[7:0]

FF

EF
Actel HDL Coding Style Guide 107

Technology Specific Coding Techniques

Hdl_code.book Page 108 Thursday, February 26, 2004 4:23 PM
 WEF : in std_logic ;
 RE : in std_logic ;
 REF : in std_logic ;
 Clock : in std_logic ;
 Q : out std_logic_vector (width-1 downto 0);
 FF : out std_logic;
 EF : out std_logic);

end component;
begin
F_32_8: fifo_ff_ef

generic map (width => 8, depth => 32, clrPola => 1,
clkEdge => 1)

port map (Data => D,
 Aclr => Reset,
 WE = > We_En,
 WEF => We_En_F,
 RE => Rd_En,
 REF => Rd_En_F,
 Clock => CLK,
 Q => OUT,
 FF => F_Flag,
 EF => E_Flag);

end fifo_arch;

Verilog
module fifo_32_8 (D, OUT, Reset, Rd_En, Wr_En, CLK, E_Flag,

Rd_En_F, Wr_En_F, F_Flag);
input [7:0] D;
output [7:0] OUT;
input Reset;
input Rd_En;
input Rd_En_F;
input Wr_En;
input Wr_En_F;
input CLK;
output E_Flag;
output F_Flag;
wire [7:0] OUT;
wire E_Flag;
wire F_Flag;

fifo_ff_ef F_32_8 (.Data(D), .Aclr(Reset), .WE(Wr_En),
.WEF(Wr_En_F), .RE(Rd_En), .REF(Rd_En_F)
.Clock(CLK), .Q(OUT), .FF(F_Flag), .EF(E_Flag));

endmodule
108 Actel HDL Coding Style Guide

Hdl_code.book Page 109 Thursday, February 26, 2004 4:23 PM
A
Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0)1276.401500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650. 318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actelcom/.custsup/search.html) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.
Actel HDL Coding Style Guide 109

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com

Hdl_code.book Page 110 Thursday, February 26, 2004 4:23 PM
Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific
Time, Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact information
for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your
name, company name, phone number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via
email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/contact/offices/index.html.
110 Actel HDL Coding Style Guide

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index

Hdl_code.book Page 111 Thursday, February 26, 2004 4:23 PM
A
ACT 3 I/O 87
Actel

web site 109
web-based technical support 109

Actel Manuals 11
ACTgen

Counter Instantiation 91
FIFO 107
RAM 99

Addition 44
Arithmetic Operator 44

Shift Register Implementation 45
Assumptions 7

B
Behavioral Simulation 16
BREPTH 87

C
Capturing a Design 16
Case Statement 34, 77

Adding Directive 77
CLKBUF 88
CLKINT 88
Coding Dual Architecture 92

Instantiating 94
RTL 92
Structural 93

Combinatorial/Sequential Module Merging 71
Combining Logic 68, 71
Component

Size 63
Width 63

Contacting Actel
customer service 109

electronic mail 110
telephone 110
web-based technical support 109

Conventions 8
Document 8
Naming, Verilog 9
Naming, VHDL 8

Counter 40–43
8-Bit, Count Enable, Asynchronous Reset 40
8-Bit, Load and Asynchronous Reset 41
8-Bit, Load, Count Enable, Terminal Count and

Asynchronous Reset 42
Instantiation 91
N-Bit, Load, Count Enable, and Asynchronous

Reset 43
Recommendations 40, 91

Critical Path Logic Reduction 65
Customer service 109

D
Data Shift 48
Datapath 33–49

Arithmetic Operator 44
Counter 40
Decoder 39
Equality Operator 46
If-Then-Else 33
Multiplexor 34
Relational Operator 45
Shift Operator 48

Decoder 39
Design Creation/Verification 16

Behavioral Simulation 16
EDIF Netlist Generation 16
HDL Source Entry 16
Structural Netlist Generation 17
Actel HDL Coding Style Guide 111

Hdl_code.book Page 112 Thursday, February 26, 2004 4:23 PM
Structural Simulation 17
Synthesis 16

Design Flow
Design Creation/Verification 16
Design Implementation 17
Programming 17
System Verification 18

Design Implementation 17
Place and Route 17
Timing Analysis 17
Timing Simulation 17

Design Layout 17
Design Partitioning 75
Design Synthesis 16
Designer

DT Analyze Tool 17
Place and Route 17
Timing Analysis 17

Device Programming 17
DFPC Cell 87
Division 44
D-Latch 19–31

with Asynchronous Reset 30
with Data and Enable 27
with Gated Asynchronous Data 28
with Gated Enable 29

Document
Assumptions 7
Conventions 8
Organization 7

Document Conventions 8
Don’t Care 38
DT Analyze 17
Dual Architecture Coding 92

Instantiating 94
RTL 92
112
Structural 93
Dual Port SRAM 97, 99
Duplicating Logic 72

E
Edge-Triggered Memory Device 19
EDIF Netlist Generation 16
Electronic mail 110
Equality Operator 46

F
Fanout

High Fanout Networks 88, 90
Reducing 72

FIFO 101–108
ACTgen Implementation 107
Behavioral Implementation 101
Register-Based 101
Structural Implementation 107

Finite State Machine 49–58
Combinational Next State Logic 49
Combinational Output Logic 49
Mealy 51
Moore 55
One Hot 50
Sequential Current State Register 49
Structure 50

Flip-Flop 19–27
See Also Register
Positive Edge Triggered 19
with Asynchronous Preset 21
with Asynchronous Reset 20
with Asynchronous Reset and Clock Enable 26
with Asynchronous Reset and Preset 23
with Synchronous Preset 25
with Synchronous Reset 24

Hdl_code.book Page 113 Thursday, February 26, 2004 4:23 PM
FSM. See Finite State Machine

G
Gate-Level Netlist 16
Generating

EDIF Netlist 16
Gate-Level Netlist 16
Structural Netlist 17

Generics 63–64
Greater Than 45
Greater Than Equal To 45

H
HDL Design Flow

Design Creation/Verification 16
Design Implementation 17
Programming 17
System Verification 18

HDL Source Entry 16

I
If-Then-Else Statement 33
Input-Output Buffer 58–63

Bi-Directional 61
Tri-State 59

Instantiating
CLKBUF Driver 88
CLKINT Driver 88
Counters 91
Dual Coding 92
FIFO 107
QCLKBUF Driver 90
QCLKINT Driver 90
RAM 99
Registered I/Os 87

Internal Tri-State Mapping 77
Internally Generated Clock 88, 90

K
Keywords

Verilog 9
VHDL 8

L
Latch 19

Master 87
Slave 87

Less Than 45
Less Than Equal To 45
Level-Sensitive Memory Device 19
Load Reduction 72
Logic Level Reduction 65
Loops 70

M
Merging Logic Modules 71
Module Block Partitioning 75
Multiplexor 34, 77

Case X 38
Four to One 35
Mapping Internal Tri-State to 77
Moving Operators Outside Loops 70
Twelve to One 36

Multiplication 44

N
Naming Conventions

Verilog 9
VHDL 8

Netlist Generation
EDIF 16
Gate-Level 16
113

Hdl_code.book Page 114 Thursday, February 26, 2004 4:23 PM
Structural 17

O
One Hot State Machine 50
Online Help 13
Operators 31

Arithmetic 44
Equality 46
Inside Loops 70
Relational 45
Removing from Loops 70
Shift 48
Table of 31

P
Parallel

Encoding 34
Operation 77

Parameters 63–64
Partitioning a Design 75
Performance Driven Coding 65–76
Place and Route 17
Priority Encoding 33
Product Support 109–110
Product support

customer service 109
electronic mail 110
technical support 109
web site 109

Programming a Device 17

Q
QCLKBUF 90
QCLKINT 90
Quadrant Clock 90

Limitations 91
114
R
RAM 99
Reducing Fanout 72
Reducing Logic

on a Critical Path 65
Usage 68

Register 80
See Also Flip-Flop
Asynchronous Preset 84
Asynchronous Preset and Clear 87
Clock Enabled 82
Duplication 72
Functionally Equivalent Asynchronous Preset

84
Placed at Hierarchical Boundaries 75
Recommended Usage 80–87
Synchronous Clear or Preset 81

Register-Based
FIFO 101
SRAM 95–99

Dual Port 97
Single Port 95

Registered I/O 87
BREPTH 87

Related Manuals 12
Relational Operator 45
Removing Operators from Loops 70
Reset Signals 88, 90
Resource Sharing 68

S
Sequential Device 19–27

D-Latch 19
Flip-Flop 19

Sharing Resources 68
Shift

Hdl_code.book Page 115 Thursday, February 26, 2004 4:23 PM
Operator 48
Register 45

Simulation
Behavioral 16
Structural 17
Timing 17

Single Port SRAM 95
Size 63
SRAM 95–100

ACTgen Implementation 99
Dual Port 97
Register Based 95
Single Port 95
Structural Implementation 99

Static Timing Analysis 17
Structural Netlist Generation 17
Structural Simulation 17
Subtraction 44
Synthesis 16

Reducing Duration of 75
System Verification, Silicon Explorer 18

T
Technology Independent Coding 19–64
Technology Specific Coding 77–108
Timing

Analysis 17
Constraints 65
Simulation 17

Tri-State Mapping 77
True/False Operands 46

U
Unit Delays 16
V
Verilog

Naming Conventions 9
Reserved Words 9

VHDL
Naming Conventions 8
Reserved Words 8

W
Web-based technical support 109
Width 63
115

Hdl_code.book Page 116 Thursday, February 26, 2004 4:23 PM
For more information about Actel’s p
http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View
Customer Service: 650.318.1010 • Customer Applications

Actel Europe Ltd. • Dunlop House, Riverside Way • Cam

Phone +44 (0)1276.401452 • Fax +44 (0)1276.401490

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuy
Phone +81.03.3445.7671 Fax +81.03.3445.7668

Actel Hong Kong • 39th Floor, One Pacific Place • 88 Q

Phone +852.227.35712 Fax +852.227.35999
roducts, visit our website at

, CA 94043 USA
Center: 800.262.1060

berley, Surrey GU15 3YL • United Kingdom

a-ku • Tokyo 150 • Japan

ueensway, Admiralty Hong Kong

5029105-6/05.04

	Introduction
	Document Organization
	Document Assumptions
	Document Conventions
	HDL Keywords and Naming Conventions
	VHDL
	Verilog

	Your Comments
	Actel Manuals
	Related Manuals
	Online Help

	Design Flow
	Design Flow Illustrated
	Figure 1-1. Actel HDL Synthesis-Based Design Flow

	Design Flow Overview
	Design Creation/Verification
	Design Implementation
	Programming
	System Verification

	Technology Independent Coding Styles
	Sequential Devices
	Flip-Flops (Registers)
	Figure 2-2. D Flip Flop
	Figure 2-3. D Flip-Flop with Asynchronous Reset
	Figure 2-4. D Flip-Flop with Asynchronous Preset
	Figure 2-5. D Flip-Flop with Asynchronous Reset and Preset
	Figure 2-6. D Flip-Flop with Synchronous Reset
	Figure 2-7. D Flip-Flop with Synchronous Preset
	Figure 2-8. D Flip-Flop with Asynchronous Reset and Clock Enable

	D-Latches
	Figure 2-9. D-Latch
	Figure 2-10. D-Latch with Gated Asynchronous Data
	Figure 2-11. D-Latch with Gated Enable
	Figure 2-12. D-Latch with Asynchronous Reset

	Operators
	Table 2-1. VHDL and Verilog Operators

	Datapath
	Priority Encoders Using If-Then-Else
	Figure 2-13. Priority Encoder Using an If-Then-Else Statement

	Multiplexors Using Case
	Figure 2-14. Multiplexor Using a Case Statement

	Decoders
	Counters
	Arithmetic Operators
	Relational Operators
	Equality Operator
	Shift Operators

	Finite State Machine
	Figure 2-15. Basic Structure of a Moore FSM
	Figure 2-16. Basic Structure of a Mealy FSM
	Mealy Machine
	Figure 2-17. Mealy State Diagram

	Moore Machine

	Input-Output Buffers
	Tri-State Buffer
	Figure 2-18. Tri-State Buffer

	Bi-Directional Buffer
	Figure 2-19. Bi-Directional Buffer

	Generics and Parameters

	Performance Driven Coding
	Reducing Logic Levels on Critical Paths
	Example 1
	Example 2

	Resource Sharing
	Example 1
	Example 2

	Operators Inside Loops
	Coding for Combinability
	Register Duplication
	Partitioning a Design
	Registers Embedded Within a Module
	Registers Pushed Out at the Hierarchical Boundary

	Technology Specific Coding Techniques
	Multiplexors
	Internal Tri-State to Multiplexor Mapping
	Registers
	Synchronous Clear or Preset
	Figure 4-20. Single Module Implementation of a Synchronous Clear or Preset Register

	Clock Enabled
	Figure 4-21. Single Module Implementation of a Clock Enabled Register

	Asynchronous Preset
	Figure 4-22. Asynchronous Reset
	Figure 4-23. Equivalent Asynchronous Reset

	Asynchronous Preset and Clear

	Registered I/Os
	Figure 4-24. Registered I/O Cell

	CLKINT/CLKBUF for Reset and/or High Fanout Networks
	QCLKINT/QCLKBUF for Medium Fanout Networks
	ACTgen Counter
	Dual Architecture Coding in VHDL
	RTL Architecture
	Structural Architecture
	Instantiating “CNT5” in the Top Level Design

	SRAM
	Figure 4-25. RAM Behavioral Simulation Model
	Register-Based Single Port SRAM
	Register-Based Dual-Port SRAM
	ACTgen RAM

	FIFO
	Figure 4-26. FIFO Behavioral Simulation Mode
	Register-Based FIFO
	ACTgen FIFO

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

