
ACTgen Cores Reference Guide

Table of Contents

2 ACTgen Cores Reference Guide

Actel Corporation, Sunnyvale, CA 94086

© 2004 Actel Corporation. All rights reserved.

Part Number: 5029108-11

Release: September 2004

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties
of merchantability or fitness for a particular purpose.

Information in this document is subject to change without notice. Actel assumes no responsibility for
any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of
Actel Corporation.

Acrobat Reader is a trademark of Adobe Systems, Inc.

Windows is a registered trademark of Microsoft in the U.S. and other countries.

All other products or brand names mentioned are trademarks or registered trademarks of their
respective holders.

Table of Contents
Introduction . 5
Document Conventions . 5

Symbols . 6

Your Comments . 6

Online Help . 6

1 Arithmetic Cores . 7
Advanced Options . 34

2 Comparators . 39

3 Converters . 45

4 Counters . 51

5 Decoder . 59

6 I/Os . 63

7 Logic . 81

8 Multiplexer . 85

9 Minicores . 89

10 PLLs . 99
Functionality . 108

Configure Clock Conditioning / PLL cores 109

11 Register (Storage Elements) 115

12 Memory Cores for
Non-Axcelerator Families 129
ACTgen Macros Reference Guide 3

Table of Contents
13 Memory Cores for Axcelerator 155

14 Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E
Devices 165

A Memory in ProASIC and ProASICPLUS 185
Embedded Memory . 185

Distributed Memory . 190

Timing for Distrubuted Memories . 196

Using Multiple Memories in a Design . 199

B Product Support . 207
Customer Service . 207

Actel Customer Technical Support Center 207

Actel Technical Support . 207

Website . 207

Contacting the Customer Technical Support Center 208
4 ACTgen Macros Reference Guide

Introduction

This guide provides descriptions of cores that you can generate using the Actel ACTgen core builder
software. For more information about instantiating cores, refer to the Actel HDL Coding Style Guide
and the ACTgen online help.

The Actel ACTgen core builder generates a large variety of commonly used functions. You can
generate structural netlists in EDIF, VHDL, and Verilog. Furthermore, you can generate VHDL
and Verilog behavioral models for most parameterized functions (the behavioral models may be used
in a simulation environment).

Actel’s parameterized cores:

• Reduce the development time of complex functions.

• Offer a large set of implementations for each type of function.

• Offer a wide range of bit widths that provides a quick change of design definitions.

Document Conventions
The following table describes the conventions that are used throughout this manual.

Table 1. Functional Description of Table Nomenclature

Symbol Definition

X Don’t care

1 Logical 1 or high

0 Logical 0 or low

¦ Rising edge

Ø Falling edge

Qn Value of the signal Q before the active edge of the clock

Qn+1 Value of the signal Q after the active edge of the clock

Qn [width-1 :
0]

Qn is a width-bit bus

Qn [width-1 Width-1 bit of Qn
ACTgen Cores Reference Guide 5

Introduction
Symbols
Each core symbol shows the input and output ports. Busses are highlighted with a bold line; scalar
signals with a thin line. The actual symbols generated by ACTgen could look slightly different,
depending on the particular CAE tool used. Some ports shown could be optional, as described in
the port description tables. Default polarities are shown on the symbols.

Your Comments
Actel Corporation strives to produce the highest quality online help and printed documentation. We
want to help you learn about our products, so you can get your work done quickly. We welcome your
feedback about this guide and our online help. Please send your comments to
documentation@actel.com.

Online Help
The Designer software comes with online help. Online help specific to each software tool is available
in Libero, Designer, ACTgen, ACTmap, Silicon Expert, Silicon Explorer II, and Silicon Sculptor.
Please refer to the ACTgen online help (open ACTgen and from the Help menu, select ACTgen
Help) for a complete explanation of how to use the ACTgen tool.

m, n Binary pattern with width of function

Table 1. Functional Description of Table Nomenclature (Continued)

Symbol Definition
6 ACTgen Cores Reference Guide

1
Arithmetic Cores
ACTgen Cores Reference Guide 7

Adder

Features
• Parameterized word length

• Optional carry-in and carry-out signals

• Multiple gate-level implementations
(speed/area tradeoffs)

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA, 500K,
Axcelerator, ProASIC3/E

Description

Cin

Sum

Cout

DataA

DataB

Table 1-1. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-2. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low and not used)
ACTgen Cores Reference Guide 8

The Sklansky Adder enables you to un-check the Automatic Max. Fanout box and specify a value
for max fanout. This makes ACTgen perform logic replication on high fanout nets so that the
maximum fanout for all the nets in the design is not more than the value specified. If it is set to
automatic, ACTgen automatically makes the decision for logic replication based on the size of the
design.

The MAXFANOUT parameter enables you to perform logic replication for all Flash Adders,
Subtractors, Adder/Subtractors and Accumulators. Inherently only the Sklansky algorithm
generates high-fanout nets (max. fanout = WIDTH/2), so you will see effects only for this
algorithm. The area increases exponentially for MAXFANOUT approaching 2 and it flattens out
for higher values, as shown in Figure 1-1.

Figure 1-1. Adder Area as a Function of MAX FANOUT

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low and not used)

a. The Brent-Kung Adder extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128 bit

for 500K

Table 1-2. Parameter Description

Parameter Family Value Function
ACTgen Cores Reference Guide 9

Arithmetic Cores
Performance is not always as predictable (as shown in Figure 1-2). When you select automatic logic
replication, ACTgen automatically chooses a value for MAXFANOUT based on WIDTH. This
value returns a good, but not necessarily the best, result for that particular value of WIDTH.

Figure 1-2. Adder Performance as a Function of MAX FANOUT

Table 1-3. Implementation Parameters

Parameter Family Value Description

LPMTYPE ALL LPM_ADD_SUB Adder category

LPM_HINT

500K, PA

SKADD Sklansky model

FBKADD Fast Brent-Kung model

BKADD (Compact) Brent-Kung model

ALL

FADDa

a. FADD and MFADD are NOT recommended for Flash devices.

Very fast carry select model

MFADDa Fast carry select model

RIPADD Ripple carry model

LPMTYPE Axcelerator
LPM_FC_ADD_SU

B
Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FADD Fast carry chain selct model

FC_RIPADD Fast carry chain ripple carry model

Table 1-4. Functional Description

DataA DataB Sum Couta

a. Cin and Cout are assumed to be active high

m[width-1 : 0] n[width-1 : 0] (m + n + Cin)[width-1 : 0] (m + n + Cin)[width]
10 ACTgen Cores Reference Guide

Array Adder

Features
• Parameterized word length and number of input buses

• DADDA tree architecture with optional Final Adder

• Optional pipeline for implementation with Final Adder

• Behavioral simulation model in VHDL and Verilog

Family Support
54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/E

Description
The Array-Adder implements a Sum-Function over an Array of Buses:

 where

In applications where designers have to add more than two operands at a time “Carry-Save-
Techniques” might be used to build the final Sum. ACTgen makes these techniques available
through the Array-Adder core, which is using a Dadda tree algorithm. Usually this algorithm is
more compact and faster than using Adder-trees consisting of multiple 2-operand adders, especially
if the number of operands gets large and/or for large word width.

An example could be the FIR-filter architecture using a “distributed arithmetic” as described in the
Application Note from September 1997 “Designing FIR Filters with Actel FPGAs.” This
architecture generates a large number of partial products, which need to be summed up. Summing
them up in an Adder-Tree would both be slow and area expensive. At the time of writing this
document synthesis tools did not infer Multiple-Operand-Adders. Therefore making use of the
Array-Adder in those types of applications might result in a significant gain in both speed and area.

The Array Adder comes with or without Final Adder. The version with Final Adder allows to
instantiate a pipeline stage between the Dadda-tree and the Final Adder. The output bitwidth for
Sum can be calculated using this formula:

OUTWIDTH = log2((m*exp2(n)-1)+1) <= n + log2(m)

The version without Final Adder has two output ports: SumA and SumB, which added together,
will provide the Final Result. It is

SumA_Width <= SumB_Width <= OUTWIDTH

Data0

Data1

DataN-1

Sum!
!
!
!

Sum Data (i)∑= i 0 to SIZE-1()=
ACTgen Cores Reference Guide 11

Arithmetic Cores
The differences are at most one bit. This variation of the Array-Adder is particularly useful for an
application, which would cascade the Array-Adder. In that case only the last stage would need a
Final Adder to build the result.

Table 1-5. Port Description

Port
Name

Size Type Req/Opt Function

Data0 WIDTH Input Req. Input Data (Operand 0)

Data1 WIDTH Input Req. Input Data (Operand 1)

Data2 WIDTH Input Req. Input Data (Operand 2)

Datax WIDTH Input Opt. Input Data (Operand X) X>2

Sum OUTWIDTH Output Req.

Clock 1 Input Opt. Clock (if pipelined)

Table 1-6. Parameter Description

Parameter Value Function

WIDTH width
AX/Flash: 2-64
All others: 2-32

Word length Data(i)

SIZE size
AX/Flash: 3-64
All others: 3-32

Number of input buses

CKL_EDGE RISE FALL Clock (if pipelined)

Table 1-7. Implementation Parameters

Parameter Value Description

LPMTYPE DADDA Generic Array Adder category

LPM_HINT ARRADD Array Adder with Final Adder

ARRADDP Pipelined Array Adder with Final Adder

ARRADD2 Array Adder without Final Adder

Data i()∑ i 0 to SIZE-1=→
12 ACTgen Cores Reference Guide

Table 1-8. Parameter Rules

Family Variation Parameter Rules

eX
ARRADD / ARRADDP WIDTH * SIZE <=870

ARRADD2 WIDTH * SIZE <= 930

SX
ARRADD / ARADDP WIDTH * SIZE <=110

ARRADD2 WIDTH * SIZE <=144

Axcelerator ARRADD / ARADDP WIDTH * SIZE <= 1920

ARRADD2 WIDTH * SIZE <= 1856
ACTgen Cores Reference Guide 13

Subtractor

Features
• Parameterized word length

• Optional carry-in and carry-out signals

• Multiple gate-level implementations
(speed/area tradeoffs)

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description

Cin

Sum

Cout

DataA

DataB

Table 1-9. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-10. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout
ACTgen Cores Reference Guide 14

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low and not used)

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low and not used)

a. The Brent-Kung Subtractor extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128

bit for 500K

Table 1-11. Implementation Parameters

Parameter Familiy Value Description

LPMTYPE ALL LPM_ADD_SUB Subtracter category

LPM_HINT

500K, PA

SKSUB Sklansky model

FBKSUB Fast Brent-Kung model

BKSUB (Compact) Brent-Kung model

ALL

FSUBa Very fast carry select model

MFSUBa

a. FSUB and MFSUB are not recommended for Flash devices.

Fast carry select model

RIPSUB Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Subtractor category

LPM_HINT Axcelerator
FC_FSUB Fast carry chain selct model

FC_RIPSUB Fast carry chain ripple carry model

Table 1-12. Functional Description

DataA DataB Sum Couta

a. Cin and Cout are assumed to be active high

m[width-1 : 0] n[width-1 : 0] (m - n - Cin) [width-1 : 0] (m - n - Cin)[width]

Table 1-10. Parameter Description (Continued)

Parameter Family Value Function
ACTgen Cores Reference Guide 15

Adder/Subtractor

Features
• Parameterized word length

• Optional carry-in and carry-out signals

• Mulitiple gate-level implementations
(speed/area tradeoffs)

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description

Cin

Sum

Cout

DataA

DataB

Addsub

Table 1-13. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

DataB WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Addsub 1 Input Req.
Addition (AddSub = 1)
or subtraction (Addsub = 0)

Table 1-14. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32
ACTgen Cores Reference Guide 16

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low, and not used)

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low, and not used)

a. The Brent-Kung Adder/Subtractor extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128

bit for 500K

Table 1-14. Parameter Description

Parameter Family Value Function

Table 1-15. Implementation Parameters

Parameter Family Value Description

LPMTYPE ALL LPM_ADD_SUB Adder/Subtracter category

LPM_HINT

500K, PA

SKADDSUB Sklansky model

FBKADDSUB Fast Brent-Kung model

BKADDSUB (Compact) Brent-Kung model

ALL

FADDSUBa

a. FADDSUB and MFADSUBB are not recommended for Flash devices.

Very fast carry select model

MFADDSUBa Fast carry select model

RIPADDSUB Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FADDSUB Fast carry chain selct model

FC_RIPADDSUB Fast carry chain ripple carry model

Table 1-16. Functional Description

DataA DataB Addsub Sum Couta

m[width-1 : 0] n[width-1 : 0] (m + n + Cin)[width-1 : 0] (m + n + Cin)[width] m[width-1 : 0]

m[width-1 : 0] n[width-1 : 0] (m - n - Cin) [width-1 : 0] (m - n - Cin)[width] m[width-1 : 0]

a. Cin and Cout are assumed to be active high here.
ACTgen Cores Reference Guide 17

Accumulator

Features
• Parameterized word length

• Optional carry-in and carry-out signals

• Asynchronous reset

• Accumulator enable

• Multiple gate-level implementations (speed/area tradeoffs)

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, PA, 500K,
Axcelerator, ProASIC3/E

Description

DataA

Cin

Enable

Clock

Sum

Cout

Aclr

Table 1-17. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Cin 1 Input Opt. Carry-in

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Enable 1 Input Opt Enable

Clock 1 Input Req. Clock

Aclr 1 Input Opt
Asynchronous
Reset
ACTgen Cores Reference Guide 18

Table 1-18. Parameter Description

Parameter Family Value Function

WIDTHa

500K, PA 2-128

Word length of DataA, DataB and SumAxcelerator 2-156

Other 2-32

MAXFANOUT 500K, PA
0 Automatic choice (function of WIDTH)

2-16 Manual setting of Max. Fanout

CI_POLARITY ALL 0 1 2 Carry-in polarity (active high, active low, and not used)

CO_POLARITY ALL 0 1 2 Carry-out polarity (active high, active low, and not used)

CLR_POLARITY ALL 0 1 2 Asynchronous reset (active high, active low, and not used)

EN_POLARITY ALL 0 1 2 Accumulator enable (active high, active low, and not used)

FFTYPEb ALL except Flash
REGULAR

TMR
FF type used (Regular, Triple Voting)

CLK_EDGE ALL RISE FALL Active High/Low

a. The Brent-Kung Accumulator extends the ranges from 32 to 128 bit for 54SX, 54SX-A and from 20 to 128 bit for

500K

b. TMR is Triple Module Redundancy. Choosing this option makes ACTgen use TMR FlipFlops that are used to

avoid Single Event Upsets (SEUs) for Rad-hard Designs. Choosing this option causes the Sequential resource usage
to be tripled in families where no TMR is implemented in Silicon.

Table 1-19. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]
ACTgen Cores Reference Guide 19

Arithmetic Cores
CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 1-20. Implementation Parameters

Parameter Family Value Description

LPMTYPE LPM_ADD_SUB Accumulator category

LPM_HINT

500K, PA

SKACC Sklansky model

FBKACC Fast Brent-Kung model

BKACC (Compact) Brent-Kung model

ALL

FACCa

a. The FACC and MACC parameters are not recommended for Flash devices.

Very fast carry select model

MFACCa Fast carry select model

RIPACC Ripple carry model

LPMTYPE Axcelerator LPM_FC_ADD_SUB Fast carry chain Adder category

LPM_HINT Axcelerator
FC_FACC Fast carry chain selct model

FC_RIPACC Fast carry chain ripple carry model

Table 1-21. Functional Description

DataA Sumn+1 Couta

a. Cin and Cout are assumed to be active high.

m[width-1 : 0] (m + Sumn + Cin)[width-1 : 0] (m + Sumn + Cin)[width]

Table 1-19. Fan-in Control Parameters

Parameter Value
20 ACTgen Cores Reference Guide

Incrementer

Features
• Parameterized word length

• Optional Carry-out signals

• One very fast gate level implementation,
FC High Speed and FC Ripple available

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Acelerator,
ProASIC3/E

Description

Sum

Cout

DataA

1

Table 1-22. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-23. Parameter Description

Parameter Value Function

WIDTH
2-32

2-156 for FC Cores
Word length of DataA and Sum

CO_POLARITY 0 1 2 Carry-out polarity (active high, active low, and not used)
ACTgen Cores Reference Guide 21

Arithmetic Cores
Table 1-24. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Incrementer category

LPM_HINT
FINC; FC_FINC,
FC_RIPINC

Very fast carry look ahead

Table 1-25. Functional Description

DataA Sum Cout

m m + 1 (m + 1) ≥ 2width
22 ACTgen Cores Reference Guide

Decrementer

Features
• Parameterized word length

• Optional Carry-out signals

• One very fast gate level implementation,
FC High Speed and FC Ripple available

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/
E

Description

Sum

Cout

DataA

1

Table 1-26. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Table 1-27. Parameter Description

Parameter Value Function

WIDTH

2-32

2-156 for FC_FDEC and

FC_RIPDEC

Word length of DataA and Sum

CO_POLARITY 0 1 2
Carry-out polarity (active high, active low, and not

used)
ACTgen Cores Reference Guide 23

Arithmetic Cores
Table 1-28. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Decrementer category

LPM_HINT
FDEC
FC_FDEC and FC_RIPDEC, Fast Carry
Versions

Very fast carry look
ahead

Table 1-29. Functional Description

DataA DataB Sum Cout

m n m - 1 (m-1) < 0
24 ACTgen Cores Reference Guide

Incrementer/Decrementer

Features
• Parameterized word length

• Optional Carry-out signals

• One very fast gate level implementation,
FC High Speed and FC Ripple available

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/
E

Description

Sum

Cout

DataA

1

Incdec

Table 1-30. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Sum WIDTH Output Req. Sum

Cout 1 Output Opt. Carry-out

Incdec 1 Input Req.
Increment (Incdec = 1) or decrement

(Incdec = 0)

Table 1-31. Parameter Description

Parameter Value Function

WIDTH

2-32

2-156 for FC_FINCDEC and
FC_RIPINCDEC

Word length of DataA and Sum
ACTgen Cores Reference Guide 25

Arithmetic Cores
CO_POLARITY 0 1 2
Carry-out polarity (active high, active low,

and not used)

Table 1-32. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_ADD_SUB Incrementer/Decrementer category

LPM_HINT
FINCDEC
FC_FINCDEC
FC_RIPINCDEC

Very fast carry look ahead

Table 1-33. Functional Description

DataA Incdec Sum Cout

m 1 m + 1 (m + 1) ≥ 2width

m 0 m - 1 (m - 1) < 0

Table 1-31. Parameter Description

Parameter Value Function
26 ACTgen Cores Reference Guide

Constant Multiplier

Features
• Parameterized word lengths and constant values

• Unsigned and signed (two’s complement)
data representation

• Booth / Wallace architecture

• Behavioral simulation model (for non-pipelined
multiplier only) in VHDL and Verilog

Family Support
54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/E

Description
The Constant Multiplier performs the multiplication of a data-input with a constant value. Area
and performance of the Constant Multiplier depend on the value of the constant. Specifically, area
and performance depend on the number of groups of 1's in the bit pattern of the constant. As a
result, the worst-case constant has a bit pattern of alternating 1's and 0's (…010101…). However,
even for that worst case the area and performance of the Constant Multiplier is superior to a regular
Multiplier.

The Constant Multiplier core output word length is always double the input word length.
Depending on the value of the constant, some of the most significant bits might be sign-extension
bits. You may be able to reduce hardware by calculating the actual number of bits needed and cutting
all sign-extension bits. For example:

width =4, Constant = 1100, representation=signed

The worst case data for this example would be 1000 (-8) and therefore the worst case output data
would be 010 0000 (-8 * -4 = 32). So with that we know, that Mult<8> is just a sign-extension bit
(Mult<8> = Mult<7>).

Keep in mind that some constant multiplications might be generated even more effectively, e.g.
constants to the power of 2 are just shift-operations, or constants like 3,5,7,9,10, etc. can be
generated using shift operations and a simple addition/subtraction (2+1, 4+1, 8-1, 8+1, 8+2, etc.).
For these constants the implementation of the Constant Multiplier might not be as efficient as using
shift operations and/or Adders/Subtractors.

Usually synthesis infers regular Multipliers even for constant values. Therefore the use of the
Constant Multiplier core in a design, which performs one or more multiplications with constant
values, is expected to be very beneficial.

Mult

DataA

Constant
ACTgen Cores Reference Guide 27

Arithmetic Cores
An application example might be FIR-filters with constant coefficients, were the computation is
organized in the “transposed form” as indicated in
Figure 1-3.

Figure 1-3. FIR-filter Organized in the "Transposed Form" Using Constant Multipliers

Table 1-34. Port Description

Port
Name

Size Type Req/Opt Function

Data WIDTH Input Req. Input data

Mult 2*WIDTH Output Req. Constant * Data

Table 1-35. Parameter Description

Parameter Value Function

WIDTHa

a. For eX WIDTH is supported from 2-11

2-64 Word length Data

CONST Constant Constant value

RADIX HEX BIN DEC Radix for constant value

SIGNb

b. For signed constant multiplier

0 1 Positive, negative constant sign

C4

Din

C3 C2 C1 C0

Dout
28 ACTgen Cores Reference Guide

Parameter Rules:

1. DataA is always binary and of the size of Width.

2. Constant must be of the selected Radix and be of the selected width for HEX/BIN. ACTgen
automatically pads zeroes if they are missing.

e.g.: Radix: BIN, Width: 5, Constant: 00010
Radix Hex, Width:8, Constant: 0A

Table 1-36. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_MULT Constant multiplier category

LPM_HINT UCMULT Unsigned constant multiplier

SCMULT Signed constant multiplier
ACTgen Cores Reference Guide 29

Multiplier

Features
• Parameterized word lengths

• Unsigned and signed (two’s complement)
data representation

• Booth or array implementation

• Optional pipelining

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/
E

Description

Mult

DataA

DataB

Table 1-37. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTHA Input Req. Input data

DataB WIDTHB Input Req. Input data

Clock 1 Input Opt. Clock

Mult WIDTHA+WIDTHB Output Opt. DataA*DataB

Mult0 WIDTHA+WIDTHB Output Opt. Mult0 + Mult1 =

DataA*DataBMult1 WIDTHA+WIDTHB Output Opt.
ACTgen Cores Reference Guide 30

Table 1-38. Parameter Description

Parameter Family Value Function

WIDTHAa

a. For some of the multiplier variations there are small deviations from the limits mentioned to ensure that

the multiplier fits in the largest device of the selected family.

500K, PA,
Axcelerator

2-64

Word length of DataA
eX 2-14

Other 2-30

WIDTHB Same as WIDTHA Word length of DataB

REPRESENTATION
UNSIGNED

SIGNED
Data representation

FFTYPEb

b. TMR: Triple Module Redundancy. Choosing this option makes ACTgen use TMR FlipFlops which are

used to avoid Single Event Upsets (SEUs) for Rad-hard Designs. Choosing this option causes the Sequential

resource usage to be tripled in families where no TMR is implemented in Silicon.

CC: When combinatorial option is chosen for the Sequential Type, the FF is implemented using two

Combinatorial Cells instead of one Sequential Cell. This is useful when no Sequential resources are available
in the designs.

This option is applicable only to the pipelined multipliers.

ALL except

Flash

REGULAR
TMR

CC

FF Type Used (Default, Triple

Voting, Combinatorial)

CLK_EDGE RISE FALL Clock (if pipelined)
ACTgen Cores Reference Guide 31

Arithmetic Cores
Table 1-39. Functional Description

DataA DataB Mult1a

a. If pipelined, the sum is correct (available) after <latency> cycles. Latency is a
function of WIDTHA and WIDTHB, or the number of pipelined stages
mentioned specifically (eg. 1 or 2 pipelines).

m n m * n

Table 1-40. Functional Description

DataA DataB Mult0/1a

a. Mult1<0> is always 0

m n Mult1 + Mult2 = m * n

Table 1-41. Parameter Rulesa

Family Variation Parameter rules

All All WIDTHA ≥ WIDTHB

eX

BOOTHMULT/P WIDTHA + WIDTHB <= 15 (signed) / 16 (unsigned)

BOOTHMULTP For TMR restrictions for WIDTHA, WIDTHB

BOOTHMULT2 WIDTHA + WIDTHB <= 17 (signed) / 18 (unsigned)

SX/SX-A
BOOTHMULT/P WIDTHA + WIDTHB <= 32

BOOTHMULT2 WIDTHA + WIDTHB <= 55
32 ACTgen Cores Reference Guide

Axcelerator

ARRAYMULT WIDTHA + WIDTHB <= 128

PARRAYMULT WIDTHA + WIDTHB <= 128

FC_BOOTHMULT1 WIDTHA + WIDTHB <= 106

FC_BOOTHMULT1 WIDTHA + WIDTHB <= 106

500K, PA All WIDTHA + WIDTHB <= 106

Other All WIDTHA + WIDTHB <= 32

a. These are the most important parameter rules; additional rules may apply

Table 1-42. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_MULT Multiplier category

LPM_HINT

BOOTHMULT Booth multiplier

BOOTHMULT2a

a. Available for 54SX, 54SX-A, eX, 500K & PA

Booth multiplier without final Adder

BOOTHMULTP Pipelined booth multiplier

LPMTYPE

LPM_FC_MULT Fast Carry multiplier category (Axcelerator)b

b. For information on multiplier area and performance please refer to the latest Actel application note

available at http://www.actel.com

PARRAYMULT

Fast Carry array multipliers in parallel; each array multiplier

consists of a 1-bit multiplier (MULT1); the rows of the array

use fast carry chains, but there is a regular routing between
columns

BOOTHMULT1 Booth-encoded Wallace-tree with Fast Carry final adder

BOOTHMULT2 Booth-encoded multiplier with n-bit Fast Carry adder tree

Table 1-41. Parameter Rulesa (Continued)

Family Variation Parameter rules
ACTgen Cores Reference Guide 33

Arithmetic Cores
Advanced Options
Click the Advanced button (available for PA, 500K, and Axcelerator devices) to specify pipeline
stages. If you are using a PA or 500K device, you can insert (default setting) or omit the final Adder
stage.

Omitting the Final Adder
You can choose not to instantiate the final adder in the multiplier and add up the two buses Mult0
and Mult1 to the final result later in the design flow. This is often the most efficient
implementation when a lot of partial results get summed up in a large summation network. Figure 1-

Table 1-43. Axcelerator Multiplier Architecture Comparison Speeda

Architecture \ Speed 1 (fastest) 2 3 (slowest)

Parallel-2 Array Multiplier width <= 8 bit 8 bit < width <= 10 bit width > 10 bit

FC Booth-1 8 bit < width <= 20 bit width <= 8 bit or width > 20 bit

FC Booth-2 width > 20 bit 10 bit < width <= 20 bit width <= 10 bit

a. For simplicity’s sake, the table assumes WIDTHA = WIDTHB = width

Table 1-44. Axcelerator Multiplier Architecture Comparison: Area

Architecture \ Speed 1 (smallest) 2 3 (largest)

Parallel-2 Array Multiplier always

FC Booth-1 always

FC Booth-2 always
34 ACTgen Cores Reference Guide

Advanced Options
4 shows an example for Y = (A x B) + C + D using the multiplier with 2 outputs in combination with
the Array-Adder.

Figure 1-4. Efficient implementation using the 2-output multiplier in combination with
the Array-Adder

Multiplier Pipelining
For 500K, PA and Axcelerator devices you can specify the number of pipeline stages (1, 2, or 3).
However, three pipeline stages increases performance only for high bitwidth. Click the Advanced
button in the GUI to access pipelining.

For ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX the multiplier architecture does
not allow you to select the latency of the pipelined multiplier or the number of logic levels between

Mult1

Mult0

DataA

DataB Y

Data0

Data1

Data2

Data3

Sum

A

B

C
D

Table 1-45. Pipeline Stages

Pipeline Stages
WidthB

w/ Final Adder w/o Final Adder

1 >= 2 >= 5

2 >= 5 >= 7

3 >= 7 Not applicable
ACTgen Cores Reference Guide 35

Arithmetic Cores
the pipeline stages. Registers are automatically inserted between the major components of the
architecture, primarily the multiplexer and adder cores, as shown in Figure 1-5.

Figure 1-5. Booth Multiplier Architecture (Pipeline)

The number of pipeline stages is a function of the width of the DataB input. The number of logic
levels per pipeline stage is a function of the width of the DataA input. Therefore, the number of
logic levels per pipeline stage is equal to the number of logic levels of the first adder (WIDTHA + 1)
plus 1 for the 4 to 1 multiplexer, as shown in Figure 1-5.

Table 1-46. Pipeline Stages as a Function of WidthB

WidthB Range Pipeline Stages

2 0

3-4 1

5-8 2

9-16 3

GND

co1

co0

DataB [0] DataB [1]

DataB [2] DataB [3]

DataB [4] DataB [5]

 Mux4
[widtha+2]

 Mux4
[widtha+2]

 Mux4
[widtha+2]

 Adder
[widtha+1]

 Adder
[widtha+2]

 Adder
[widtha+2]

 Product
[widtha+5:4]

 Product [3:2]

 Product [1:0]

aux3 [widtha+1:0]

aux3 [widtha+1:2]

0.co1.aux3 [widtha+1:2]

aux1 [widtha+1:0]

aux0 [widtha+1:0]

0.0.aux0 [widtha+1:2]

aux1 [widtha+1:0]

aux1 [widtha+1:0]

DataA [n-1:0]

DataA [n-2:0].0

aux1 [widtha+1:0]

Register
36 ACTgen Cores Reference Guide

Advanced Options
Table 1-47. Logic Levels as a Function of WidthA

WidthA Range Logic Levels

2-5 3

6-17 4

18-30 5
ACTgen Cores Reference Guide 37

Arithmetic Cores
38 ACTgen Cores Reference Guide

2
Comparators
ACTgen Cores Reference Guide 39

Magnitude/Equality Comparator

Features
• Parameterized word length

• Unsigned and signed (two’s complement)
data comparison

• One very fast gate level implementation

• Behavioral simulation model in VHDL and Verilog

Family Support1

ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description

DataA

DataB

AGB
AGEB
ALB
ALEB

>
>
<
<

_

_

1. For Flash devices the Equality Comparator and the Magnitude Comparator are separate. For all other devices they

are the same core. There is a Fast Carry Magnitude Comparator available for Axcelerator.

Table 2-1. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input data

DataB WIDTH Input Req. Input data

AGB 1 Output Opt. Output comparison; A > B

AGEB 1 Output Opt. Output comparison; A ≥ B

ALB 1 Output Opt. Output comparison; A < B

ALEB 1 Output Opt. Output comparison; A ≤ B

AEB 1 Output Opt. Output comparison; A = B

ANEB 1 Output Opt. Output comparison; A ≠ B
ACTgen Cores Reference Guide 40

Table 2-2. Parameter Description

Parameter Value Function

WIDTH 2-32
Word length of DataA and
DataB

REPRESENTATION UNSIGNED SIGNED

AGB_POLARITY 0 1 2
AGB polarity (active high,
active low, and not used)

AGEB_POLARITY 0 1 2
AGEB polarity (active high,
active low, and not used)

ALB_POLARITY 0 1 2
ALB polarity (active high, active
low, and not used)

ALEB_POLARITY 0 1 2
ALEB polarity (active high,
active low, and not used)

AEB_POLARITY 0 1 2
AEB polarity (active high, active
low, and not used)

ANEB_POLARITY 0 1 2
ANEB polarity (active high,
active low, and not used)

Table 2-3. Implementation Parameters

Parameter Value Description

LPMTYPE
LPM_COMPARE Comparator category

LPM_FC_COMPARE Fast Comparator Category

LPM_HINT
COMPARE Very fast carry select

FC_MAGCOMP Very fast Magnitude Comparator
ACTgen Cores Reference Guide 41

Comparators
Table 2-4. Parameter Rules

Parameter Rules

At lease one of the comparisons (AGB, AGEB, ALB, ALEB, AEB or ANEB) must be selected

Only one of the magnitude comparisons (AGB, AGEB, ALB or ALEB) can be selected at the
same time

Only one of the equality comparisons (AEB or ANEB) can be selected at the same time

Table 2-5. Functional Description

DataA DataB AGB AGEB ALB ALEB AEB ANEB

m n m > n m ≥ n m < n m ≤ n m = n m ≠ n

Table 2-6. Implementation Parameters

Implementation (LPM_HINT) Description

COMPARE Very fast carry select model

FC_MAGCOMP Very fast Magnitude Comparator

Table 2-7. Parameter Rules

Parameter rules

At least one of the comparisons (AGB, AGEB, ALB, ALEB, AEB or ANEB) must be selected

Only one of the magnitude comparisons (AGB, AGEB, ALB or ALEB) can be selected at the same time

Only one of the equality comparisons (AEB or ANEB) can be selected at the same time
42 ACTgen Cores Reference Guide

Constant Decoder

Features
• Parameterized word length

• DEC/BIN/HEX radices for constant

• Equal/Not Equal comparison

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description

Aeb

DataA

Constant

Table 2-8. Port Description

Port Name Size Type Req/Opt Function

DataA WIDTH Input Req. Input Data

Aeb 1 Output Req. Result

Table 2-9. Parameter Description

Parameter Value Function

WIDTH 2-32a

a. For Flash devices, width is 2-128

Word length of DataA and Constant

Radix Dec/Bin/Hex Base of Constant

Constant
Same as Width in

selected Radix
The value with which input data will be compared

AEB_POLARITY 0, 1 A equals B polarity (Active High, Active Low)
ACTgen Cores Reference Guide 43

Comparators
Parameter Rules:

1. DataA is always binary and of the size of Width.

2. Constant must be of the selected Radix and be of the selected width for HEX/BIN.

e.g.: Radix: BIN, Width: 5, Constant: 00010
Radix Hex, Width:8, Constant: 0A

Table 2-10. Implementation Parameters

Parameter Value Description

LPM_TYPE LPM_COMPARE Comparator category

LPM_HINT WDEC Very fast

Table 2-11. Functional Description

Aeb

DataA = Constant
44 ACTgen Cores Reference Guide

3
Converters
ACTgen Cores Reference Guide 45

Gray Counter

Features
• Parameterized for Data Width

• Asynchronous Clear,
Asynchronous Preset

Family support
54SX, Axcelerator

Description
ACTgen can generate Gray Counters parameterized for a specified Data Width and with a choice
of Enable, Asynchronous Clear, and Asynchronous Preset signals.

ENABLE Q

CLOCK

CLR

PRE

Table 3-1. Port Description

Port Name Size Type Req/Opt Function

Clock WIDTH Input Req. Input Data

Q WIDTH Output Req. Output Data

Clr 1 Input Opt. Clear

Pre 1 Input Opt. Preset

Enable 1 Input Opt. Enable
ACTgen Cores Reference Guide 46

Table 3-2. Parameter Description

Parameter Value Function

GRAYCOUNT 2-99 Output Data Width

CLR_POLARITY 0,1,2 Clear Polarity

PRE_POLARITY 0,1,2 Preset Polarity

EN_POLARITY 0,1 Enable Polarity

CLK_EDGE RISE,FALL Clock Edge

Table 3-3. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GRAY COUNTER Gray Counter
ACTgen Cores Reference Guide 47

Binary to Gray / Gray to Binary

Features
• Parameterized for Data Width

Family support
54SX, Axcelerator

Description
ACTgen can generate Binary to Gray and Gray to Binary Converters parameterized for a specified
Data Width.

Datain Dataout

Table 3-4. Port Description

Port Name Size Type Req/Opt Function

Datain WIDTH Input Req. Input Data

Dataout WIDTH Output Req. Output Data

Table 3-5. Parameter Description

Parameter Value Function

GRAYDECODE/WIDTH 2-99 Input/Output Data Width
ACTgen Cores Reference Guide 48

Table 3-6. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GRAYENCODE/ LPMGRAYDECODE
Binary to Gray and Gray to

Binary Converter
ACTgen Cores Reference Guide 49

Converters
50 ACTgen Cores Reference Guide

4
Counters
ACTgen Cores Reference Guide 51

Binary Counter

Features
• Parameterized word length

• Up, Down and Up/Down architectures

• Asynchronous clear

• Asynchronous preset (available only
for Flash devices)

• Synchronous counter load

• Synchronous count enable

• Terminal count flag (not available
for Axcelerator)

• Multiple gate level implementations (area/speed tradeoffs)

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 2/1200XL, ACT 3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/
E

Description
The ACTgen binary counters are general purpose UP, DOWN, or
UP/DOWN (direction) counters.

When the count value equals 2width-1, the signal Tcnt (terminal count), if used, is asserted high.

The counters are WIDTH bits wide and have 2width states from “000…0” to “111…1”. The
counters are clocked on the rising (RISE) or falling (FALL) edge of the clock signal Clock
(CLK_EDGE).

The Clear signal (CLR_POLARITY), active low or high, provides an asynchronous reset of the
counter to “000…0”. You may choose to not implement the reset function.

In the case of an Up/Down counter, the Updown signal controls whether the counter counts up
(Updown = 1) or down (Updown = 0).

The counter could be loaded with Data. The Sload signal (LD_POLARITY), active high or low,
provides a synchronous load operation with respect to the clock signal Clock. You can choose to not
implement this function.

Data

Updown

Enable

Clock

Q

Tcnt

Aclr

Sload
ACTgen Cores Reference Guide 52

The ACTgen counters have a count enable signal Enable (EN_POLARITY). Enable can be active
high or low. When Enable is not active, the counter is disabled and the internal state is unchanged.

Table 4-1. Port Description

Port
Name

Size Type
Req./
Opt.

Function

Data WIDTH input Opt. Counter load input

Aclr 1 input Opt. Asynchronous counter reset

Enable 1 input Req. Counter enable

Sload 1 input Opt. Synchronous counter load

Clock 1 input Req. Clock

Updown 1 input Opt.
UP (Updown = 1),
DOWN (Updown = 0)

Q WIDTH output Req. Counter output bus

Tcnt 1 output Opt. Terminal count (active high)

Table 4-2. Parameter Description

Parameter Value Function

WIDTH 2-32 Word length of Data and Q

DIRECTION UP DOWN UPDOWN Counter direction

CLR_POLARITY 0 1 2
Aclr can be active low, active
high or not used

EN_POLARITY 0 1
Enable can be active low,
active high

LD_POLARITY 0 1 2
Sload can be active low, active
high or not used

CLK_EDGE RISE FALL
ACTgen Cores Reference Guide 53

Counters
TCNT_POLARITY 1 2
Tcnt can be active high or not
used

Table 4-3. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

LD_FANIN AUTO MANUAL

LD_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 4-4. Implementation Parameters

Parameter Value Description Family

LPMTYPE
LPM_COUNTE
R

Counter category

LPM_HINT LLCNT Prescaled model All

TLACNT Register look ahead model All

FBCNT Fast Balanced model 54SX, 54SX-A

BCNT Balanced model All

LECNT Fast Enable Balanced All

COMPCNT Compact model All

RIPPLE Ripple model All

Table 4-2. Parameter Description (Continued)

Parameter Value Function
54 ACTgen Cores Reference Guide

Implementations
This section decribes the implementation of the Pre-Scaled Counter, Register Look Ahead
Counter, Fast Balanced Counter and the Balanced Counter.

Pre-Scaled Counter

The pre-scaled counter achieves absolute maximum count and count enable performance by
sacrificing synchronous load performance. This counter registers the two least significant bits and
uses them as an enable for the upper bits. Count performance is limited only by the delay in the
lower two bits and the enable path for the upper bits. Because the upper bits are only updated
(enabled) every fourth cycle, they can accommodate more delay (up to one-fourth the clock
frequency).

There are two limitations related to the use of the pre-scaled counter. The first is in analyzing the
actual performance of the counter. The second is correctly performing data load functions; these two
limitations are related. Two parameters must be measured to overcome these two limitations. The
first parameter that must be measured is the worst internal delay inside the counter. The second
parameter is the worst delay from Q0/Q1 to any upper bit. The minimum count period is then
defined by the greater value of these two parameters.

The load function is a slave of the maximum internal path delay in the pre-scaled counter. The load
function must be held for as many clock periods as required to exceed the maximum internal delay;

Table 4-5. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Sload is active high, Clock is rising, Tcnt is
active high

Data Aclr Enable Sload Clock
Up

down
Qn+1 Tcnt n+1

X 0 X X X X 0’s 0

X 1 X X ¦ X Qn Qn+1== 2width-1

X 1 0 0 ¦ X Qn Qn+1== 2width-1

m 1 X 1 ¦ X m Qn+1== 2width-1

X 1 1 0 ¦ 1 Qn + 1 Qn+1== 2width-1

X 1 1 0 ¦ 0 Qn - 1 Qn+1== 2width-1
ACTgen Cores Reference Guide 55

Counters
this ensures that all internal nodes are settled and that correct count operation can be performed.
This requirement can be waived if you can guarantee that 0’s will always be loaded in Q0 and Q1
(resulting in only a single load cycle).

The count path in pre-scaled counters without Sload or Enable functions only have a single logic
level for ACT 2/1200XL, ACT 3, 3200DX, 42MX 54SX, 54SX-A, and eX. All other combinations
of pre-scaled counters have two logic levels in their count path. In these cases, given the two
limitations mentioned previously related to the pre-scaled counter, use the Register Look Ahead or
Fast Balanced counters.

Register Look Ahead Counter

This counter achieves the absolute maximum performance for the count, count enable, and
synchronous load functions. The counter operates by registering intermediate count values providing
“look-ahead” carry circuitry. As a result, this counter variation requires more flip-flops (sequential
modules) than other counters.

Fast Balanced Counter

This counter is only available for the 54SX, 54SX-A, and eX families. It takes advantage of the
architectural features of these families, including flip-flops with built-in enable and more powerful
combinatorial cells. Using these two features, it is possible to build a very fast and compact binary
counter without using “look-ahead” carry circuitry. This counter should be preferred over all the
others available for this family.

Balanced Counter

This counter achieves high performance for both the count and enable functions using standard
design approaches. Module count performance is sacrificed to maintain high speed. This counter is
the result of the performance balance between the count/enable functions and the balance between
the performance/cost in building this architecture. This counter should address most counter needs
for the ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX and 42MX families.

Fast Enable Counter

This compact counter is fully synchronous and has higher performance than the ripple counter.
However, this counter should only be used in moderate performance applications, especially for large
widths.

Ripple Counter

The ripple counter is an asynchronous counter where the Q of each bit feeds the clock of the next
bit; performance is sacrificed to build this variation. However, the ripple counter uses the least
amount of logic resources. This counter should only be used in very low-performance applications or
for very small counters.
56 ACTgen Cores Reference Guide

Because of the asynchronous nature of the count function, this counter does not have a synchronous
load function.

Pseudo Random Counter

A Pseudo Random Counter is available in ACTgen using an LFSR architecture. The Linear
Feedback Shift Register offers an efficient architecture for building very fast Pseudo Random
Counters.

Figure 4-1. Pseudo Random Counter Generic Architecture

The Pseudo Random core architecture core is a simple shift register chain that uses two taps (one
logic level) for the following widths: 2-7, 9-11, 15, 17, 18, 20-23, 25, 28, 29, and 31. The ACTgen
PRNG core uses five taps (three logic levels) for the following widths: 8, 12-14, 16, 19, 24, 26, 27,
30, and 32. The five-tap architecture operates slower than the two-tap implementation.

Modulo Counter

As counter size increases, the amount and complexity of support logic also increases. LFSR base
counters achieve high performance using very few logic resources. The Modulo Counter is designed
to provide two logic levels independently of the chosen modulo value. The architecture borrows
some look-ahead techniques previously used in the register look-ahead counter.

The example below is based on a modulo-6 counter with the following characteristics:

• Active-HIGH clock edge

• Active-LOW asynchronous clear

• Active-HIGH synchronous clear

1 2 3 4

A

B

Y

N M

ICA
ACTgen Cores Reference Guide 57

Counters
• No Enable

Figure 4-2. Modulo Counter Sample

Q

Module = 6

X

X

0 1 3 6 5 2 0 1 3

Clock

Aclr

Tent
58 ACTgen Cores Reference Guide

5
Decoder
ACTgen Cores Reference Guide 59

Decoder

Features
• Parameterized output size (DECODES)

• Behavioral simulation model in VHDL
and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40 MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description

Enable

EqData

Table 5-1. Port Description

Port Name Size Type Req/Opt Function

Data declna

a. decln is an integer and log2 (DECODES) = decln d<log2 (DECODES + 1. If decln is equal
to 1, then Data is scalar, else Data is a bus.

input Req. Input data

Enable 1 input Opt. Enable

Eq DECODES output Req. output

Table 5-2. Parameter Description

Parameter Value Function

DECODES 2-32 Word length of Eq

EN_POLARITY 0 1 2 Enable polarity (active high, active low or not used)
ACTgen Cores Reference Guide 60

EQ_POLARITY 0 1 Eq polarity (active low or active high)

Table 5-3. Functional Descriptiona

a. Assume enable is active low and Eq is active high.

Data Enable Eq

X 0 0’s

m 1
decb (m)==decodes-1 &&c dec(m)==decodes-2 && … &&
dec(m)==0

b. dec(m) defines the decimal value of m

c. && indicates bity concatenation

Table 5-2. Parameter Description

Parameter Value Function
ACTgen Cores Reference Guide 61

Decoder
62 ACTgen Cores Reference Guide

6
I/Os
ACTgen Cores Reference Guide 63

Input Buffers

Features
• Parameterized for data width

• Choice of data buffers (Regular, Special, Pull-Up, Pull-Down)

Family support
ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator,
ProASIC3/E

Description
ACTgen generates different types of Input Buffers with specified data width.

Table 6-1. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Input Data

PADP (LVDS and LVPECL,

Axcelerator Only)
WIDTH Input Req.

Input Data for LVDS and

LVPECL

PADN(LVDS and LVPECL,

Axcelerator Only)
WIDTH Input Req.

Input Data for LVDS and

LVPECL

Y WIDTH Output Req. Output Data

Table 6-2. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending on the family) Data Width

PULLUP (Flash Only) NO / YES Choice of Pull-up version
ACTgen Cores Reference Guide 64

VOLT (Flash Only) 0,1,2

Choice of different voltage

levels. 3.3v, 2.5v or

2.5v(Low Power)

TYPE

(Axcelerator Only)

REG, LVCMOS25, LVCMOS18,
LVCMOS15, PCI, PCIX, GTLP25,

GTLP33, HSTL_I, HSTL_II, SSTL3_I,

SSTL3_II, SSTL2_I, SSTL2_II, LVDS,

LVPECL, LVCMOS25U, LVCMOS25D,
LVCMOS18U, LVCMOS18D,

LVCMOS15U, LVCMOS15D.

Type of Buffer

Table 6-3. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_IO/ LPM_IB_IO (Flash) Input Buffers

LPM_HINT

INBUF / IB (Flash) Regular Input Buffers

INBUF_SP (Axcelerator Only) Special Input Buffers

INBUF_PU (Axcelerator Only) Pull-up Input Buffers

INBUF_PD (Axcelerator Only) Pull-down Input Buffers

Table 6-2. Parameter Description (Continued)

Parameter Value Function
ACTgen Cores Reference Guide 65

Output Buffers

Features
• Parameterized for data width

• Choice of buffers (Regular, Special)

Family support
ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator,
ProASIC3/E

Description
ACTgen generates different types of Output Buffers with specified data width.

Table 6-4. Port Description

Port Name Size Type Req/Opt Function

Data/A (Flash) WIDTH Input Req. Input Data

PAD WIDTH Output Req. Output Data

Table 6-5. Parameter Description

Parameter Value Function

WIDTH
1-99 (Limit may vary depending on the

family)
Data Width

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage levels.

3.3v(PCI), 3.3v & Low Strength,
2.5v & High Strength, 2.5v & Low

Strength, 2.5v(Low Power) & High

Strength, or 2.5v(Low Power) & Low
Strength
ACTgen Cores Reference Guide 66

SLEW 0,1,2
Choice of different slew rates. Low,

Normal or High

TYPE

(Axcelerator Only)

REG, S_8, S_12, S_16, S_24, F_8, F_12,

F_16, F_24, LVCMOS25, LVCMOS18,
LVCMOS15, PCI, PCIX, GTLP25,

GTLP33, HSTL_I, HSTL_II, SSTL3_I,

SSTL3_II, SSTL2_I, SSTL2_II, LVDS,

LVPECL.

Type of Buffer Note: "S" in S_*

denotes Low Slew Rate and "F" in

F_* denotes High Slew Rate. Also
8,12,16,24 denote Output drive

strengths of 1x, 2x, 3x, 4x respectively

Table 6-6. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_IO / LPM_OB_IO (Flash) Output Buffers

LPM_HINT
OUTBUF / OB (Flash) Regular Output Buffers

OUTBUF_SP (Axcelerator Only) Special Output Buffers

Table 6-5. Parameter Description (Continued)

Parameter Value Function
ACTgen Cores Reference Guide 67

Bi-Directional Buffers

Features
• Parameterized for data width

• Choice of buffers (Regular, Special, Pull-up, Pull-down)

Family support
ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator,
ProASIC3/E

Description
ACTgen generates different types of Input Buffers with specified data width.

Table 6-7. Port Description

Port Name Size Type
Req/
Opt

Function

PAD WIDTH Inout Req. Inout Data

Data / A (Flash) WIDTH Input Req. Input Data

Trien / ENABLE
(Flash)

1 Input Req. Enable

Y WIDTH
Outpu
t

Req.
Output
Data
ACTgen Cores Reference Guide 68

Table 6-8. Parameter Description

Parameter Value Function

WIDTH
1-99 (Limit may vary depending on

the family)
Data Width

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage levels.

3.3v(PCI), 3.3v & Low Strength,
2.5v & High Strength, 2.5v & Low

Strength, 2.5v(Low Power) & High

Strength, or 2.5v(Low Power) &

Low Strength

SLEW (Flash Only) 0,1,2
Choice of the slew rates: Low,
Normal, or High

PULLUP NO / YES Choice of Pull up version

TRIEN_POLARITY /

EN_POLARITY

(Flash)

0,1 Enable Polarity

TYPE (Axcelerator Only)

REG, S_8, S_12, S_16, S_24, F_8,
F_12, F_16, F_24, LVCMOS25,

LVCMOS18, LVCMOS15, PCI,

PCIX, GTLP25, GTLP33, S_8U,
S_12U, S_16U, S_24U, F_8U,

F_12U, F_16U, F_24U, S_8D,

S_12D, S_16D, S_24D, F_8D,
F_12D, F_16D, F_24D,

LVCMOS25U, LVCMOS25D,

LVCMOS18U, LVCMOS18D,
LVCMOS15U, LVCMOS15D,

HSTL_I, SSTL2_I, SSTL2_II,

SSTL3_I, SSTL3_II

Type of Buffer. Note : "S" in S_*

denotes Low Slew Rage and "F" in
F_* denotes High Slew Rate. Also

8,12,16,24 denote Output drive

strengths of 1x, 2x, 3x, 4x
respectively
ACTgen Cores Reference Guide 69

I/Os

Table 6-9. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_IO / LPM_IOB_IO Bi-directional Buffers

LPM_HINT

BIBUF / IOB, GLMIOB
(Flash)

Regular Bi-directional Buffers / IO pad
with Global Connection, Two
Multiplexed Pads & Global Connection
(Flash)

BIBUF_SP (Axcelerator Only) Special Bi-directional Buffers

BIBUF_PU (Axcelerator Only) Pull-up Bi-directional Buffers

BIBUF_PD (Axcelerator Only) Pull-down Bi-directional Buffers
70 ACTgen Cores Reference Guide

Tri-State Buffers

Features
• Parameterized for data width

• Choice of buffers (Regular, Special, Pull-up, Pull-down)

Family support
ACT2/1200XL, ACT3, 3200DX, 42MX, 54SX, 54SX-A, eX, 500K, PA, Axcelerator,
ProASIC3/E

Description
ACTgen generates different types of Input Buffers with specified data width.

Table 6-10. Port Description

Port Name Size Type
Req/
Opt

Function

PAD WIDTH Inout Req. Inout Data

Data / A (Flash) WIDTH Input Req. Input Data

Trien / ENABLE
(Flash)

1 Input Req. Enable

Table 6-11. Parameter Description

Parameter Value Function

WIDTH 1-99 (Limit may vary depending on the family) Data Width
ACTgen Cores Reference Guide 71

I/Os

VOLT (Flash Only) 0,1,2,3,4,5

Choice of different voltage levels. 3.3v (PCI),

3.3v & Low Strength, 2.5v & High Strength,
2.5v & Low Strength, 2.5v (Low Power) & High

Strength, or 2.5v (Low Power) & Low Strength

SLEW (Flash Only) 0,1,2 Choice of the slew rates: Low, Normal, or High

TRIEN_POLARITY /

EN_POLARITY

(Flash)

0,1 Enable Polarity

TYPE (Axcelerator

Only)

REG, S_8, S_12, S_16, S_24, F_8, F_12,
F_16, F_24, LVCMOS25, LVCMOS18,

LVCMOS15, PCI, PCIX, GTLP25,

GTLP33, S_8U, S_12U, S_16U, S_24U,
F_8U, F_12U, F_16U, F_24U, S_8D, S_12D,

S_16D, S_24D, F_8D, F_12D, F_16D,

F_24D, LVCMOS25U, LVCMOS25D,
LVCMOS18U, LVCMOS18D,

LVCMOS15U, LVCMOS15D, HSTL_I,

SSTL2_I, SSTL2_II, SSTL3_I, SSTL3_II

Type of Buffer. Note : "S" in S_* denotes Low
Slew Rage and "F" in F_* denotes High Slew

Rate. Also 8,12,16,24 denote Output drive

strengths of 1x, 2x, 3x, 4x respectively

Table 6-11. Parameter Description (Continued)

Parameter Value Function

Table 6-12. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_IO / LPM_OB_IO Tri-State buffers

LPM_HINT

TRIBUFF / OTB (Flash) Regular Tri-State Buffers

TRIBUFF_SP (Axcelerator Only) Special Tri-State Buffers

TRIBUFF_PU (Axcelerator Only) Pull-up Tri-State Buffers

TRIBUFF_PD (Axcelerator Only) Pull-down Tri-State Buffers
72 ACTgen Cores Reference Guide

Global Buffers

Features
• Parameterized for data width

• Choice of buffers (Regular, Multiplexed, Internal Driver)

Family support
500K, PA, ProASIC3/E

Description
ACTgen generates different types of Input Buffers with specified data width.

Table 6-13. Port Description

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Inout Data

A WIDTH Input Req. Input Data

ENABLE 1 Input Req. Enable

GL 1 Output Req. Output Data

Y WIDTH Output Req. Output Data

Table 6-14. Parameter Description

Parameter Value Function

WIDTH
1-499 (Limit may vary
depending on the type)

Data Width
ACTgen Cores Reference Guide 73

I/Os

VOLT 0,1,2
Choice of different voltage levels:
3.3V, 2.5V, 2.5V (Low Power)

PULLUP NO / YES Choice of Pull-up version

Table 6-15. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GL_IO All buffers

LPM_HINT

GL Standard Global buffer

GLIB Standard Global buffer w/ an Input bufer

GLMIB
Standard Global buffer with Multiplexed Input
buffer

GLINT Global internal driver

Table 6-14. Parameter Description (Continued)

Parameter Value Function
74 ACTgen Cores Reference Guide

PECL Global Buffers

Features
• Parameterized for data width

• Choice of buffers (Direct to Global, Multiplexed with Internal Signal)

Family support
PA

Description
ACTgen generates different types of Input Buffers with specified data width.

Table 6-16. Port Description

Port Name Size Type Req/Opt Function

PECLIN WIDTH Input Req. Input Data

PECLREF WIDTH Input Req. Reference Data

A WIDTH Input Req. Input Data

ENABLE 1 Input Req. Enable

GL WIDTH Output Req. Output Data

Y WIDTH Output Req. Output Data

Table 6-17. Parameter Description

Parameter Value Function

WIDTH 1-2 Data Width
ACTgen Cores Reference Guide 75

I/Os

Table 6-18. Implementation Parameters

Parameter Value Function

LPMTYPE LPM_GLPE_IO PECL Global buffers

LPM_HINT
GLPE Direct to Global

GLPEMIB Multiplexed with Internal Signal
76 ACTgen Cores Reference Guide

Dual Data Rate Register

Features
• Parameterized for Data Width

and almost Full/Empty Values

• Choice of Input buffers for Axcelerator

• Choice of Input, Output, and
Bi-directional buffers for ProASIC3/E

Family support
Axcelerator, ProASIC3/E

Description
ACTgen can generate Dual Data Rate Registers parameterized for a specific Data Width and with
a choice of the type of Input Buffers for Axcelerator and ProASIC3/E.

PAD PRE

E

QR

QF

CLK

CLR

Table 6-19. Port Description - Input Buffer plus DDR Register

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Input Data

QR WIDTH Output Req. Output Data

QF WIDTH Output Req. Output Data

E 1 Input Req. Enable

CLK 1 Input Req. Clock

CLR 1 Input Req. Clear

PRE 1 Output Req. Preset
ACTgen Cores Reference Guide 77

I/Os

Table 6-20. Port Description - Bidirectional Buffer plus DDR Register

Port Name Size Type Req/Opt Function

PAD WIDTH Input/Output Req. Input/Output Data

DataR WIDTH Input/Output Req. Input/Output Data

DataF WIDTH Input/Output Req. Input/Output Data

TriEN 1 Input Req. Enable

CLK 1 Input Req. Clock

CLR 1 Input Req. Clear

Table 6-21. Port Description - DDR Register plus Output Buffer

Port Name Size Type Req/Opt Function

PAD WIDTH Input Req. Output Data

DataR WIDTH Output Req. Input Data

DataF WIDTH Output Req. Input Data

E 1 Input Req. Enable

CLK 1 Input Req. Clock

CLR 1 Input Req. Clear

PRE 1 Output Req. Preset
78 ACTgen Cores Reference Guide

Table 6-22. Parameter Description

Parameter Value Function

WIDTH 1-128 Data Width
ACTgen Cores Reference Guide 79

I/Os
80 ACTgen Cores Reference Guide

7
Logic
ACTgen Cores Reference Guide 81

Logic (AND)

Features
• Parameterized AND size

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, , ProASIC3/E

Description

Data Result

Table 7-1. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. Input data

Result 1 output Req. output

Table 7-2. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active low or active high)

Table 7-3. Functional Descriptiona

a. result is active; highresult is active high

Data Result

m m[0] and m[1] and … and m[SIZE-1]
ACTgen Cores Reference Guide 82

Logic (OR)

Features
• Parameterized OR size

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, , ProASIC3/E

Description

Data Result

Table 7-4. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. input data

Result 1 output Req. output

Table 7-5. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active low or active high)

Table 7-6. Functional Descriptiona

a. result is active high

Data Result

m m[0] or m[1] or … or m[SIZE-1]
ACTgen Cores Reference Guide 83

Logic (XOR)

Features
• Parameterized XOR size

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, , ProASIC3/E

Description

Data Result

Table 7-7. Port Description

Port Name Size Type Req/Opt Function

Data SIZE input Req. input data

Result 1 output Req. output

Table 7-8. Parameter Description

Parameter Value Function

SIZE 2-64 Word length of data

RESULT_POLARITY 0 1 Output polarity (active low or active high)

Table 7-9. Functional Descriptiona

a. result is active high

Data Result

m m[0] xor m[1] xor … xor m[SIZE-1]
ACTgen Cores Reference Guide 84

8
Multiplexer
ACTgen Cores Reference Guide 85

Multiplexer

Features
• Parameterized word length

• Parameterized multiplexer input number

• Behavioral simulation model in VHDL
and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, , ProASIC3/E

Description

Data Result

SEL

Table 8-1. Port Description

Port Name Size Type Req/Opt Function

Data0_port WIDTH Input Req. Input data

Data1_port WIDTH Input Req. Input data

… … … … …

DataSIZE-1_port WIDTH Input Req. Input data

Sel0 1 Input Req. Select line

Sel1 1 Input Req. Select line

… … … … …

SelSIZELN-1 1 Input Req. Select line

Result WIDTH Output Req. output
ACTgen Cores Reference Guide 86

Table 8-2. Parameter Description

Parameter Family Value Function

WIDTH
APA, 500K 1-48

Word length of Data
All Others 1-32

SIZE All 2-32 Number of data inputs

Table 8-3. Functional Description

Data
0

Data1 … DataSIZE-1 Sel0 Sel1 … SelSIZELN-1 Result

m0 m1 … mSIZE-1 0 0 … 0 m0

m0 m1 … mSIZE-1 1 0 … 0 m1

… … … … … … … … …

m0 m1 … mSIZE-1 1 1 … 1 mSIZE-1
ACTgen Cores Reference Guide 87

Multiplexer
88 ACTgen Cores Reference Guide

9
Minicores
ACTgen Cores Reference Guide 89

FIR Filter

Features
• Variable input data width:

2 to16 bit input data

• Variable output data width:
3 to 64 bit output data

• Support for up to 64 taps

• Support of symmetric coefficients

• Optional IO insertion

• Optional registers for filter in-
and output

• Verilog RTL model for simulation

• VHDL RTL model for synthesis1

Family support
54SX, 54SX-A, 500K, PA, Axcelerator, , ProASIC3/E

Design Flow
An overview of the design flow required for the FIR filter is shown in Figure 9-1.

Figure 9-1. FIR Filter Design Flow

1. Synthesized filter designs are usually slower, but more compact.

Data Qout

Aclr

Clock

System Level
Design Tool

ACTgen

Designer

.gen File w/
Implementation

Parameters

FIR.edn

TOP.ednFPGA
ACTgen Cores Reference Guide 90

Generate the filter coefficients and other implementation parameters using a system level design tool
(like Matlab). This information is made available for ACTgen in form of a <design>.gen file. .

From that point on it follows the regular design flow as described in the Actel Quick Start Guide.

Description
The ACTgen FIR-filter core supports symmetric, high-speed, parallel FIR-filters with up to 64
time taps.

Figure 9-2. Tap Transposed from FIR Filter

The architecture is a variation of the "transposed form" of the FIR-filter as shown in Figure 9-2,
making use of ACTgen's signed Constant Multiplier. The data is assumed to be signed. Data- and
coefficient widths are the same (D_WIDTH).

Figure 9-2 suggests that coefficients with a value of 0 are desirable for this type of architecture, since
they will not generate any multiplication hardware. "Halfband" filters are trying to maximize the
number of 0-coefficients and might result in significant area savings over regular filters of the same
order .

Table 9-1. Port Description

Port Name Size Type Req/Opt? Function

Data D_WIDTH input Req. Input Data

Clock 1 input Req. Filter clock

Aclr 1 input Opt. Asynchronous Clear

Qout O_WIDTH input Req. Filter output = Σ χι * δι

* * * * *
C0C1C2C3C4

Data

Qout
ACTgen Cores Reference Guide 91

Minicores
The output width O_WIDTH has no impact on the filter size. Internally, ACTgen always uses the
maximum precision filter, unless specified otherwise using the internal precision parameter PREC.
If you set O_WIDTH to 0, ACTgen usese the maximum output resolution (MAX_RES). For
values of O_WIDTH greater than MAX_RES the result is sign-extended. For values of
O_WIDTH smaller than MAX_RES ACTgen cuts some of the lower bits. An upper estimate for
MAX_RES is

For example a 12-tap filter with 8-bit data and coefficients might yield up to (8 + 8 + 4) bit = 20 bit
output resolution.

The coefficients C1 to C16 are positive integers, which will be interpreted as two's complement
numbers. That means 0 to
2C_WIDTH-1-1 are considered positive, and 2C_WIDTH-1-1 to 2C_WIDTH-1 will be interpreted as
negative numbers.

Only unique coefficients need to be specified properly, all other coefficients need to be set to any
value, e.g. "0". An N-tap filter requires (N / 2) + (N % 2) unique coefficients.

Table 9-2. Parameter Description

Parameter Value Function

D_WIDTH 3 .. 16 Input Data Width

O_WIDTH 3 .. 64 Output Data Width

TAPS 3 .. 64 Number of time taps

CLK_EDGE RISE FALL Clock sensitivity

CLR_POLA 2 0 1 None, active high, active low

PREC Internal precision

INSERT_PAD NO YES Pad insertion

INSERT_IOREG NO YES Register inputs and outputs

C1 … C32 0 .. 2C_WIDTH 2's complement coefficients (integers)

MAX_RES 2 D_WIDTH 2 TAPS()log+×≤
92 ACTgen Cores Reference Guide

Only unique coefficients need to be specified properly, all other coefficients need to be set to any
value, e.g. "0". An N-tap filter requires (N / 2) + (N % 2) unique coefficients.

Internal Precision (PREC) specifies the minimum number of bits

• For the time tab registers

• From multiplier outputs kept for further processing

• From adder outputs kept for further processing

Table 9-3. Parameter Rules

Family Variation Parameter rules

All FIR2 PREC >= O_WIDTH

54SX, 54SX-A All O_WIDTH <= 32

54SX, 54SX-A All TAPS <= 32

Table 9-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIR FIR-filter category

LPM_HINT
FIR1 Basic Options

FIR2 Advanced Options

Table 9-5. Internal Precision (PREC)

Variation Value Description

Basic Options 97, 0 Maximum output resolution, same as O_WIDTH

Advanced Options PREC See parameter rules
ACTgen Cores Reference Guide 93

Minicores
Currently the RTL-model does not reflect the PREC parameter, so there may be differences
between the simulated output of the structural netlist and the RTL-model for the low-order bits.

Integer Values Coefficient File

The Integer Values Coefficient File consists of the conversion of the quantized coefficients into
regular integers. This file can be directly imported into ACTgen.

Table 9-6. Sample Integer Coefficient File

2048
2037
0
48
2048
1892
0
630
1026
630
0
1892
2048
48
0
2037
2048
94 ACTgen Cores Reference Guide

CRC Minicore

Features
• General-purpose Cyclic Redundancy Code generator

• Fully-synchronous, single-clock operation (greater than 100 MHZ for many configurations)

• Parameterized arbitrary polynomial (from 1 up to 64-bit)

• Parameterized data input width

• Parameterized register initialization

• Parameterized bit and byte ordering

• Parameterized bit pattern for CRC output XOR with

Family support
Axcelerator

Description
The CRC Minicore is a universal Cyclic Redundancy Check (CRC) Polynomial generator that
validates data frames and ensures data integrity during data transmission.

To meet different application requirements, the CRC minicore provides many different
configuration parameters. These parameters control data width, a register initialization value, and
other CRC output data characteristics.

• Data width specifies the number of bits over which the CRC Minicore generates the CRC value
in a single clock cycle. For example, a CRC32 with 8-bit data width performs CRC calculations
on 8 bits per clock.

• Register initialization provides the seed value for CRC generation.

• Additional parameters provide additional flexibility in controlling CRC data characteristics.

For example, the CRC output XOR bit pattern parameter (XOROUT) controls inversion of the
CRC value before injecting it into the data stream. Although the CRC Minicore generator
provides seven commonly-used CRC polynomials, ACTgen also allows entry of an arbitrary
polynomial. The polynomial bit size spans 1 to 64 inclusive.
ACTgen Cores Reference Guide 95

Minicores
Table 9-7. XOROUT Configuration

XOROUT Description

1 All bits are not inverted (000000000) xor CRC

2 All bits are inverted (..FFFFFFFF) xor CRC

3 Even bits are inverted, odd bits are not inverted (….10101010) xor CRC

4 Odd bits are inverted, even bits are not inverted (….01010101) xor CRC

Table 9-8. Port Description

Port Name width Description

CLK 1 Clock port

rst_n 1 Asynchronous reset

init_n 1 Synchronous load CRC value

enable 1 CRC enable/disable control

data_in Data_width Input data word

CRC_in Poly_size CRC value to be load in

CRC_out Poly_size Generated CRC value
96 ACTgen Cores Reference Guide

Table 9-9. CRC Operation Control

rst_n init_n enable shift_run Description

0 x x x Asynchronous reset, set to initial register value

1 0 x x Synchronous initialization

1 1 0 x
Disable CRC generation, register holds the current
value

1 1 1 0 Generate CRC on the input data

1 1 1 1
Normal CRC operation, generate CRC from input
data

Table 9-10. Standard CRC Generator Parameters - Description

Name Poly_width Poly_value (HEX) initial xorout

CRC32 32 04C11DB7 FFFF.. FFFFFF....

CRC16/ARC 16 1005 FFFF... FFFFF....

CCIT CRC16 16 1021 FFFF…. FFFFFF….

CANBUS 16 4599 FFFFF... FFFFF....

ATM CRC10 10 233 FFFFF... FFFFF....

ATM CRC8 8 7 FFFF…. FFFFF..….

kermit 16 8408 000000… 000000000
ACTgen Cores Reference Guide 97

Minicores
98 ACTgen Cores Reference Guide

10
PLLs
ACTgen Cores Reference Guide 99

PLL for ProASICPLUS

You can use ACTgen to configure PLLs according to your needs, and generate a netlist that has a
PLL primitive instantiated with the correct specified configuration

Features
• Clock Delay Adjustment

• Clock Frequency Synthesis

• Clock Phase Shifting

Family Support
PA

Parameter Description

Table 10-1. Parameter Description

Parameter Value Function

CLKS 1 2 Primary or Both outputs

FIN 1.5 - 240 MHz Input Frequency

PRIMFREQ 1.5 - 240 MHz Primary Output Frequency

PDELAYVAL 0 - 8 ns Primary Delay value, in steps of .25 ns

PDELAYSIGN 0 1 Positive or Negative primary delay

PPHASESHIFT 0 90 180 270 Primary Phase-shift

PBYPASS 0 1 No Yes. Primary Bypass

FIN2 1.5 - 240 MHz
Secondary Input Frequency, Only if PLL is
bypassed for Secondary Output

SECFREQ 1.5 - 240 MHz Primary Output Frequency

SDELAYVAL 0 - 8 ns Primary Delay value, in steps of 0.25 nsa
ACTgen Cores Reference Guide 100

Summary of the menu items available when you generate a PLL for ProASICPLUS.

Configuration - Dynamic or Static Configuration

In dynamic mode, designers are able to set all the configuration parameters using either the external
JTAG port or an internally-defined serial interface. The dynamic-mode PLL can be switched to
static mode during operation by just changing a mode selection bit. This way you can have one stable
static configuration, yet for selected sequences of events, you can switch to dynamic mode and run
the clock at a different frequency if required. For the Dynamic mode, ACTgen is used to specify a
stable default configuration.

Input Clock Frequency - Floating point value between 6.0 and 240 MHz

Primary Clock Frequency - Floating point value between 6.0 and 240 MHz. If the specified
frequency cannot be achieved, the closest approximate frequency is provided. There are some
restrictions on the possible values of this frequency even in the specified range, based on the
PLLCORE limitations. ACTgen takes all these limitations into consideration when generating a
PLL. If the specified frequency cannot be achieved, the closest approximate frequency will be
provided..

Bypass PLL in Primary Clock - Selecting this checkbox bypasses the PLL for the primary clock.
This feature enables you to bypass the PLLCORE functionality and use the surrounding divider and
delay elements. When the PLL is bypassed, the primary clock frequency must be equal to or be 1/2,
1/3 or ¼ of input frequency, as only a divider is available in the output path.

SDELAYSIGN 0 1 Positive or Negative primary delay

SPHASESHIFT 0 90 180 270 Primary Phase-shift

SBYPASS 0 1 No Yes. Primary Bypass

FB
Internal Deskewed
External

Feedback

CONF STATIC DYNAMIC Configuration

a. In the GUI, the delay is entered directly as a value between -3.75 and +3.75 without breaking
it into sign and value

Table 10-1. Parameter Description (Continued)

Parameter Value Function
ACTgen Cores Reference Guide 101

PLLs
Primary Clock Phase Shift - Supports 4 values 0, 90, 180, 270 degrees. Not valid when PLL is
bypassed for primary clock. The secondary clock cannot be phase-shifted.

Selecting a phase shift of 90 degrees and an output divider other than 1 causes ACTgen to return a
message about the actual phase shift being 90 divided by the divider.

Primary Clock Delay - This is a floating point between -4.0 and 8.0 with increments of 0.25. When
PLL is bypassed for primary clock, only 0, 0.25, 0.5 and 4 ns are valid delays.

Secondary Clock Input Frequency - Floating point value between 1.5 and 240 MHz. This is valid
only when secondary clock is selected and PLL is bypassed.

Secondary Clock Output Frequency - Floating point value between 1.5 and 240 MHz. This is valid
only when secondary clock is selected. If the specified value cannot be achieved, the closest
approximate frequency will be provided.

Bypass PLL in Secondary clock - Selecting this checkbox bypasses the PLL for secondary clock.
When the PLL is bypassed, the secondary clock frequency must be equal to or be 1/2, 1/3 or ¼ of
secondary input frequency. This feature allows the user to bypass the PLLCORE functionality and
use the surrounding divider and delay elements.

Secondary Clock Delay - This is a floating point between -4.0 and 8.0 with increments of 0.25.
When PLL is bypassed for secondary clock, only 0, 0.25, 0.5 and 4 ns are the valid delays.

Feedback - A radio button to select between Internal, External and Deskewed feedback.

The clock-conditioning circuitry enables you to implement the feedback clock signal using either
the output of the PLL, an internally generated clock, or an external clock. When external feedback
is selected, an additional port EXTFB is made available to the user to drive the feedback . The
internal feedback signal can be further delayed by a fixed amount designed to emulate the delay
through the chip’s clock tree. This allows for clock-line de-skewing operations. This delay is
included in the feedback path when deskewed feedback is chosen. This value is dependent on the
device you are using.

Table 10-2. Port Description

Name Size Type Req/Opt Function

GLA 1 Output Opt Secondary clock output

GLB 1 Output Req Primary clock output

LOCK 1 Output Req PLL Lock

SDOUT 1 Output Req Output of serial interface shift register

CLK 1 Input Req Input clock for primary clock
102 ACTgen Cores Reference Guide

For more detailed information on the various features of the APA PLL, please refer to Using
ProASICPLUS Clock Conditioning Circuits and the ProASICPLUS PLL Dynamic Reconfiguration Using

JTAG application notes at http://www.actel.com.

CLKA 1 Input Opt
Input clock for secondary clock. Valid
only in Bypass Mode

EXTFB 1 Input Opt External Feedback

SCLK 1 Input Opt Shift Clock (Only Dynamic Mode)

SSHIFT 1 Input Opt
Serial Shift enable (Only Dynamic
Mode)

SDIN 1 Input Opt
Serial Data in for PLL configuration bits
(Only Dynamic Mode)

SUPDAT
E

1 Input Opt Serial Update (Only Dynamic Mode)

MODE 1 Output Opt Dynamic or Static mode indicator

Table 10-2. Port Description (Continued)

Name Size Type Req/Opt Function
ACTgen Cores Reference Guide 103

Axcelerator PLL

Features
• Clock Delay Minimization

• Clock Frequency Synthesis

• Programmable delay lines for clock delay adjustment

• 6-bit divider in the feedback path for clock multiplication

• 6-bit divider in one of the output paths for clock division

• Cascadable up to 2 PLLs

Family support
Axcelerator

Description
The Axcelerator PLL has two main features. They are:

• Clock Delay Minimization

In this mode the PLL can perform either a positive or negative clock delay operation of up to
3.75ns in increments of 250ps before or after the clock edge of the incoming reference clock. The
value of the delay is programmable via the five bits of the DelayLine bus.

• Clock Frequency Synthesis

The multiplier and divider can be used together to synthesize a wide range of output frequencies
from the reference clock. Input frequencies are allowed to be in the range of 14 MHz to 200 MHz.
Multiplication and division factors are integers in the range of 1 to 64. The maximum allowable
output frequency is 1 GHz. The output duty cycle is fixed at 50/50.

Cascading Blocks
The device supports cascading of up to 2 PLLs.
ACTgen Cores Reference Guide 104

Table 10-3. Port Description

Name Size Type Req/Opt Function

RefClk 1 Input Req Reference Clock

PWRDN 1 Input Req Power Down

Lock 1 Output Req PLL Lock

FB 1 Input Opt Feedback (only external feedback)

CLK(freq) 1 Output Opt Clk1 with the required freq

CLK(freq) 1 Output Opt CLK2 with the required freq

Table 10-4. Parameter Description

Parameter Value Function

LPMTYPE LPMPLL PLL category

LPM_HINT

PRIM Only primary output

SEC Only secondary output

BOTH Both outputs

FB Internal External Feedback

IFREQ 14.0 - 200.0 MHz Input Frequency

PFREQ 14.0 - 1000.0 Primary Clock freq

SFREQ 14.0 - 1000.0 Secondary Clock freq

DT STATIC DYNAMIC Delay type

DELAYSIGN +ve -ve Positive or negative delay

DELAYVALUE 0 - 3.75 ns In steps of 250 psa
ACTgen Cores Reference Guide 105

PLLs
Description

The Axcelerator family provides eight PLLs, four on the north side and four on the south side of the
device. The outputs of the north-side PLLs can be connected to either hard-wired clock networks or
regular nets. The outputs of the south-side PLLs can be connected to either routed clock networks
or regular nets. The Axcelerator family PLLs have many outstanding features, including the
following:

• PLLs can multiply and/or divide the reference clock frequency by factors ranging from1 to 64. As
a result, there are many available output frequencies for each PLL, based on the input frequency.
ACTgen automatically calculates the values of the multiplier and divider based on the Input and
Output frequencies specified. If the exact value cannot be achieved, ACTgen generates the output
frequency that is the closest possible to the required value.

• PLLs are capable of inserting programmable delays on the REFCLK from –3.75ns to +3.75ns
with the steps of 250ps. The delay is programmed either statically or dynamically. Dynamic
programming means that you can change the delay value during the operation when the device is
functional. If you select the dynamic delay, then the 5-bit Delay Line port is added to the
generated code and accessible to you.

Refclk is the reference input to the PLL. The frequency of Refclk can vary from 14 MHz to 200
MHz. The reference can be supplied from a dedicated pad or an internal net.

You can select to have an internal or external feedback. Selecting an external feedback adds a port
(named FB) to the PLL block, through which the external feedback is passed into the PLL and the
internal feedback is blocked.

CASCADE YES NO
Cascade 2 PLLs to achieve the required
output frequency

REFCLKPAD
DEDICATED
EXTERNAL

Source of REFCLK, the Dedicated Pad, or
any external net

CLK1OUT HW RC RN
Clock network to which PLL is connected,
Hardwired Clock, Routed Clock, or Routed
Net

a. In the GUI, the delay is entered directly as a value between -3.75 and +3.75 without breaking
it into sign and value

Table 10-4. Parameter Description

Parameter Value Function
106 ACTgen Cores Reference Guide

Clk(freq) are the output signals from the PLL. The CLK(primary) is defined as refclk * i/j where i is
the multiplier and j is the divider. CLK(secondary) is defined as refclk * i

Cascading

Cascading is an option that helps you generate a wider range of output frequencies. If cascading is
set to No and the output frequency is chosen as a value that cannot be achieved by fREF * i/j, then
the PLL will try to set i and j in order to reach to the closest vicinity of the desired frequency. If
cascading is set to Yes, then for the conditions in which the desired frequency is unattainable by a
single PLL, another PLL will be cascaded to the first PLL and then the final output frequency is:

In cascading PLLs, the input frequency of each PLL should remain in the range of 14 MHz to 200
MHz.

You must specify the desired output frequencies and the networks that the outputs should drive for
the PLL outputs CLK1 and CLK2. Note that if cascading is disabled, the CLK2 frequency can only
be a multiple of the reference frequency. As mentioned earlier, if the selected values for output
frequencies cannot be achieved, they will be set to the closest possible frequency.

For each output, there are three routing resources. Hard-wired is the HCLK network which reaches
to the clock input of R-cells. Selecting a hard-wired output for the PLL implies that the PLL should
be located at the north side of the device. If one of the outputs is connected to hard-wired global
network, the routed clock network cannot be chosen as the second output because the routed clock
network is only accessible by the PLLs on the south side. ACTgen helps you select the output type
by keeping the possible outputs active and disabling the illegal combinations (Figure 10-1).

Figure 10-1. Basic PLL Architecture in Axcelerator Devices

For more detailed information on the various features of the Axcelerator PLL, please refer to the
Axcelerator Family PLL and Clock Management application note at http://www.actel.com.

fout fREF
i1
j1
-----⎝ ⎠

⎛ ⎞ i2
j2
-----⎝ ⎠

⎛ ⎞××=

Delay Line

PLL

Delay Line

RefCLK

FB

/i

6

/j

6

CLK1

PowerDown

Lock

CLK2

/i Delay
Match

/i Delay
Match

FBMuxSel

5

DividerIDelayLine

DividerJ

LowFreq

3

Osc

155 MHz

0

1

ACTgen Cores Reference Guide 107

Clock Conditioning / PLL cores for
ProASIC3/E

The ProASIC3E Clock Conditioning Circuit (CCC) contains a PLL core, delay lines, clock
multipliers/dividers, PLL reset generator (you have no control over the reset), global pads, and all
circuitry for the selection and interconnection of the “global” pads to the global network. The PLL
Core consists of a Phase Detector, L.P. Filter and a 4-Phase VCO.

The clock conditioning circuit performs the following basic functions:

• Clock phase adjustment.

• Clock delay minimization.

• Clock frequency synthesis.

In addition it also

• Allows access from the global pads to the global network and the PLL block.

• Permits the 3 global lines on each side of the chip to be driven either by the global pads, core, and/
or the outputs from the PLL block.

• Allows access from PLL to the core

The block contains several programmable dividers, each of them providing division factors 1, 2, 3,
4……k (where k depends on the number of bits used for the division selection). Overall, you can
define a wide range of multiplication and division factors, constrained only by the PLL frequency
limits, according to:

m/(n*u)

m/(n*v)

m/(n*w)

The clock conditioning circuit block performs a positive / negative clock delay operation in
increments of 160 ps, of up to 5.56 ns (at 1.5V, 25C, typ process) before or after the positive clock
edge of the incoming reference clock. Furthermore, the system allows for the selection of one of 4
clock phases of fout, at 0, 90, 180 and 270 degrees.

A “Lock” signal is provided to indicate that the PLL has locked on to the incoming signal. A
“Power-down” signal switches off the PLL block when it is not used.

Functionality
The input clock, fin, is first passed through the adjustable divider (FINDIV) prior to application to
the PLL core, phase detector's PLLFIN input.
ACTgen Cores Reference Guide 108

Configure Clock Conditioning / PLL cores
The feedback signal, to which fin is compared, can be selected from several sources, giving the CCC
its flexibility. All sources of the feedback signal can be divided by 1, 2, 3, …64 in divider FBDIV.
This has the effect of multiplying the input signal. The source signals are:

• The VCO output signal, with 0o phase shift and zero additional time delay.

• A delayed version of the VCO output, in selectable increments of 160 ps, up to 5.56 ns.

• An external feedback signal from I/O.

Each of the above feedback source signals can be further delayed by a fixed amount designed to
emulate the delay through the chip’s clock tree. This allows for clock-line de-skewing operations.

When the loop has acquired lock, the Lock Detect signal will be asserted. This signal will be
available to the logic core, via the output port LOCK.

Once locked, the various output combinations will be available to the Global lines.

Configure Clock Conditioning / PLL cores
There are two clock conditioning cores (CCCs) in ACTgen, Delayed Clock and Static PLL.

Configuring the Static PLL in ACTgen
The ProASIC3E CCC includes the following features (shown in Figure 10-2):

• An option to choose the source of the input clock as one of the following.

Hard-wired I/O

Internal routed net

Other I/O

• The option to bypass the PLL for the primary output.
ACTgen Cores Reference Guide 109

PLLs
• Configuration selections available for frequency, delay and phase.

Figure 10-2. Static PLL Configuration Screen in ACTgen

After you open a new workspace in ACTgen and select one of the Clock Conditioning / PLL cores,
you must configure it. To do so:

1. Select your output. After you choose to configure the CCC, you must select the number of
outputs required. A total of 5 outputs can be obtained from the CCC. Click the checkbox next
to each required output to select it.

• GLA is always selected.

• GLB and YB have the same output frequency. They can be delayed by different amounts by
setting the individual delays. GLB drives a Global while YB drives a core net. Using only YB
also burns the global driver for GLB. However, the global rib is available.

• GLC and YC have the same output frequency. They can be delayed by different amounts by
setting the individual delays. GLB drives a Global while YB drives a core net. Using only YC
also burns the global driver for GLB. However, the global rib is available.

• The input signal CLKA is the reference clock for all 5 outputs.
110 ACTgen Cores Reference Guide

Configure Clock Conditioning / PLL cores
2. Select your feedback.

• Internal Feedback: The source of the feedback signals will be the

VCO output signal, with 0 degree phase shift and zero additional time delay. (Top Selection
on the Feedback MUX) OR

A delayed version of the VCO output, in selectable increments of 160 ps, up to 5.56 ns. This
delay advances the feedback clock, thereby advancing all outputs by the delay value specified
for the feedback delay element. (Middle selection of the Feedback MUX)

• External Feedback: The source of the feedback signals will be an external signal coming from
an I/O (bottom selection of the Feedback MUX). In this case, the Feedback Delay element
will not be accessible to further advance the feedback signal.

3. Set your Fixed System Delay. By choosing the non-zero value for this delay, the feedback source
signal can be further delayed by a fixed amount of mask delay designed to emulate the delay
through the chip’s clock tree. This allows for clock-line de-skewing operations.

4. Specify your input clock

• Input Clock Frequency between 1.5 – 350 MHz

• Input Clock Source as one of the following

Driven by the hardwired I/O

Driven by an external I/O from a different I/O location

Driven by an internal core net.

5. Specify primary output. Select source of the output clock.

Output bypassing the PLL (Top selection of the GLA MUX). In this case VCO phase shift and
output frequency selection are not available. Output frequency is the same as input frequency
in this case.

Output directly from the VCO (Middle selection of the GLA MUX). The phase shift of 0,90,
180 or 270 is available in this case.

Delayed version of the zero phase shift output from the VCO. Phase-shift selection is unavailable
for this,the bottom selection of the GLA MUX This output can be used for two purposes: a)
to use the feedback delay as an additional delay on the output if feedback advance has not been
specified (top and bottom selections of the feedback MUX); b) to compensate for the feedback
advance for this particular output if feedback advance has been specified (middle selection of
the feedback MUX).

• Output frequency (1.5 – 350 MHz)

• VCO Phase-Shift (one of 0, 90, 180 or 270 degrees); the phase shift is out of the VCO. The
phase shift will be impacted by the value of the divider after the VCO.
ACTgen Cores Reference Guide 111

PLLs
• An optional Extra Output Delay, in selectable increments of 160 ps, up to 5.56 ns.

6. Specify Secondary 1 & Secondary 2 Outputs. Select the source of the output clock from the
following 2 choices

Output directly from the VCO (Top selection of the GLB/GLC MUX). The phase shift of 0,
90, 180 or 270 is available in this case.

Delayed version of the zero phase shift output from the VCO. Phase-shift selection is unavailable
for this, the bottom selection of the GLB/GLC MUX. This output can be used for two
purposes: a) to use the feedback delay as an additional delay on the output if feedback advance
has not been specified (top and bottom selections of the feedback MUX); b) to compensate
for the feedback advance for this particular output if feedback advance has been specified
(middle selection of the feedback MUX).

• Set your Output frequency (1.5 – 350 MHz)

• VCO Phase-Shift (one of 0, 90, 180 or 270 degrees); the phase shift is out of the VCO. The
phase shift will be impacted by the value of the divider after the VCO.

• An individual optional Extra Output Delay for each of the Global and Core outputs, in
selectable increments of 160ps, up to 5.56ns.

Delayed Clock

When resources are available, the Delay element of the Secondary1 and Secondary2 Global outputs
of the CCC can be configured independent of the PLL. The delayed clock is a simple CLKMUX
with some additional delay.

Select the programmable delay between 0.4 to 4.275ns in steps of 125ps for the Output.

Clock Conditioning / PLL core restrictions in ACTgen
Clock conditioning and PLL cores are available only for ProASIC3/E devices.

After you make all your selections, ACTgen generates a core with your configurations. However,
there are a number of restrictions in the possible values for the input and output frequencies. They
are:

• Input to the clock conditioning core (CCC) must be between 1.5 and 350 MHz

• Output from the CCC must be between 1.5 and 350 MHz

• The reference input to the PLL core (fin/n) must be between 1.5 and 5.5 MHz. The PLL Core
output must be between 24 and 350 (fin *m/n)

If ACTgen cannot generate the frequency you requested, it tries to generate a frequency that is the
closest to the required one, after it satisfies all the above conditions. ACTgen prints a message in the
log file indicating the frequency it was able to achieve.
112 ACTgen Cores Reference Guide

Configure Clock Conditioning / PLL cores
If more than one output is specified, ACTgen tries to find the multiplication and division factors
such that the total error among all the outputs is the least.

Total Delays

ACTgen prints out the total delays of the selected outputs after feedback delay, feedback advance,
system delay and extra output delay are taken into consideration.

Total Delay on an Output = -feedback advance – de-skew system delay + feedback delay + extra
output delay + intrinsic delay

Input Delays

The delay between the input of the PLL and a given output can be calculated by the following
equation:

Total Delay = Intrinsic delay +/- feedback delay – mask delay + phase delay + output delay

Intrinsic delay is the total delay of all the muxes and divider elements in the path. This is a fixed
value for a given connectivity in a configuration. This delay varies based on the mux selection,
frequency values and phase-shifts. Changing the delay element values has no impact on the intrinsic
delay.

Feedback delay can be both a positive and a negative delay based on how it is configured.

Mask delay is a fixed system delay to emulate the skew of the CCC, such that the output can be
deskewed by selecting this delay.

Output delay is the programmable delay independently selectable for each output. Phase delay is the
shift caused in the output with respect to the input when the VCO output is shifted by one of the 4
possible values of 0, 90, 180 or 270 degrees. This is a function of both input and output frequencies.

The delay calculation is executed using the same values for ACTgen, the Simulation model and
Timer such that, for typical, -2 parts under normal operating conditions, these numbers are
identical. This enables you to fine-tune your delays by only adjusting the programmable output /
feedback delays.
ACTgen Cores Reference Guide 113

PLLs
ACTgen ProASIC3/E PLL signal descriptions
PLL signal descriptions apply only to ProASIC3/E devices.

Table 10-5. ACTgen PLL Signal Description

Name Size Type
Required/
Optional

Function

GLA 1 Output Req Primary clock output

CLKA 1 Input Req Reference Clock

POWERDOWN 1 Input Req
Power Down Signal. A Low on this signal turns off the
PLL

LOCK 1 Output Req PLL lock

EXTFB 1 Input Opt External Feedback

GLB 1 Output Opt Global Output for Secondary1 Clock

YB 1 Output Opt Core Output for Secondary1 Clock

GLC 1 Output Opt Global Output for Secondary2 Clock

YC 1 Output Opt Core Output for Secondary2 Clock
114 ACTgen Cores Reference Guide

11
Register (Storage Elements)
ACTgen Cores Reference Guide 115

Storage Register

Features
• Parameterized word length

• Asynchronous clear

• Synchronous register parallel load

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description
Storage registers have a parallel-in/parallel-out (PIPO) architecture. The registers are WIDTH bits.
They are clocked on the rising (RISE) or falling (FALL) edge of the clock Clock (CLK_EDGE).

The Clear signal (CLR_POLARITY), active high or low, provides an asynchronous reset of the
registers to “000…0”. You may choose to not implement the reset function.

The Enable signal (EN_POLARITY), active high or low, provides a synchronous load enable
operation with respect to the Clock signal. You can choose to not implement this function. Storage
registers are then loaded with a new value every clock cycle.

The Set signal, active high or low, provides an asynchronous set of the registers to "1111...1". You
may choose not to implement the Set function.

Enable

Set (PA and 500K only)

Clock

Q

Aclr

Data

Table 11-1. Port Description

Port
Name

Size Type Req./Opt. Function

Data WIDTH input Req. Register load input

Aclr 1 input Opt. Asynchronous register reset

Enable 1 input Opt. Synchronous Parallel load enable

Clock 1 input Req. Clock

Q WIDTH output Req. Register output bus
ACTgen Cores Reference Guide 116

Table 11-2. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 1-512

Word length of Data and Q
All other 1-99

CLR_POLARITY ALL 0 1 2 Aclr can be active low, active high or not used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

CLK_EDGE ALL
RISE

FALL
Clock can be rising or falling

Table 11-3. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT PIPO Parallel-in/Parallel-out
ACTgen Cores Reference Guide 117

Register (Storage Elements)

Table 11-5. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Clock is rising (edge-triggered)

Data Aclr Enable Clock Q

X 0 X X 0’s

X 1 X Ø Qn

X 1 0 ¦ Qn

m 1 1 ¦ Qn+1 = m
118 ACTgen Cores Reference Guide

Shift Register

Features
• Parameterized word length

• Asynchronous clear

• Synchronous parallel load

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX, 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description
Shift registers have parallel-in/parallel-out (PIPO), parallel-in/serial-out (PISO), serial-in/parallel-
out (SIPO) and serial-in/serial-out (SISO) architecture. The registers are WIDTH bits. They are
clocked on the rising (RISE) or falling (FALL) edge of the clock Clock signal (CLK_EDGE).

The Clear signal (CLR_POLARITY), active high or low, provides an asynchronous reset of the
registers to “000…0”. You may choose to not implement the reset function.

Shift registers can be loaded with Data. The Enable signal (EN_POLARITY), active high or low,
provides a synchronous load enable operation with respect to the clock signal Clock. You may choose
to not implement this function. Shift registers are then implemented in a serial-in mode (SIPO or
SISO).

Shift registers have a shift enable signal Shiften (SHEN_POLARITY) that can be active high or
low. When Shiften is active, the register is shifted internally. The LSB is loaded with Shiftin.

In the current implementation, Enable has priority over Shiften.

Data

Shiftin

Enable

Clock

Q

Shiftout

Aclr

Shiften

Table 11-6. Port Description

Port
Name

Size Type Req/Opt Function

Data WIDTH input Opt. Register load input data

Shiftin 1 Input Opt. Shift in signal

Aclr 1 input Opt. Asynchronous register reset

Enable 1 input Opt. Synchronous parallel load enable
ACTgen Cores Reference Guide 119

Register (Storage Elements)
Shiften 1 input Req. Synchronous register shift enable

Clock 1 input Req. Clock

Q WIDTH output Opt. Register output bus

Shiftout 1 output Opt. Serial output

Table 11-7. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 2-512

Word length of Data and Q
All other 2-99

CLR_POLARITY ALL 0 1 2
Aclr can be active low, active high or not
used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

SHEN_POLARITY ALL 0 1
Shiften can be active low, active high or not
used

CLK_EDGE ALL
RISE
FALL

Clock can be rising or falling

Table 11-8. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

SHEN_FANIN AUTO MANUAL

SHEN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

Table 11-6. Port Description (Continued)

Port
Name

Size Type Req/Opt Function
120 ACTgen Cores Reference Guide

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-9. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT PIPOS Parallel-in/Parallel-out shift register

PISO Parallel-in/Serial-out shift register

SIPO Serial-in/Parallel-out shift register

SISO Serial-in/Serial-out shift register

Table 11-10. Functional Descriptiona

a. Aclr is active low, Enable is active high, Shiften is active high, Clock is rising.

Data Aclr Enable Shiften Clock Qb

b. For the PISO and SISO implementations, Q is an internal register.

Shiftoutc

c. For the PIPO and SIPO implementations, Shiftout is not present.

X 0 X X X 0 0

X 1 X X Ø Qn Qn = [WIDTH-1]

X 1 0 0 ¦ Qn Qn = [WIDTH-1]

X 1 0 1 ¦ Qn[WIDTH-2:0] && Shiftin Qn = [WIDTH-1]

m 1 1 X ¦ Qn+1 = m Qn+1 = m[WIDTH-1]

Table 11-8. Fan-in Control Parameters (Continued)

Parameter Value
ACTgen Cores Reference Guide 121

Barrel Shifter

Features
• Parameterized word length

• Standard or pipelined

• Shift right, left or both

• Wrap around or feed bit

• Fixed or programmable shift.

Family Support
54SX, 54SX-A, eX, 500K, PA, Axcelerator, ProASIC3/E

Description
The Barrel Shifter can be generated for a fixed shift or range of shift, with feedbit shift or rotation in
left, right, or both directions. The non-pipelined Barrel Shifter is designed to shift any number of
positions at one time. For the pipelined version it takes log2(MAXSHIFT) clock cycles for the
shifted data to appear at the output.

The architecture is based on 2 to 1 Multiplexors.

Data

Enable

Clock

Q

Aclr

Dir

Table 11-11. Port Description

Port
Name

Size Type Req./Opt. Function

Data WIDTH input Req. Register load input

Aclr 1 input Opt. Asynchronous register reset

Dir 1 input Opt For selecting Left or Right shift

RFill 1 input Opt For Right Feed Bit

LFill 1 input Opt For Left Feed Bit

S0, S1…
Log of

Max. Shift
input Opt

For programmable, depends on Maximum

shift

Enable 1 input Opt. Synchronous Parallel load enable

Clock 1 input Req. Clock

Q WIDTH output Req. Register output bus
ACTgen Cores Reference Guide 122

s

Table 11-12. Parameter Description

Parameter Value Function

WIDTH

2-99 (Pipelined)
2-63 (Standard)
2-99 (PA fixed
programmable)
2-63 (PA range
programmable

Word length of Data and Q

MAXSHIFT 1-32 Maximum Shift length

CLR_POLARITY 0 1 2 Aclr can be active low, active high or not used

PROG Fixed or Range For a Fixed or Programmable shift

FILL No, Yes Wrap around or Feed a bit

DIRECTION Right Left Both Direction can be Right Left or Both

EN_POLARITY 0 1 2 Enable can be active low, active high

CLK_EDGE RISE FALL Clock can be rising or falling

Table 11-13. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

CLK_FANIN AUTO MANUAL

CLK_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

SEL0_FANIN AUTO MANUAL

SEL0_VAL <val> [default value for AUTO is 6, 1 for MANUAL]
ACTgen Cores Reference Guide 123

Register (Storage Elements)
Table 11-14. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DFF Register category

LPM_HINT SHIFT, PIPE Standard or Pipelined

Table 11-15. Functional Descriptiona (Standard)

a. Assume Aclr is active low, Enable is active high, Clock is rising

Data Enable Clock Q

M 1 ¦ Qn

M 0 ¦ Mshifted

Table 11-16. Functional Descriptiona (Pipelined)

a. Assume Aclr is active low, Enable is active high, Clock is rising

Data Aclr Enable Clock Q

X 0 X X 0’s

X 1 0 X Qn = Mshifted - log2(MAXSHIFT)

M 1 1 ¦ Qn+1 = Mshifted - log2(MAXSHIFT) + 1
124 ACTgen Cores Reference Guide

Storage Latch

Features
• Parameterized word length

• Asynchronous clear

• Synchronous latch enable

• Behavioral simulation model in VHDL and Verilog

Family Support
ACT 1, ACT 2/1200XL, ACT 3, 3200DX, 40MX, 42MX 54SX, 54SX-A, eX, 500K, PA,
Axcelerator, ProASIC3/E

Description
Latches have a parallel-in/parallel-out architecture (PIPO). The latches are WIDTH bits. The
latches are gated on the active high (HIGH) or low (LOW) state of the gate Gate
(GATE_POLARITY).

The Clear signal (CLR_POLARITY), when active high or low, provides an asynchronous reset of
the latch to “000…0”. You may choose to not implement this function.

The Enable signal (EN_POLARITY), when active high or low, provides a synchronous latch enable
operation with respect to the gate Gate. You may choose to not implement this function. Latches are
then loaded with a new value when both Enable and Gate are active.

Enable

Gate

Q

Aclr

Data

Table 11-17. Port Description

Port
Name

Size Type Req/Opt Function

Data WIDTH input Req. Latch load input

Aclr 1 input Opt. Asynchronous latch reset

Enable 1 input Opt. Synchronous parallel latch enable

Gate 1 input Req. Gate input

Q WIDTH output Req. Latch output bus
ACTgen Cores Reference Guide 125

Register (Storage Elements)
Table 11-18. Parameter Description

Parameter Family Value Function

WIDTH
500K, PA 1-99

Word length of Data and Q
All other 1-512

CLR_POLARITY ALL 0 1 2
Aclr can be active low, active high or not
used

EN_POLARITY ALL 0 1 2 Enable can be active low, active high

GATE_POLARITY ALL 0 1 Gate can be active low, or active high

Table 11-19. Fan-in Control Parameters

Parameter Value

CLR_FANIN AUTO MANUAL

CLR_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

EN_FANIN AUTO MANUAL

EN_VAL <val> [default value for AUTO is 6, 1 for MANUAL]

GATE_FANI
N

AUTO MANUAL

GATE_VAL <val> [default value for AUTO is 8, 1 for MANUAL]

Table 11-20. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_LATCH Latch category

LPM_HINT N/A Not needed
126 ACTgen Cores Reference Guide

Table 11-21. Functional Descriptiona

a. Assume Aclr is active low, Enable is active high, Gate is active high

Data Aclr Enable Gate Q

X 0 X X 0’s

X 1 X 0 Qn

X 1 0 1 Qn

m 1 1 1 Qn+1 = m
ACTgen Cores Reference Guide 127

Register (Storage Elements)
128 ACTgen Cores Reference Guide

12
Memory Cores for
Non-Axcelerator Families
ACTgen Cores Reference Guide 129

Synchronous/Asynchronous Dual Port
RAM

Features
• Parameterized word length and depth
• Dual port synchronous RAM architecture
• Dual port synchronous write, asynchronous read RAM

architecture

Family Support
3200DX, 42MX

Description
The RAM cores use 3200DX and 42MX, 32x8 or 64x4, dual port RAM cells.

In the synchronous mode, the read and write operations are totally independent and can be
performed simultaneously. The operation of the RAM is fully synchronous with respect to the clock
signals, WClock and RClock. Data of value Data are written to the WAddress of the RAM memory
space on the rising (RISE) or falling (FALL) edge of the clock WClock (WCLK_EDGE). Data are
read from the RAM memory space at RAddress into Q on the rising (RISE) or falling (FALL) edge
of the clock signal RClock (RCLK_EDGE).

The behavior of the RAM is unknown if you write and read at the same address and signals WClock
and RClock are not the same. The output Q of the RAM depends on the time relationship between
the write and the read clock.

In the asynchronous mode, the operation of the RAM is only synchronous with respect to the clock
signal WClock. Data of value Data are written to the WAddress of the RAM memory space on the
rising (RISE) or falling (FALL) edge of the clock signal WClock (WCLK_EDGE). Data are read
from the RAM memory space at RAddress into Q after some delay when RAddress has changed.

The behavior of the RAM is unknown if you write and read at the same address. The output Q
depends on the time relationship between the write clock and the read address signal.

The WIDTH (word length) and DEPTH (number of words) have continuous values but the choice
of WIDTH limits the choice of DEPTH and vice versa.

Data

WClock

WAddress

RAddress

RClock

WE

RE

Q

ACTgen Cores Reference Guide 130

The write enable (WE) and read enable (RE) signals are active high request signals for writing and
reading, respectively; you may choose not to use them.

Table 12-1. Port Description

Port
Name

Size Type Req/Opt Function

Data WIDTH input Req. Input Data

WE 1 input Opt. Write Enable

RE 1 input Opt. Read Enable

WClock 1 input Req. Write clock

RClock 1 input Opt. Read clock

Q WIDTH output Req. Output Data

Table 12-2. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

Depth depth Number of RAM words

WE_POLARITY 1 2 WE can be active high or not used

RE_POLARITY 1 2 RE can be active high or not used

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE RISE FALL NONE RClock can be rising, falling or not used

Table 12-3. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_RAM_DQ Generic Dual Port RAM category
ACTgen Cores Reference Guide 131

Memory Cores for Non-Axcelerator Families
Fan-in Control
One of the key issues when building RAM cores is control of the routing congestion near the RAM
cells. The problem becomes more critical when deep RAM cores are built. You need to broadcast
signals throughout the height of the chip. The place-and-route algorithm could have difficulties
satisfying all routing constraints. As a result, much slower routing resources could be allocated to
satisfy all constraints. To make this problem less likely, a special buffering scheme has been
implemented to relieve the congestion near the RAM cells. However, you may choose to control the
buffering yourself to improve performances when needed. The RAM core can be built using either
the automatic buffering architecture or the manual buffering architecture.

Table 12-4. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See Fan-in Control section below

Table 12-5. Parameter Rules

Parameter Rules

If RCLK_EDGE is NONE (Asynchronous mode), then RE_POLARITY must be 2 (note
used)

The number of RAM blocks used (function of width and depth) must be less than or equal to the
number of RAM blocks in one column of the largest device.
132 ACTgen Cores Reference Guide

Automatic Buffering

In this mode (default), a buffering scheme is automatically built into the RAM core architecture (see
Figure 12-1 on page 133). This mode should always be considered first. However, if the
performance is not met, it may be better to use the manual buffering option .

Figure 12-1. Automatic Buffering for RAM Cores

Manual Buffering

Figure 12-2 shows how manual buffering is done. A fan-in of one (1) is enforced on all signals
fanning out to more than one RAM cell. If these signals were broadcast to all RAM cells, very slow
routing resources (long freeways) would be required to route the signals impacting the RAM
performance.

Use Manual Buffering only if the expected performance is not realized using the automatic buffering
scheme, or if you know ahead of time that you need to use this scheme to meet your timing goals. In
this architecture, the idea is not to buffer the signals internally but rather give some kind of access to
the RAM core internal signals. Then, you must buffer the signals outside the core and either use
traditional buffers or duplicate the logic that drives these signals externally. If you choose manual
buffering, the WE, RE, Waddress(i), RAddress(i) and Data[i] signals become busses external to the
core. For all these signals, the bus width is equal to the number of RAM cells (used to build a given
configuration) driven by each signal. Figure 12-2 illustrates the manual buffering architecture for a
96x8 RAM configuration, built of three 32x8 configured RAM cells. In this configuration, the WE,
RE, WAddress and RAddress signals drive all RAM cells simultaneously. Figure 12-3 shows a 128x8

RAM

RAM

RAM

1

1

1

WE
RE
WAdress[i]
RAdress[i]
Data
ACTgen Cores Reference Guide 133

Memory Cores for Non-Axcelerator Families
RAM configuration, built using four 64x4 configured RAM cells. In that configuration, the 8-bit
data bus is split into two completely independent 4-bit data busses.

Figure 12-2. Manual Buffering (96x8 RAM Configuration)

Figure 12-3. Manual Buffering for the Data Bus (128x8 RAM Configuration)

Timing Waveforms

RAM

RAM

RAM

1

1

1

WE
RE
WAdress[i]
RAdress[i]
Data

1

1

RAM

RAM

1

1

RAM

RAM

Data (i) [1:0]

Data (i+4) [1:0]

Table 12-6. Timing Waveform Terminology

Term Description Term Description

tckhl Clock high/low period tdsu Data setup time
134 ACTgen Cores Reference Guide

Figure 12-4. RAM Write Cycle

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time trao
Data valid after read address has
changed

tresu Read enable setup time tco Flip-flop clock to output

Table 12-6. Timing Waveform Terminology

Term Description Term Description

WClock

Data

WE

Data latched into FIFO

dsu

wesu

ckhl tckhl

t

t

t t
ACTgen Cores Reference Guide 135

Memory Cores for Non-Axcelerator Families
Figure 12-5. RAM Synchronous Read Cycle

Figure 12-6. RAM Asynchronous Read Cycle

Valid Output

RClock

Q

RE

resu

ckhl tckhl

rco

t

t t

t

Q

RAddress

Valid Output

t rao
136 ACTgen Cores Reference Guide

Register File

Features
• Parameterized word length and depth

• Dual port synchronous RAM architecture

• Dual port synchronous write, asynchronous
read RAM architecture

• Write and Read enable

• Behavioral simulation model in
VHDL and Verilog

Family Support
54SX, 54SX-A, eX

Description
The register file is a core unique to the 54SX, 54SX-A and eX families. This core synthesizes the
equivalent of small RAM blocks using ordinary logic, thereby making memory cells available to yosu
even though the silicon does not explicitly have hardware support for RAM.

In synchronous mode, the read and write operations are totally independent and can be performed
simultaneously. The operation of the register is fully synchronous with respect to the clock signals
WClock and RClock. Data of value Data are written to the WAddress of the register memory space
on the rising (RISE) or falling (FALL) edge of the clock WClock (WCLK_EDGE). Data are read
from the register memory space at RAddress into Q on the rising (RISE) or falling (FALL) edge of
the clock RClock (RCLK_EDGE).

The behavior of the Register is unknown, if designers write and read at the same address and
WClock and RClock are not the same. The output Q of the register depends on the time
relationship between the write and the read clock.

In asynchronous mode, the operation of the register is only synchronous with respect to the clock
signal WClock. Data of value Data are written to the WAddress of the register memory space on the
rising (RISE) or falling (FALL) edge of the clock WClock (WCLK_EDGE). Data are read from
the register memory space at RAddress into Q after some delay when RAddress has changed.

The WIDTH (word length) and DEPTH (number of words) have continuous values but the choice
of WIDTH limits the choice of DEPTH and vice versa.

The write enable (WE) and read enable (RE) signals are active high request signals for writing and
reading, respectively. The user may not utilize them.

Data

WClock

RClock

WE

Q

REnableRAdress

WAdress
ACTgen Cores Reference Guide 137

Memory Cores for Non-Axcelerator Families
Table 12-7. Port Description

Port Name Size Type

Data WIDTH input

WE 1 input

RE 1 input

WClock 1 input

RClock 1 input

Q WIDTH output

Table 12-8. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of RAM words

WE_POLARIT
Y

1 2 WE can be active high or not used

RE_POLARITY 1 2 RE can be active high or not used

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE
RISE FALL
NONE

RClock can be rising, falling or not used
138 ACTgen Cores Reference Guide

Timing Waveforms

Figure 12-7. Ram Write Cycle

Table 12-9. Timing Waveform Terminology

Ter
m

Description Term Description

tckhl Clock high/low period tdsu Data setup time

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time trao
Data valid after read address
has changed

tresu Read enable setup time tco Flip-flop clock to output

WClock

Data

WE

tadsu

twesu

tckhl ttckhl

WAddress

twadsu

Data latched into RAM
ACTgen Cores Reference Guide 139

Memory Cores for Non-Axcelerator Families

Figure 12-8. RAM Synchronous Read Cycle

Figure 12-9. RAM Asynchronous Read Cycle

RClock

Q

RE

tresu

tckhl ttckhl

RAddress

tradsu

Valid Output

trco

Q

RAddress

Valid Output

trao
140 ACTgen Cores Reference Guide

Synchronous Dual Port FIFO without Flags

Features
• On-chip RAM

• Parameterized word length and depth

• Dual port synchronous FIFO (write and
read clocks are separated) with no static flag logic

• Global reset of FIFO address pointers

Family Support
3200DX, 42MX, 54SX, 54SX-A, eX

Description
The ACTgen FIFO cores use the 3200DX and 42MX 32x8 or 64x4 on-chip RAM cells. ACTgen
generates addresses internally using counters and token chains to address the RAM blocks
(transparent to the user). Dedicated read and write address data paths are used in the FIFO
architecture. The read and write operations are independent and can be performed simultaneously.

The WIDTH (word length) and DEPTH (number of words) have continuous values but the choice
of WIDTH limits the choice of DEPTH and vice versa.

The asynchronous clear signal, Aclr, can be active low or active high (low is the default option and is
the preferred use for all synchronous elements in the two supported families). When the
asynchronous clear is active, all internal registers used to determine the current FIFO read and write
addresses (counters and token chains) are reset to “0.” The FIFO is now in an empty state; the RAM
content is not affected. When power is first applied to the FIFO, the FIFO must be initialized with
an asynchronous clear cycle to reset the internal address pointers.

The write enable WE and read enable RE signals are active high request signals for writing into and
reading out of the FIFO respectively. The WE and RE signals only control the logic associated with
the FIFO write and read address pointers.

When WE is asserted high, the write cycle is initiated, and Data are written into the FIFO. The
design using the FIFO is responsible for handling the full and empty states of the FIFO core.

When RE is asserted high, the read cycle is initiated, and Q is read from the FIFO. The design
using the FIFO is responsible for handling the full and empty states of the FIFO core.

WE

RClock

Q

Aclr

Data

RE

WClock
ACTgen Cores Reference Guide 141

Memory Cores for Non-Axcelerator Families
Table 12-10. Port Description

Port
Name

Size Type Req/Opt Function

Data WIDTH input Req. Input Data

WE 1 input Req. Write Enable

RE 1 input Req. Read Enable

WClock 1 input Req. Write clock

RClock 1 input Req. Read clock

Q WIDTH output Req. Output Data

Table 12-11. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

WCLK_EDGE RISE FALL WClock can be rising or falling

RCLK_EDGE RISE FALL RClock can be rising falling

Table 12-12. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT SFIFO Synchronous FIFO with no flags
142 ACTgen Cores Reference Guide

Timing Waveforms

Table 12-13. Implementation Parameters - 54SX/SX-A

Parameter Value Description

LPM_HINT SFIFOSX Synchronous FIFO with no flags

Table 12-14. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See “Fan-in Control” on page 132

Table 12-15. Timing Waveform Terminology

Ter
m

Description Term Description

tckhl Clock high/low period tdsu Data setup time

trp Reset pulse width trco Data valid after clock high/low

twesu Write enable setup time tco Flip-flop clock to output

tresu Read enable setup time
ACTgen Cores Reference Guide 143

Memory Cores for Non-Axcelerator Families
Figure 12-10. FIFO Write Cycle

Figure 12-11. FIFO Read Cycle

WClock

Data

WE

Data latched into FIFO

t

t

t t

dsu

wesu

ckhl tckhl

RClock

Q

RE

Valid Output

t

t t

t

resu

ckhl tckhl

rco
144 ACTgen Cores Reference Guide

Synchronous Dual Port FIFO with Flags

Features
On-chip RAM

• Parameterized word length and depth

• FIFO full and empty flags

• Statically programmable almost-full flag
to indicate when the FIFO core reaches a
specific level, usually when writing into the FIFO

• Statically programmable almost-empty flag
to indicate when the FIFO core reaches a
specific level, usually when reading from the FIFO

• Global reset of the FIFO address
pointers and flag logic

• Dual port synchronous FIFO

Family Support
3200DX, 42MX, 54SX, 54SX-A, eX

Description
The ACTgen FIFO cores use the 3200DX and 42MX 32x8 or 64x4 dual-port RAM cells.
Addresses are generated internally using counters and token chains to address the RAM (this is
transparent to the user). Dedicated read and write address data paths are used in the FIFO
architecture. The read and write operations are totally independent and can be performed
simultaneously.

The WIDTH (word length) and DEPTH (number of words) have continuous values but the choice
of WIDTH limits the choice of DEPTH and vice versa.

The asynchronous clear signal, Aclr, can be active low or active high (low is the default option and
should be used for all synchronous elements in the two supported families). When the asynchronous
clear is active, all internal registers used to determine the current FIFO read and write addresses
(counters and token chains) are reset to “0.”

The FIFO is now in an empty state; the RAM content is not affected. When power is first applied
to the FIFO, the FIFO must be initialized with an asynchronous clear cycle to reset the internal
address pointers.

Data

Clock

WE

RE

Q

Aclr

WEF

REF

FF

EF

AFF

AEF
ACTgen Cores Reference Guide 145

Memory Cores for Non-Axcelerator Families
The full flag signal, FF, is optional and is available only for the High Speed Flag (FFIFO) and the
Medium Speed Flag (MFFIFO) variations. The FF signal is active high only (if selected) and
indicates when the FIFO is full. The signal is asserted high on the rising (RISE) or falling (FALL)
edge of the clock signal Clock with no delay.

The empty flag signal, EF, is optional and is available only for the High Speed Flag (FFIFO) and
the Medium Speed Flag (MFFIFO) variations. The EF signal is active low only (if selected) and
indicates when the FIFO is empty. The signal is asserted low on the rising (RISE) or falling (FALL)
edge of the clock signal Clock with no delay.

The write enable signals, WE and WEF, and read enable signals, RE and REF, are active high
requests for writing into and reading out of the FIFO respectively. The WE and RE signals only
control the logic associated with the FIFO write and read address pointers. The WEF and REF
signals control the logic implementing the different flags. The WE and WEF signals should be
logically driven by the same logic outside the FIFO core. The same behavior applies to the RE and
REF signals as well. For SX and SX-A there are only the RE and WE ports.

When WE is asserted high and FF is asserted low (not full), the write cycle is initiated and Data are
written into the FIFO. When WE is asserted high and FF is asserted high (full), the FIFO behavior
is undefined. When RE is asserted high and EF is asserted high (empty), the read cycle is initiated
and Q is read from the FIFO. When RE is asserted high and EF is asserted low (empty), the FIFO
behavior is undefined. When RE and WE are asserted high at the same time, Data are written into
the FIFO and Q is read from the FIFO simultaneously. The read and write operations are fully
synchronous with respect to the clock signal Clock.

The FIFO function offers a parameterizable almost-full flag, AFF. The AFF flag is asserted high
when the FIFO contains aff_val words or more as defined by the parameter AFF_VAL. Otherwise,
AFF is asserted low. The aff_val value is a parameter to the core, and thus logic is built at generation
time to realize the almost-full flag function.

The FIFO function offers a parameterizable almost-empty flag, AEF. The AEF flag is asserted low
when the FIFO contains aef_val words or less as defined by the parameter AEF_VAL. Otherwise,
AEF is asserted high. The aef_val value is a parameter to the core, and thus logic is built at
generation time to realize the almost-empty flag function.

Table 12-16. Port Description

Port
Name

Size Type Req./Opt. Function

Data WIDTH input Req. Input Data

WE 1 input Req. Write Enable with the FIFO only (noflag)
146 ACTgen Cores Reference Guide

RE 1 input Req. Read Enable with the FIFO only (no flag)

WEF 1 input Req.
Write enable associated with the flag logic
only (for DX/MX)

REF 1 input Req.
Read enable associated with the flag logic
only (for DX/MX)

Clock 1 input Req. Write and read clock

Q WIDTH output Req. Output Data

FF 1 output Req. Full Flag

EF 1 output Req. Empty Flag

AFF 1 output Optional Almost Full Flag

AEF 1 output Optional Almost Empty Flag

Table 12-17. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

FF_POLOARITY 1 2 FF can be active high or not

EF_POLARITY 0 2 EF can be active low or not used

AFF_VAL
aff_val (see
parameter rules)

AFF value (not used if aff_val is 0

AEF_VAL
aef_val (see
parameter rules

AEF value (not used if aef_val is 0

CLK_EDGE RISE FALL Clock can be rising or falling

Table 12-16. Port Description

Port
Name

Size Type Req./Opt. Function
ACTgen Cores Reference Guide 147

Memory Cores for Non-Axcelerator Families
Timing Waveforms

Table 12-18. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT
FFIFO High skpeed FIFO with flags

MFFIFO Medium speed FIFO with flags

Table 12-19. Implementation Parameters - 54SX/SX-A

Parameter Value Description

LPM_HINT FFIFOSX Synchronous FIFO with no flags

Table 12-20. Fan-in Parameters

Parameter Value Description

RAMFANIN AUTO MANUAL See Fan-in Control section below

Table 12-21. Parameter Rules

Parameter Rules

If RCLK_EDGE is NONE (Asynchronous mode), then RE_POLARITY must be 2 (not used)

Table 12-22. Timing Waveform Terminology

Term Description

tckhl Clock high/low period
148 ACTgen Cores Reference Guide

Figure 12-12. Reset Cycle

trp Reset pulse width

twesu Write enable setup time

tresu Read enable setup time

tadsu Data setup time

trco Data valid after lock high/low

trao Data valid after read address has changed

tco Flip-flop clock to output

Table 12-22. Timing Waveform Terminology

Term Description

Clock

Aclr

FF

AEF

AFF

EF

tckhl ttckhl

trp
ACTgen Cores Reference Guide 149

Memory Cores for Non-Axcelerator Families
Figure 12-13. Write and Read Cycle

Figure 12-14. Full FIFO Timing Diagram

Clock

Q

WE/WEF

Data

Valid Output

trco

RE/REF
tresu

tdsu

twesu

tchkl ttchkl

Clock

WE/WEF

RE/REF

FF

t

t t

t t

t

wesu

ckhl tckhl

co co

resu
150 ACTgen Cores Reference Guide

Figure 12-15. Empty FIFO Timing Diagram

Figure 12-16. Almost Full FIFO Timing Diagram

Clock

RE/REF

WE/WEF

EF

tresu

tckhl ttckhl

tco tco

twesu

Clock

WE/WEF

RE/REF

AFF

N writes
N reads

tresu

tco

twesu

tco

ttckhltckhl
ACTgen Cores Reference Guide 151

FIFO Flag Controller (No RAM)

Features
• Off-chip RAM

• Parameterized word length and depth

• FIFO full and empty flags

• Statically programmable almost-full flag to
indicate when the FIFO core reaches a specific level,
usually when writing into the FIFO

• Statically programmable almost-empty flag to i
ndicate when the FIFO core reaches a specific level,
usually when reading from the FIFO

• Global reset of the FIFO address pointers and flag logic

Family Support
3200DX, 42MX, 54SX, 54SX-A, eX

Description
The ACTgen FIFO Flag Controler is designed for off-chip RAM. It is a state machine generating
the Flags typically used by a FIFO.

The asynchronous clear (Aclr) can be active low or active high (low is the default option and should
be preferably used as for all synchronous elements in the two supported families). We will further
use the word active to specify the state of a given signal. When the asynchronous clear is active, all
internal registers are reset to '0'. The FIFO Controler is now in an empty state. At power up time,
the FIFO must be initialized with a asynchronous clear cycle.

The full flag signal FF is optional. The FF signal is active high only (if selected) and indicates when
the FIFO is full. The signal is asserted high on the rising (RISE) or falling (FALL) edge of the clock
signal Clock with no delay.

The empty flag signal EF is optional. The EF signal is active low only (if selected) and indicates
when the FIFO is empty. The signal is asserted low on the rising (RISE) or falling (FALL) edge of
the clock signal Clock with no delay.

The write enable (WE) and read enable (RE) signals are active high requests signals for for
controlling the FIFO flags. They should be logically equivalent to the write and read enable
controlling the off-chip RAM.

Clock

WE

RE

Aclr

FF

EF

AFF

AEF
ACTgen Cores Reference Guide 152

The FIFO Controller offers a parameterizable almost-full flag (AFF). The AFF flag is asserted high
when the FIFO contains aff_val words or more as defined by the parameter AFF_VAL. Otherwise,
AFF is asserted low. The value aff_val value is a parameter to the core, and thus logic is built at
generation time to realize the almost-full flag function.

The FIFO Controller offers a parameterizable almost-empty flag (AEF). The AEF flag is asserted
low when the FIFO contains aef_val words or less as defined by the parameter AEF_VAL.
Otherwise, AEF is asserted high. The value aef_val value is a parameter to the core, and thus logic is
built at generation time to realize the almost-empty flag function.

Table 12-23. Port Description

Port
Name

Size Type Req/Opt? Function

Clock 1 input Req. Write and read clock

WE 1 input Req. Write enable associated to the flag logic only

RE 1 input Req. Read enable associated to the flag logic only

Aclr 1 input Req. Asynchronous Clear

EF 1 output Opt. Empty Flag

FF 1 output Opt. Full Flag

AEF 1 output Opt. Almost Empty Flag

AFF 1 output Opt. Almost Full Flag

Table 12-24. Parameter Description

Parameter Value Function

WIDTH width Word length of Data and Q

DEPTH depth Number of FIFO words

FF_POLARITY 1 2 FF can be active high or not used

EF_POLARITY 0 2 EF can be active low or not used

AFF_VAL aff_val (see parameter rules) AFF value (not used if aff_val is 0)
ACTgen Cores Reference Guide 153

Memory Cores for Non-Axcelerator Families
AEF_VAL aef_val (see parameter rules) AEF value (not used if aef_val is 0)

CLK_EDGE RISE FALL Clock can be rising or falling

Table 12-25. Implementation Parameters - MX/DX

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT
FFIFOCTRL High speed FIFO Controller

MFFIFOCTRL Medium speed FIFO Controller

Table 12-26. Implementation Parameters - 54SX/SX-A/eX

Parameter Value Description

LPM_HINT FCTR FIFO Controller

Table 12-27. Fan-In Parameters

Parameter Value Description

CLR_FANIN AUTO MANUAL See Fan-in Control section

CLK_FANIN AUTO MANUAL See Fan-in Control section

WE_FANIN AUTO MANUAL See Fan-in Control section

RE_FANIN AUTO MANUAL See Fan-in Control section

Table 12-24. Parameter Description

Parameter Value Function
154 ACTgen Cores Reference Guide

13
Memory Cores for Axcelerator
ACTgen Cores Reference Guide 155

Axcelerator RAM

Features
• Parameterized word length and depth

• Dual port synchronous RAM architecture

• Independent Read/Write Sizes

• Active High/Low enable

• Active High/Low Read and Write Clocks

• Non-pipelined (synchronous - one clock edge)/
Pipelined (synchronous - two clock edges) Read

• Port mapping

Family support
Axcelerator

Description
Axcelerator provides dedicated blocks of RAM. Each block has a read port and a write port. Both
ports are configurable to any size from 4Kx1 to 128x36; thereby, allowing built-in bus width
conversion (see SRAM Port Aspect Ratio table below). Each port is completely independent and
fully synchronous.

Table 13-1. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus

1 4096 ADDR[11:0] DATA[0]

2 2048 ADDR[10:0] DATA[1:0]

4 1024 ADDR[9:0] DATA[3:0]

9 512 ADDR[8:0] DATA[8:0]

18 256 ADDR[7:0] DATA[17:0]
ACTgen Cores Reference Guide 156

Modes
The three major modes available for read and write operations are:

1. Read Non-pipelined (synchronous - one clock edge)
The read address is registered on the read port clock edge and data appears at read-data after the
RAM access time (when all RENs are high, approximately 4.5ns). The setup time of the read
address and read enable are minimal with respect to the read clock. Setting the Pipeline to OFF
enables this mode.

2. Read Pipelined (synchronous - two clock edges)
The read-address is registered on the read port clock edge and the data is registered and appears
at read-data after the second read clock edge. Setting the Pipeline to ON enables this mode.

3. Write (synchronous - one clock edge)
On the write clock edge, the write data are written into the USRAM at the write address (when
all WENs are high). The setup time of the write address, write enables and write data are
minimal with respect to the read clock.

Cascading Blocks
Blocks can be cascaded to create larger sizes. ACTgen performs all the necessary cascading for
achieving the desired configuration. To achieve good performance, all cascaded RAM blocks must
fit within one RAM column of the selected device. Cascading RAM blocks deep is possible only up
to the capacity of one RAM column.

However, if the specified configuration exceeds one RAM column, ACTgen tries to cascade the
RAM wide, up to the available RAM Blocks in the device. This results in poorer performance as the
RAM blocks are not located close physically.

The maximum WIDTH (word length) value is 65,536. The maximum DEPTH (number of words)
value is 576.

The Read/Write Width/Depth can be different but the Aspect ratio should be same for both. For
example:

Read Width * Read Depth == Write Width * Write Depth

36 128 ADDR[6:0] DATA[35:0]

Table 13-1. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus
ACTgen Cores Reference Guide 157

Memory Cores for Axcelerator
The write enable (WE) and read enable (RE) signals are active high or low request signals for
writing and reading, respectively; you may choose not to use them. When none is selected for an
enable, that operation remains enabled all the time.

For example, if WEN is chosen as none, then write operation of the RAM is enabled all the time.

The write enable (WE) and read enable (RE) signals are active high or low request signals for
writing and reading, respectively; you may choose not to use them.

The RCLK and WCLK pins have independent polarity selection.

Conflict Resolution
There is no special hardware for handling read and write operations at the same addresses.

Table 13-2. Port Description

Name Size Type Req/Opt Function

Data Write Width Input Req Write Data Port

WAddress log 2(Write Depth) Input Req Write Address Bus

WE 1 Input Opt Write Enable

WClock 1 Input Req Write Clock

Q Read Width Output Req Read Data Port

RAddress log 2(Read Depth) Input Req Read Address Bus

RE 1 Input Opt Read Enable

RClock 1 Input Req Read Clock

Table 13-3. Parameter Description

Parameter Value Function

WWIDTH Write Width Word length of Data

WDEPTH Write Depth Number of Write Words
158 ACTgen Cores Reference Guide

RWIDTH Read Width Word length of Q

RDEPTH Read Depth Number of Read Words

WE_POLARITY 1 0 2 Write Enable Polarity

RE_POLARITY 1 0 2 Read Enable Polarity

WCLK_EDGE RISE FALL Write Clock Edge

RCLK_EDGE RISE FALL Read Clock Edge

PIPE NO YES Read Pipeline

DEVICE 125 250 500 1000 2000
Target Device, to determine blocks
available for cascading

Table 13-4. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_RAM Generic Dual Port RAM Category

Table 13-5. Parameter Rules

Device Parameter rules

Axcelerator RWIDTH*RDEPTH == WWIDTH*WDEPTH

Table 13-3. Parameter Description

Parameter Value Function
ACTgen Cores Reference Guide 159

Axcelerator EDAC RAM

Please refer to the Using EDAC RAM for RadTolerant RTAX-S FPGAs and Axcelerator FPGAs
application note, available on the Actel website
(http://www.actel.com), for a complete explanation of the EDAC RAM module.

Features
• 8, 16, 32 bit word width

• Background refresh and variable refresh rate

• EDAC RAM module supports READ and WRITE clocks from the same clock source OR
separate READ and WRITE clocks

• EDAC RAM Encoder/Decoder supports correcting one error and detecting two errors, with a
coding efficiency of 44-66%

• Variable RAM depth support from 256 to 4k words

Family Support
Axcelerator

Description
The Error Detection and Correction (EDAC) RAM module is designed to provide a transparent
RAM interface that supports EDAC. When you use ACTgen to generate an EDAC RAM module
it creates a top-level for the EDAC RAM, an Axcelerator RAM block, and the "edaci" module,
which handles all the EDAC functionality.
ACTgen Cores Reference Guide 160

Axcelerator FIFO

Features
• Parameterized word length and FIFO depth

• Dual port synchronous FIFO

• Active High/Low enable

• Static/ Programmable/No Almost empty/full flags

• Full and Empty flags

Family support
Axcelerator

Description
Axcelerator provides dedicated blocks of FIFO. They are actually hardwired using the RAM blocks
plus some control logic. Each FIFO block has a read port and a write port. Both ports are
configurable (to the same size) to any size from 4Kx1 to 128x36; thereby, allowing built-in bus width
conversion (see SRAM Port Aspect Ratio table below). Each port is fully synchronous. The FIFO
block offers programmable Almost Empty and Almost Full flags as well as Empty and Full flags.
The FIFO block may be reset to the empty state.

Table 13-6. SRAM Port Aspect Ratio

Width Depth ADDR Bus Data Bus

1 4096 ADDR[11:0] DATA[0]

2 2048 ADDR[10:0] DATA[1:0]

4 1024 ADDR[9:0] DATA[3:0]

9 512 ADDR[8:0] DATA[8:0]

18 256 ADDR[7:0] DATA[17:0]

36 128 ADDR[6:0] DATA[35:0]
ACTgen Cores Reference Guide 161

Memory Cores for Axcelerator
Cascading Blocks
Blocks can be cascaded to create larger sizes, up to the capacity of one whole column of RAM
blocks. ACTgen performs all the necessary cascading for achieving the desired configuration.

The maximum WIDTH (word length) value is 65,536. The maximum DEPTH (number of words)
value is 576.

The write enable (WE) and read enable (RE) signals are active high or low request signals for
writing and reading, respectively; you may choose not to use them.

The RCLK and WCLK pins have independent polarity selection.

Table 13-7. Port Description

Name Size Type Req/Opt Function

Data Width Input Req Data Port

WE 1 Input Opt Write Enable

WClock 1 Input Req Write Clock

Q Width Output Req Q Port

RE 1 Input Opt Read Enable

RClock 1 Input Req Read Clock

Full 1 Output Req Full Flag

Empty 1 Output Req Empty Flag

Afval 1-8 Input Opt Almost Full, Dynamically programmable

Aeval 1-8 Input Opt Almost Empty, Dynamically programmable

AFull 1-8 Output Opt Almost Full Flag

AEmpty 1-8 Output Opt Almost Empty Flag
162 ACTgen Cores Reference Guide

Table 13-8. Parameter Description

Parameter Value Function

WIDTH Width Word length of Data, Q

DEPTH Depth FIFO Depth

WE_POLARITY 1 0 2 Write Enable Polarity

RE_POLARITY 1 0 2 Read Enable Polarity

WCLK_EDGE RISE FALL Write Clock Edge

RCLK_EDGE RISE FALL Read Clock Edge

AEVAL Almost Empty Value Almost Empty Flag

AFVAL Almost Full Value Almost Full Flag

DEVICE
75 150 300 600 1000
(May change)

Target Device, to determine blocks
available for cascading

Table 13-9. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIFO Generic Dual Port FIFO Category

LPM_HINT

STATIC Static AF/AE Flags

DYNAMIC Dynamic AF/AE Flags

NOFLAGS No AF/AE Flags
ACTgen Cores Reference Guide 163

Memory Cores for Axcelerator
FIFO Flag Usage
In the Axcelerator FIFO, the AFVAL and AEVAL signals are each 8 bits. The step size of the
signal varies based on the aspect ratio to which the FIFO blocks are configured.

For example, if the FIFO is configured in the 128X36 aspect ratio, the step size is 8. That means, if
a 00000011 is programmed on the AEVAL, the almost empty flag asserts after 3*8 = 24 words are
written. The step sizes can be calculated from the above table for other configurations.

ACTgen automatically adjusts the AF and AE thresholds specified by changing them to the nearest
step size. A message is also printed in the log file.

Since 8 is the least step size for AFVAL and AEVAL, static flag configuration is not supported for
widths below 8.

When ACTgen is used to configure the FIFO to a depth that is less than the total available depth,
FULL flag will not assert at the depth specified in ACTgen. For example, if FIFO is configured to a
250X18, then ACTgen provides a total depth of 256, which is the closest size. FULL flag will assert
at 256. ACTgen prints a message in the log file indicating what is the configuration it is providing
taking all these details into consideration.

Table 13-10. Parameter Rules

Device Parameter rules

Axcelerator

WWIDT
H

AEVAL/AFVAL
UNITS

000

28-W

001

010

011

100

101

11x
164 ACTgen Cores Reference Guide

14
Memory Cores for ProASIC, ProASICPLUS,
and ProASIC3/E Devices
ACTgen Cores Reference Guide 165

Synchronous/Asynchronous Dual Port
RAM for ProASIC and ProASICPLUS

Features
• Parameterized word length and depth

• Dual port RAM architecture

• Asynchronous, synchronous-
transparent or synchronous-pipelined
read

• Asynchronous, or synchronous write

• Parity check or generate,
both even and odd

• Supported netlist formats:
EDIF, VHDL and Verilog

Family Support
500K, PA

Description
There is no limitation for depth and width. However, it is your responsibility to insure that the
RAM’s used in a design can physically fit on the device chosen for the design.

DI

RAM

RADDR

WADDR

WRB

RDB

WCLKS

RCLKS

PO

WP

RPE

DO

PI

Table 14-1. Port Description

Port Name Size Type
Req/
Opt?

Function

DI WIDTH input Req. Input Data

RADDR
log2
(DEPTH)

input Req. Read Address

WADDR
log2
(DEPTH)

input Req. Write Address

WRB 1 input Req. Write pulse (active low)

RDB 1 input Req. Read pulse (active low)

WCLK 1 input Req. Write Clock (active high)
ACTgen Cores Reference Guide 166

Timing Waveforms
Please refer to the timing waveforms presented in the datasheets for Flash devices.

RCLK 1 input Req. Read Clock (active high)

DO WIDTH output Req. Output data

PI WIDTH input Opt. Input parity bits

PO log2(WIDTH) output Opt. Parity bits

WPE 1 output Opt. Write parity error flag

RPE 1 output Opt. Read parity error flag

Table 14-2. Parameter Description

Parameter Value Function
WIDTH width Word length of DI and DO
DEPTH depth Number of RAM words

RDA
async transparent
pipelined

Read Data Access

WRA async sync Write Data Access
OPT speed area Optimization

PARITY
checkeven checkodd
geneven genodd none

Parity check or parity generation

Table 14-3. Implementation Parameters

Parameter Value Description
LPMTYPE LPM_RAM_DQ Generic Dual Port RAM category

Table 14-1. Port Description (Continued)
ACTgen Cores Reference Guide 167

Register File for ProASIC and ProASICPLUS
Devices

Features
• Parameterized word length and depth

• Two port asynchronous register file

• Rising edge triggered or level-sensitive

• Supported netlist formats:
VHDL and Verilog

Family support
500K, PA

Description
Distributed memory can be generated as a two port asynchronous register file or as an asynchronous
FIFO. Distributed memories are made up of the logic tiles of the device. These memory files are
netlists consisting of logic tiles and do not use embedded memory cells.

Please refer to “Memory in ProASIC and ProASICPLUS” on page 185 for more detailed
descriptions of Flash Distributed Memories.

wData0

wData1

wAddr0

rAddr0

rData0

rData1

WR

...

...

...

...

Table 14-4. Port Description

Port
Name

Size Type Req/Opt? Function

wData<i> 1 Input Req. Input (Write) Data (i = 0 .. WIDTH-1)

wAddr<i> 1 Input Req. Write Address (i = 0 .. log2(WIDTH)-1)

rAddr<i> 1 Input Req. Read Address (i = 0 .. log2(WIDTH)-1)

WR 1 Input Req.
Write Clock/Pulse (rising edge triggered or level
sensitive)

rData<i> 1
Outpu
t

Req. Output (Read) Data (i = 0 .. WIDTH-1)
ACTgen Cores Reference Guide 168

Table 14-5. Parameter Description

Parameter Value Function

WIDTH
See “Parameter
Rules”

Word length input/output data

DEPTH
2..48 Number of words for APA150

2..64 Number of words for all other devices

TRIGGER edge, level
Select between rising edge triggered and level
sensitive write clock

Table 14-6. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DIST_RAM Generic Register File category

LPM_HINT
RAM_DISTH<#>

Horizontal Orientation;
represents the part number, and can be
050, 130, 180, 270 for 500K
150, 300, 450, 600, 750, 1000 for PA

RAM_DISTV<#> Vertical Orientation

Table 14-7. Parameter Rules

Device Orientation Parameter rules

A500K050
Horizontal WIDTH = 2..30

Vertical WIDTH = 2..46

A500K130
Horizontal WIDTH = 2..38

Vertical WIDTH = 2..78

A500K180
Horizontal WIDTH = 2..46

Vertical WIDTH = 2..94

A500K270
Horizontal WIDTH = 2..58

Vertical WIDTH = 2..110

APA075
Horizontal WIDTH = 2..64

Vertical WIDTH = 2..22
ACTgen Cores Reference Guide 169

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices
Timing Waveforms
Please refer to the timing waveforms presented in “Memory in ProASIC and ProASICPLUS” on
page 185 for more information.

APA150
Horizontal WIDTH = 2..22

Vertical WIDTH = 2..62

APA300
Horizontal WIDTH = 2..30

Vertical WIDTH = 2..62

APA450
Horizontal WIDTH = 2..30

Vertical WIDTH = 2..94

APA600
Horizontal WIDTH = 2..46

Vertical WIDTH = 2..110

APA750
Horizontal WIDTH = 2..62

Vertical WIDTH = 2..126

APA1000
Horizontal WIDTH = 2..78

Vertical WIDTH = 2..174

Table 14-7. Parameter Rules (Continued)

Device Orientation Parameter rules
170 ACTgen Cores Reference Guide

Synchronous/Asynchronous Dual Port
FIFO for ProASIC and ProASICPLUS Devices

Features
• Parameterized word length and depth

• Dual port RAM architecture

• Asynchronous, synchronous
transparent or synchronous
pipelined read

• Asynchronous, or synchronous write

• Parity check or generate, both even
and odd

• Supported netlist formats:
EDIF, VHDL and Verilog

Family support
500K, PA

Description
There is no limitation for depth and width. However, it is your responsibility to insure that the
FIFOs used in a design can physically fit on the device chosen for the design.

DI

FIFO

LEVEL

WRB

RDB

WCLKS

RCLKS

RESET

DO

EQTH

GEQTH

FULL

EMPTY

WPE

RPE

PI

PO

Table 14-8. Port Description

Port Name Size Type Req/Opt? Function

DI WIDTH input Req. Input Data

LEVEL 8a input Opt.
Defines level when EQTH and GEQTH
should react (hardcoded for static trigger
Level)

WRB 1 input Req. Write pulse (active low)

RDB 1 input Req. Read pulse (active low)

WCLK 1 input Req. Write Clock (active high)

RCLK 1 input Req. Read Clock (active low)

RESET 1 input Req. Reset for FIFO pointers (active low)
ACTgen Cores Reference Guide 171

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices

DO WIDTH output Req. Output data

EMPTY 1 output Req. Empty flag

FULL 1 output Req. Full flag

EQTH 1 output Req. Flag is true when FIFO hold (LEVEL) words

GEQTH 1 output Req.
Flag is true when FIFO hold (LEVEL) words
or more

PI WIDTH input Opt. Input parity bits

PO
log2
(WIDTH)

output Opt. Parity bits

WPE 1 output Opt. Write parity error flag

RPE 1 output Opt. Read parity error flag

a. LEVEL is always 8 bits. That means for values of DEPTH greater than 256 not all values
will be possible, e.g. for DEPTH =512 LEVEL can have the values 2, 4, … , 512. This holds
true only to dynamically triggered FIFO. For a static trigger, all values of the depth are possible.
In the case of dynamic trigger only values that are divisible by the number of 256X9 FIFO blocks
cascaded to achieve the required depth are possible.

In simulation, EQTH/GEQTH reacts to LEVEL * [# of 256x9 modules (rounded up)].
For example, with 1000x32 sync dynamic, level=1, EQTH/GEQTH toggles after 4 reads.
For a 700x32 sync dynamic, level=1, EQTH/GEQTH toggles after 3 reads.

Table 14-9. Parameter Description

Parameter Value Function

WIDTH width Word length of DI and DO

DEPTH depth Number of RAM words

RDA
async transparent
pipelined

Read Data Access

WRA async sync Write Data Access

OPT speed area Optimization

PARITY
checkeven checkodd
geneven genodd none

Parity check or parity
generation

Table 14-8. Port Description (Continued)
172 ACTgen Cores Reference Guide

Timing Waveforms
Please refer to the timing waveforms in the Flash device datasheets.

Table 14-10. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_FIFO_DQ Generic FIFO category

LPM_HINT FIFO_DYN FIFO with dynamic trigger level

LPM_HINT FIFO_STATIC FIFO with static trigger level

Table 14-11. Parameter Rules for FIFO with static trigger level

Parameter Rules
LEVEL <= DEPTH
If DEPTH > 256 not all values for LEVEL will be available (automatic value correction)

This holds true only to dynamically triggered FIFO. For a static trigger, all values of the depth are
possible. In the case of dynamic trigger only values that are divisible by the number of 256X9 FIFO
blocks cascaded to achieve the required depth are possible.
For example, for a depth of 512, which uses 2 256 blocks in cascade, only multiples of 2 are
possible. For depth of 768, which uses 3 blocks, multiples of 3 are the only values possible for the
LEVEL threshold.
ACTgen Cores Reference Guide 173

FIFO Using Distributed Memory for
ProASIC and ProASICPLUS

Features
• Parameterized word length and depth

• Asynchronous FIFO

• Asynchronous, or synchronous write

• Rising edge triggered or level sensitive

• Supported netlist formats:
VHDL and Verilog

Family support
500K, PA

Description
Distributed memory can be generated as a two port asynchronous register file or as an asynchronous
FIFO. Distributed memories are made up of the logic tiles of the device. These memory files are
netlists consisting of logic tiles and do not use to embedded memory cells.

Please refer to “Memory in ProASIC and ProASICPLUS” on page 185 for more detailed
descriptions of Flash Distributed Memories.

wData0

wData1

INIT

rData0

rData1

full

empty

RD

... ...

WR

Table 14-12. Port Description

Port
Name

Size Type
Req/
Opt?

Function

wData<i> 1 Input Req. Input (Write) Data (i = 0 .. WIDTH-1)

INIT 1 Input Req. FIFO initialization
ACTgen Cores Reference Guide 174

WR 1 Input Req.
Write Clock/Pulse (rising edge triggered or level
sensitive)

RD 1 Input Req.
Read Clock/Pulse (rising edge triggered or level
sensitive)

rData<i> 1
Outpu
t

Req. Output (Read) Data (i = 0 .. WIDTH-1)

full 1
Outpu
t

Req. Full Flag

empty 1
Outpu
t

Req. Empty Flag

Table 14-13. Parameter Description

Parameter Value Function

WIDTH See “Parameter Rules” Word length input/output data

DEPTH 2..64 Number of words

TRIGGER edge, level
Select between rising edge triggered and level
sensitive write clock

Table 14-14. Implementation Parameters

Parameter Value Description

LPMTYPE LPM_DIST_FIFO Generic distributed FIFO category

LPM_HINT
FIFO_DISTH<#>

Horizontal Orientation
represents the part number and can be
050, 130, 180, 270 for 500K
150, 300, 450, 600, 750, 1000 for PA

FIFO_DISTV<#> Vertical Orientation

Table 14-12. Port Description (Continued)

Port
Name

Size Type
Req/
Opt?

Function
ACTgen Cores Reference Guide 175

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices

Timing Waveforms
Please refer to the timing waveforms presented in “Memory in ProASIC and ProASICPLUS” on
page 185 for more information.

Table 14-15. Parameter Rules

Device Orientation Parameter Rules

A500K050
Horizontal WIDTH = 2..62, DEPTH = 2..36

Vertical WIDTH = 2..94, DEPTH = 2..23

A500K130
Horizontal WIDTH = 2..78, DEPTH = 2..62

Vertical WIDTH = 2..158, DEPTH = 2..29

A500K180
Horizontal WIDTH = 2..94, DEPTH = 2..74

Vertical WIDTH = 2..190, DEPTH = 2..36

A500K270
Horizontal WIDTH = 2..118, DEPTH = 2..80

Vertical WIDTH = 2..222, DEPTH = 2..45

APA075
Horizontal WIDTH = 2..22, DEPTH = 2..64

Vertical WIDTH = 2..62, DEPTH = 2..48

APA150
Horizontal WIDTH = 2..46, DEPTH = 2..49

Vertical WIDTH = 2..126, DEPTH = 2..16

APA300
Horizontal WIDTH = 2..62, DEPTH = 2..49

Vertical WIDTH = 2..126, DEPTH = 2..23

APA450
Horizontal WIDTH = 2..62, DEPTH = 2..74

Vertical WIDTH = 2..190, DEPTH = 2..23

APA600
Horizontal WIDTH = 2..94, DEPTH = 2..80

Vertical WIDTH = 2..222, DEPTH = 2..36

APA750
Horizontal WIDTH = 2..126, DEPTH = 2..80

Vertical WIDTH = 2..254, DEPTH = 2..49

APA1000
Horizontal WIDTH = 2..158, DEPTH = 2..80

Vertical WIDTH = 2..350, DEPTH = 2..62
176 ACTgen Cores Reference Guide

RAM for ProASIC3/E

ACTgen automatically cascades RAM blocks to create wider and deeper memories by choosing the
most efficient aspect ratio. It also handles the grounding of unused bits. ACTgen supports the
generation of memories that have different Read and Write aspect ratios.

Parameters for ProASIC3E RAM
Two Port or Dual Port:

You may choose between a Two Port and a Dual Port configuration. Different read and write aspect
ratios are not supported in Dual Port mode. Also, the RAM512X18 element cannot be used to
implement a dual port RAM. Using a dual port RAM can potentially increase the number of
resources required.

For example, a 256X18 RAM can be created in one RAM block for Two Port, but requires 2 RAM
Blocks for Dual Port. ACTgen always creates Dual Port RAM when this selection is made even if it
consumes more resources.

Single Read/Write Clock or Independent Read Write Clocks

You may choose to have the same clock driving both RCLK and WCLK and Two Port Mode or
CLKA and CLKB in Dual Port Mode. Or you may choose to have independent Read and Write
Clocks.

Write/Read Depth:

ACTgen supports the generation of RAM having a write or read depth between 1 and 65536.
However, all depths are not available in all configurations. Write and Read Depth values can be
different. When choosing a Dual Port RAM only Write depth is available as different aspect ratios
are not supported in dual port mode.

Write/Read Width:

ACTgen supports the generation of RAM having a write or read width between 1 and 576.
However, all depths are not available in all configurations. Write and Read Width values can be
different. When choosing a Dual Port RAM only Write width is available as different aspect ratios
are not supported in dual port mode.

Read and Write Clock Polarities:

ACTgen instantiates inverters as necessary to achieve the requested polarity. In the case of Dual Port
RAM only Write Clock polarity is selectable and it applies to both CLKA and CLKB.

Read and Write Enable Polarities:

ACTgen instantiates inverters as necessary to achieve the requested polarity. This feature is available
only for the Two Port RAM.
ACTgen Cores Reference Guide 177

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices
Write Mode A and Write Mode B:

ACTgen configures the WMODE signals based on your selection. This is a static selection and
cannot be changed dynamically by driving it with a signal. For Two Port RAM only Write Mode A
is available.

The RAM512X18 element has no WMODE selection and the default behavior of output data for
this element is to hold the previously read data. In a case where you specify pass-through mode for
WMODE then ACTgen uses RAM4K9 even if it results in usage of more resources. This situation
arises only in the Two Port configurations, as RAM512X18 is not used for dual port RAM.

Read Pipeline A and Read Pipeline B:

ACTgen configures the PIPEA and PIPEB signals to make the output pipelined or non-pipelined
based on your selection. This is a static selection and cannot be changed dynamically by driving it
with a signal. For Two Port RAM only Read Pipeline A is available.

Signals in ACTgen Generated Netlists
DataA, DataB: Input Data for Dual Port RAM

QA, QB: Output Data for Dual Port RAM

AddressA, AddressB: Address Busses for Dual Port RAM

CLKA, CLKB: Clocks for Dual Port RAM for independent Clocks

Clock: Clock for Dual Port RAM for Single Clock

RWA, RWB: Signals to switch between Read and Write Modes for Dual Port RAM; Low = Write,
High = Read

BLKA, BLKB: Active Low Block Enables for Dual Port RAM

RESET: Output Reset

Data: Input Data For Two Port RAM

Q: Output Data for Two Port RAM

WAddress, RAddress: Write and Read Address Busses for Two Port RAM

WEN, REN: Write and Read Enable For Two Port RAM

Wclock, Rclock: Write and Read Clocks for Two Port RAM for independent Clocks

Clock: Clock for Read and Write for Two Port RAM for single Clock

RESET: Output Rest
178 ACTgen Cores Reference Guide

Caveats to RAM generation with ACTgen
ACTgen will not generate Dual Port RAM for different Read and Write aspect ratios.

It also does not support configurations that use a word width of 1,2 or 4 for Write and a word width
of 9 for Read. This configuration causes the MSB of the output to be undefined. However,
configurations that do not use the 9th bit, like writing 1024X4 and reading 512X8 are possible.

ACTgen supports deep and wide RAM cascading only up to 64 blocks.

ACTgen does not generate RAM based on a specific device. It is your responsibility to make sure
the RAM fits physically on the device.

Dynamic configuration of any signal is not supported in ACTgen.

ACTgen will give a configuration error for unsupported configurations.

Tips
Writing different data to same address using both ports in Dual Port RAM is undefined and should
be avoided.

Writing to and reading from the same address is undefined and should be avoided.

Aspect Ratios should not be dynamically reconfigured.

All unused inputs must be grounded.

WMODE is ignored during read operation.

RESET does not reset the memory contents. It resets only the output.

When using the RAM4K9 in Two Port mode, care should be taken that Read and Write operations
are not going on simultaneously, by properly driving the WEN and BLK signals. This becomes
extremely important in cases where multiple RAM blocks are cascaded for deeper memories. In such
case, BLK must be used for address decoding.
ACTgen Cores Reference Guide 179

Creating a FIFO for ProASIC3/E

The ACTgen tool automatically cascades FIFO blocks to create wider memories by choosing the
most efficient aspect ratio. It also handles the grounding of unused bits. ACTgen also supports the
generation of FIFOs that have different Read and Write aspect ratios.

ProASIC3E FIFO Parameters
Almost Full/Empty Flags

User is allowed to choose among Static, Dynamic and No flags. When No flags is chosen, ACTgen
grounds AFVAL, AEVAL and AFULL, AEMPTY signals do not appear as ports on the top level.
When Static Flags are chosen ACTgen configures the AFVAL and AEVAL accordingly. For
Dynamic Flags users drive the AFVAL and AEVAL through a signal and can change the thresholds
dynamically. However, care must be taken that the functionality of the AFVAL and AEVAL is fully
understood. For more information on these signals please refer to the FIFO Flags Usage section.

Pipeline

You can choose to have a pipelined or non-pipelined read. ACTgen configures the PIPE signal
accordingly. This is a static selection and cannot be changed dynamically by driving it with a signal.

Write/Read Depth

ACTgen supports the generation of FIFO having a write or read depth between 1 and 4096. Write
and Read Depth values can be different.

Write/Read Width

ACTgen supports the generation of RAM having a write or read width between 1 and 576. Write
and Read Width values can be different.

Read and Write Clock Polarities

ACTgen instantiates inverters as necessary to achieve the requested polarity.

Read and Write Enable Polarities

ACTgen will instantiate inverters as necessary to achieve the requested polarity.

Continue Counting Read Counter After FIFO is Empty (ESTOP)

Selecting this option means ACTgen will configure the FIFO in such a way that ESTOP is tied low
and counter will keep counting even after FIFO is empty.

Continue Counting Write Counter After FIFO is Full (FSTOP)

Selecting this option means ACTgen will configure the FIFO in such a way that FSTOP is tied low
and counter will keep counting even after FIFO is full.

For more information on the above two options refer to the ESTOP, FSTOP Usage section.
ACTgen Cores Reference Guide 180

Almost Full Value/Units

This choice is applicable only in the Static Almost Full/Empty selection. The threshold for Almost
Full is specified in terms of Write Words or Read Words.

Almost Empty Value/Units

This choice is applicable only in the Static Almost Full/Empty selection. The threshold for Almost
Empty is specified in terms of Write Words or Read Words.

For more information on these choices please refer to the FIFO Flags Usage section.

Signals in ACTgen Generated Netlists
Data: Input Data for the FIFO

Q: Output Data for FIFO

FULL, EMPTY: Full and Empty FIFO flags

AFULL, AEMPTY: Programmable Almost Full and Almost Empty flags (available only in static/
dynamic flags configuration)

AFVAL, AEVAL: Signals to specify the thresholds for AFULL and AEMPTY (available only in
dynamic flag configuration)

WClock, RClock: Write and Read Clocks

WE, RE: Write and Read Enables

RESET: FIFO Reset

Using ESTOP and FSTOP
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty
(i.e. the EMPTY flag goes high). Likewise, the FSTOP pin is used to stop the write counter from
counting any further once the FIFO is full (i.e. the FULL flag goes high). These are configuration
pins that should not be dynamically reconfigured. ACTgen will configure these signals based on
user selection.

The FIFO counters in ProASIC3E, start the count from 0, reach the maximum depth for the
configuration (e.g. 511 for a 512X9 configuration), and then re-start from 0. A potential application
for the ESTOP, where the read counter keeps counting would be, writing to the FIFO once and
reading the same content over and over, without doing a write again. Other applications for this
feature need to be identified.

A typical user would not need to use these features and should leave these options un-checked in the
GUI.
ACTgen Cores Reference Guide 181

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices
Using FIFO Flags
The AEVAL and AFVAL pins are used to specify the almost empty and almost full threshold
values, respectively. They are 12 bit signals. In order to handle different read and write aspect
rations, the values specified by the AEVAL and AFVAL pins are to be interpreted as the address of
the last word stored in the FIFO. The FIFO actually contains separate write address (WADDR)
and read address (RADDR) counters. These counters calculate the 12-bit memory address that is a
function of WW and RW, respectively. WADDR is incremented every time a write operation is
performed and RADDR is incremented every time a read operation is performed. Whenever the
difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output
is raised. Likewise, whenever the difference between WADDR and RADDR is less than or equal to
AEVAL, the AEMPTY output is raised.

To handle different read and write aspect ratios, the AFVAL and AEVAL are expressed in terms of
total data bits instead of total data words. When users specify the AEVAL and AEVAL in terms of
Read or Write words, ACTgen translates them into bit addresses and configures these signals.

For example, you have a 2KX2 write and a 4KX1 read. If you want the almost full to assert after
writing 1000 words and almost empty after reading 1000 words, you need to specify 1000 WW for
AFVAL and 1000 RW for AEVAL. ACTgen configures AFVAL to be 1000*2 = 2000 and AEVAL
to be 1000*1 = 1000. It is applicable even in the case where read width and write width are the same.

In the case of 512X9 and 256X18 aspect ratios, since only 4096 bits can be addressed by 12 bits of
the AFVAL/AEVAL and these configurations mean a total of 4608 bits, the number of words must
be multiplied by 8 and 16, instead of 9 and 18. ACTgen automatically handles this. Users must keep
this in mind when choosing dynamic flags.

To avoid half words being written or read, which could happen if different read and write aspect
ratios are specified, the FIFO will assert the FULL or EMPTY as soon as at least a minimum of one
word cannot be written or read. For example, if a 2-bit word is written and a 4-bit word is being
read, FIFO will remain in the empty state when the first word is written, even though the FIFO is
not completely empty, because at this time, a single word cannot be read. The same is applicable on
the full state. If 4-bit word is written and 2-bit word is read, if the FIFO is full and one word is read,
FULL flag will remain asserted because a complete word cannot be written at this point.

Caveats to FIFO generation with ACTgen
Depth cascading is currently not supported in ACTgen. Therefore the maximum depth supported is
only 4096.

It supports wide cascading up to 64 blocks.

ACTgen does not generate a FIFO based on a specific device. It is the user’s responsibility to make
sure the FIFO fits physically on the device.
182 ACTgen Cores Reference Guide

Dynamic configuration of any signal with exception of AFVAL/AEVAL is not supported in
ACTgen.

ACTgen will give a configuration error for unsupported configurations.

WBLK and RBLK are always grounded in ACTgen, which means the FIFO block always remains
enabled. Users should control the FIFO with WEN and REN.

Since wide cascading is not possible in the case of different read/write aspect ratios, such
configurations are supported only if they can fit in 1 FIFO block. Cascading is not supported for
different read/write aspect ratios in FIFO at this point.
ACTgen Cores Reference Guide 183

Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices
184 ACTgen Cores Reference Guide

A
Memory in ProASIC and ProASICPLUS

This appendix describes how to instantiate the memories generated by ACTgen into the design
source code, simulate and synthesize the design, and import the netlist into Designer. It includes a
description of ProASIC dedicated memory blocks and all their possible configurations.

Embedded Memory
ProASIC and ProASICPLUS devices contain dedicated embedded memory blocks and standard
logic cells called tiles. Each block can be configured to one of 24 functions, as shown in Table A-1
on page 185. Each memory block is 256 words deep and 9 bits wide, for a total of 2304 bits of
memory per basic memory block. Every memory block may be configured independently as a two-
port SRAM or a FIFO.

There are separate and independent read and write ports allowing simultaneous ports access. The
ports can be synchronous or asynchronous. This allows the option of using an asynchronous write
and a synchronous read port. Synchronous output ports can be configured to either act like a
transparent synchronous port or like a pipelined synchronous port. Additionally in all modes, a
parity bit (9th bit) can be checked or generated within the memory. Parity check can be performed
while writing and reading data without using additional logic. The result of these checks is returned
by two independent signals “WPE” and “RPE” (Write Parity Error and Read Parity Error). Parity
can also be generated while reading data.

Embedded Memory Configurations
The ability to generate additional status signals besides the standard “EMPTY” and “FULL” signals
is also built into the FIFOs. By providing a level signal, the circuit also generates signals that
indicate whether the FIFO is filled less, filled equally, and filled higher than the specified level. For a
description of what functions each FIFO has in each configuration see the Actel Macro Library
Guide. There are 24 different memory configurations that ACTgen can generate. Table A-1 lists
those configurations. .

Table A-1. Embedded Memory Block Configurations

Type Write Access Read Access Parity
Library Cell

Name

RAM Asynchronous Asynchronous Checked RAM256x9AA

RAM Asynchronous Asynchronous Generated RAM256x9AAP

RAM Asynchronous Synchronous Transparent Checked RAM256x9AST

RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP
ACTgen Cores Reference Guide 185

Naming Conventions

The HDL models for each of the 24 possible configurations are included in the ProASIC simulation
and synthesis library. The function and timing of each model is described in detail in the Actel
ProASIC and ProASICPLUS Macro Library Guide and the datasheets for ProASIC and ProASICPLUS
devices. The modules are named according to the following convention:

<MEM-TYPE><256x9><WRITE-ACCESS><READ-ACCESS><PARITY>

<MEM-TYPE> := RAM or FIFO;
<WRITE-ACCESS> := A, S;

A := asynchronous;
S := synchronous;

<READ-ACCESS> := A, ST, SR;

RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR

RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP

RAM Synchronous Asynchronous Checked RAM256x9SA

RAM Synchronous Asynchronous Generated RAM256x9SAP

RAM Synchronous Synchronous Transparent Checked RAM256x9SST

RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP

RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR

RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP

FIFO Asynchronous Asynchronous Checked FIFO256x9AA

FIFO Asynchronous Asynchronous Generated FIFO256x9AAP

FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST

FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP

FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR

FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP

FIFO Synchronous Asynchronous Checked FIFO256x9SA

FIFO Synchronous Asynchronous Generated FIFO256x9SAP

FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST

FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP

FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR

FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP

Table A-1. Embedded Memory Block Configurations (Continued)
186 ACTgen Cores Reference Guide

Embedded Memory
A := asynchronous;
ST := synchronous transparent;
SR := synchronous registered;

<PARITY> := P or nothing;
P := parity will be generated;
nothing := parity will be checked;

For example, the name of a FIFO with an asynchronous write and a synchronous transparent read
mode with parity check is “FIFO256x9AST.” Or a synchronous registered RAM with parity bit
generation would be named “RAM256x9SSRP.”

Integrating Memories into a Design
This section provides examples of how to integrate a Verilog or VHDL memory netlist into a
design. Once ACTgen has generated the memories you must incorporate the netlist into your design
before simulation and synthesis. ACTgen generates a netlist file with the .v, .vhd or .edn extension
and a constraint file with the .gcf extension, which is no longer needed to perform automatic place-
and-route of the memories.

Example Verilog RAM 512x32

The following is a Verilog netlist generated by ACTgen for a 512x32 bit RAM:

'timescale 1ns/10ps
// Name = ram512x32
// type = RAM
// width = 32
// depth = 512
// part family = A500K
// output type = asynchronous
// optimization = speed
// input type = synchronous
// parity control = ignore
// Write = active low
// Read = active low
// Write clock = posedge

module ram512x32(DO, WCLOCK, DI, WRB, RDB, WADDR, RADDR);
output [31:0] DO;
input WCLOCK;
input [31:0] DI;
input WRB;
input RDB;
input [8:0] WADDR;
ACTgen Cores Reference Guide 187

input [8:0] RADDR;

GND U1(.Y(VSS));
RAM256x9SA M0(.WCLKS(WCLOCK), .DO8(n27), .DO7(n24), .DO6(n21), .DO5(n18),
.....
//memory blocks instantiation

endmodule

The following is an example of how to instantiate a ram512x32 module into a design:

ram512x32 MY_RAM_INST(.DO(data_out),.WCLOCK(clk), .DI(data_in),
.WRB(wrb), .RDB(rdb),.WADDR(write_add), .RADDR(read_add));

After instantiating the memory into the Verilog source code, the next step is to simulate and
synthesize the design. Before synthesizing the design, make sure that the “dont_touch” attribute is
set on all memories generated by ACTgen. Refer to the the documentation included with your
synthesis tool for additional information on how to apply a “dont_touch” attribute on a memory
block.

VHDL RAM Example

The following is a VHDL example of the previously generated memory:

-- Name = ram512x32
-- type = RAM
-- width = 32
-- depth = 512
-- part family = A500K
-- output type = asynchronous
-- optimization = speed
-- input type = synchronous
-- parity control = ignore
-- Write = active low
-- Read = active low
-- Write clock = posedge

entity ram512x32 is
port(DO : out std_logic_vector (31 downto 0);

WCLOCK : in std_logic;
DI : in std_logic_vector (31 downto 0);
WRB : in std_logic;
RDB : in std_logic;
WADDR : in std_logic_vector (8 downto 0);
RADDR : in std_logic_vector (8 downto 0));
188 ACTgen Cores Reference Guide

Embedded Memory
end ram512x32;

The entity describes the interface of the module that must be instantiated into the VHDL design
source code. Besides the actual connection of the interface, VHDL requires an additional
declaration of the sub-module in the architecture. The following is an example of an architecture
declaration including the declaration of the memory as a component:

architecture STRUCT_ram512x32 of ram512x32 is
component PWR

port(Y : out std_logic);
end component;

component GND
port(Y : out std_logic);

end component;

component RAM256x9SA
port(WCLKS : in std_logic;

DO8 : out std_logic;
DO7 : out std_logic;
......

);
end component;
......
begin
......

M0 : RAM256x9SA port map(WCLKS => WCLOCK, DO8 => n27, DO7 => n24,
......

end STRUCT_ram512x32;

Importing the Netlist into Designer

After synthesis, a design is translated into either a Verilog, VHDL, or an EDIF netlist. The netlist
includes all logic blocks as well as the memories. To import the netlist file(s) into Designer, refer to
the Designer online help. .

Table A-2. Possible RAM Locations for the A500K Family

Part possible RAM locations formula

A500K050 (1,57), (17, 57), ..., (81, 57) x = 16*n+1; n= {0,1,2,3,4,5}; y = 57;
ACTgen Cores Reference Guide 189

Designer automatically places the memories serially. If you want to place memories in any other way,
use manual memory placement, as described in the next section.

Note: If you use the previous memory modules in a synthesis flow, make sure that you set
“dont_touch” attributes on the modules generated by ACTgen. Otherwise, the names of these
modules may be changed and Designer cannot find the memory modules to be placed in the
netlist.

Manual Memory Placement

For manual placement, a .gcf constraints file must be created. The following is an example of a
manually created placement file for a A500K130 device.

set_location (1,81) <hier_instance_name>/M0;
set_location (1,89) <hier_instance_name>/M1;
set_location (33,89) <hier_instance_name>/M2;
set_location (33,81) <hier_instance_name>/M3;

The (x,y) coordinates are device dependent. If wrong coordinates are entered, Designer reports
about wrong coordinates and displays a list of valid coordinates for the selected device. Refer to
Table A-2 on page 189 for valid coordinates for each device.

Distributed Memory
This section describes the distributed memory architecture and how to use ACTgen to create
distributed memories for ProASIC and ProASICPLUS devices.

A500K130
(1,81), (17, 81), ..., (145,81) (1,89), (17,

89), ..., (145,89)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9}

y = {81, 89}

A500K180
(1,97), (17,97), ..., (177, 97)
(1,105), (17,105), ..., (177, 105)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9,10,11}
y = {97, 105}

A500K270
(1,121), (17,121), ..., (209,121)

(1,129), (17,129), ..., (209,129)

x = 16*n+1; n= {0,1,2,3,4,5,6,7,8,9,10,11,12,13}

y = {121, 129}

Table A-2. Possible RAM Locations for the A500K Family

Part possible RAM locations formula
190 ACTgen Cores Reference Guide

Distributed Memory
Distributed Memory Architecture
Distributed memory can be generated as a two port asynchronous register file or as an asynchronous
FIFO. Distributed memories are made up of the logic tiles of the device. These memory files are
netlists consisting of logic tiles and do not use embedded memory cells.

The Register File

The register file has independent read and write ports. The read port is asynchronous so the read
data is not clocked and is available a short time after the read address changes. The write port is also
asynchronous and data is written on the active edge of WR. The write operation can be either level
sensitive or edge-sensitive. The schematic of a 2x2 memory is shown in Figure A-1 on page 191.
The schematic is marked to show the words (vertical slices), the bits (horizontal slices) and the
decoders (one per word). The register file memory requires 1 column per word and 2 rows per bit
plus from 1 to 3 rows for the necessary decoders.

Figure A-1. 2x2 Register File Schematic

D

C

Q

D

C

Q

D

C

Q

D

C

Q

B

A S

Y

B

A S

Y

wData1wData1

wData0wData0

WRWR

wAddr0wAddr0

rAddr0rAddr0

rData1rData1

rData0rData0

Word0 Word1

B
it

0

ACTgen Cores Reference Guide 191

Distributed FIFO

A Distributed FIFO also has independent read and write ports. However, it has no address ports.
Instead, the FIFO keeps track of the addresses internally. The FIFO is organized with words in
columns and data bits in rows. The top row consists of the write addressing circuitry and the “full”
detection circuitry. The second row consists of the read addressing circuitry and the “empty”
detection circuitry. The FIFO requires two columns per word plus an overhead for decoders and flag
generation that is a minimum of three columns. The FIFO also requires one row per bit plus an
overhead of two rows. Figure A-2 shows the schematic of a 2x2 FIFO.

Figure A-2. 2x2 FIFO Schematic

Determining Tile Usage

ProASIC parts tend to have more tiles horizontally. The choice of orientation affects the allowable
size of the memory. A horizontal memory allows the maximum possible number of words. A vertical
memory allows the maximum number of bits per word. ACTgen can create register files of up to 64
words on any possible ProASIC device. Distributed memories are created using logic tiles and are
generally slower and larger compared to embedded RAM. Actel recommends that larger memories

D

C

S
Q

A
B

Y

A
B

Y

Init

Write

Read

D Q

D Q

wData1

wData0

D

C

S
Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

A
B

Y

A
B

Y

D Q

D Q

D

C R

Q

D

C R

Q

rData1

rData0

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

A
B

Y

empty

full
192 ACTgen Cores Reference Guide

Distributed Memory
be implemented with embedded memory. The maximum distributed FIFO sizes in any ProASIC
device is 80 words. The maximum RAM and FIFO sizes are shown in Table A-3.

1. Numbers in parentheses are for FIFOs.

The orientation of the register file affects how it is placed. Horizontal register files are placed with
words in columns and bits in rows as shown in Figure A-3.

Figure A-3. Horizontal Memory

Table A-3. Maximum RAM and FIFO Dimensions

Device Vertical Horizontal

Words Width Words Width

A500K050 64 (23)1 46 (94) 64 (36) 30 (62)

A500K130 64 (29) 78 (158) 64 (62) 38 (78)

A500K180 64 (36) 95 (192) 64 (75) 46 (94)

A500K270 64 (45) 110 (222) 64 (80) 58 (118)

APA 64 (45) 110 (222) 64 (80) 58 (118)

Decoders

Core
2 * number bits per word

number of words
ACTgen Cores Reference Guide 193

Vertical memories are placed with bits in columns and words in rows as shown inFigure A-4.

Figure A-4. Vertical Memory

The decoder sizes are given in table Table A-4.

Calculating Logic Usage
The following section presents how to calculate logic usage for Memory area, and a vertical and a
horizontal memory.

Memory Area

The following is an example of how to calculate memory area:

Memory Area = Number of Words
(2 * Number of bits +decoder size)

Table A-4. Decoder Sizes

Number of Words Decoder Size

2 ~ 4 1

5 ~ 8 2

9 ~ 64 3

D
ec

od
er

s

C
or

e

2 * number bits per word

nu
m

be
r

of
w

or
ds
194 ACTgen Cores Reference Guide

Distributed Memory
Vertical Orientation

The following is an example logic usage calculation for a 16x32 RAM:

Width in tiles = 2 * number-of-Bits-per-word + decoder size

= 2 * 32 + 3 = 67

Height in tiles = number-of-words = 16

Horizontal Orientation

The following is a an example logic usage calculation for a 16x32 RAM:

Tiles in Width = Number-of-Words = 16

Tiles in Height = 2 * number-of-bits-per-word + decoder size

= 2 * 32 + 3 = 67

ACTgen displays the legal coordinates to place the memory if the core is not rotated or flipped. The
horizontal could be placed between the coordinates (1,1) and (145, 15) assuming the A500K130
device was selected.

Distributed Memory Placement

To achieve the best timing and efficient placement, use the placement constraints file generated by
ACTgen. For more information on constraint statements, refer to the Actel Quick Start Guide. To
utilize this file, use the “set_location” constraint statement for cores. For example:

set_location (x,y) <mem_hier_name> <macro_name>;

Distributed Memory Timing

Memory timing values are dependent on the memory size and the routing to and from the memory.
Since the memories are implemented as ProASIC primitives, users can determine the timing
characteristics of the circuit by performing a back annotated timing analysis. In fact, to the timing
analyzer, the distributed memory looks like any other part of the circuit and requires no special
treatment. “Timing for Distrubuted Memories” on page 196 explains the critical timing paths in
each memory, and why these paths are critical.
ACTgen Cores Reference Guide 195

Distributed Memory Generation and Instantiation
Consider the following hierarchical design, which instantiates a 16x32 memory as shown in Figure
A-5.

Figure A-5. Design Example

Simulation and Synthesis

After instantiating a memory into the design, simulate and synthesize it. Memory models are
included into the simulation and synthesis libraries. Refer to the documentation included with your
simulation and synthesis tools for additional information. During synthesis make sure that the
“dont_touch” attribute is set on all memories generated by ACTgen.

Place-and-Route

After synthesis, a netlist is written out that contains the embedded memories and the logic of a
design. Designer treats the memory as a core and places it in a rectangle with the bottom-left corner
on tile coordinate (10,10). Memory can be moved on the die by changing this coordinate.

Note: Distributed memory contains very high fanout nets so, if you do not use the above placement
constraints, memory timing will be sub-optimal or the design may not route.

Timing for Distrubuted Memories
The following chapter decribes the timing parameters for the level sensitive register file, and edge-
triggered register file. It also includes information about edge-triggered FIFOs.

Level-sensitive Register File
The level-sensitive register file has three main timing parameters.

• Tacc - time from stable read-address to output data valid

TOP

block1 block2

ram16x32 block3

U1 U2

U3mem_inst
196 ACTgen Cores Reference Guide

Timing for Distrubuted Memories
• Tsetup_data - time from stable write-data to falling edge of WR

• Tsetup_addr - time from stable write-address to rising clock edge

Figure A-6 shows the timing of these parameters:

Figure A-6. Level-sensitive Mode Timing Diagram

Failure to meet these timing values will have the following results:

• Tacc - read data might be from previous address

• Tsetup_data - data may not be written into the memory

• Tsetup_addr - data may be written into some other address as well as the intended address

Edge-triggered Register File
The edge-triggered register file has three main timing parameters:

• Tacc - time from stable read-address to output data valid

• Tsetup_data - time from stable write-data to rising WR edge

• Tsetup_addr - time from stable write-address to rising WR edge

rAddr

rData

wData

wAddr

WR

Tacc

Tsetup_data

Tsetup_addr
ACTgen Cores Reference Guide 197

Figure A-7 shows the relationships of the signals.

Figure A-7. Edge-triggered Mode Timing Diagram

Failure to meet these timing values will have the following results:

• Tacc read data might be from previous address

• Tsetup_data data may not be written into the memory

• Tsetup_addr data may be written into some other address

The main advantage of the edge-triggered memory is that the write timing is sensitive only to the
rising edge of the WR, not both the rising and falling edges.

Edge-Triggered FIFO
The edge-triggered FIFO captures data on the rising edge of the “WR” signal, and the read pointers
advance on the rising edge of the “RD” signal. Before using the FIFO, it must be initialized by
pulsing the “INIT” signal high. Immediately after initialization, the “empty” signal is true and the
“full” signal false. Data applied on the “wDataX” signals are captured when the “WR” signal
transitions from 0 to 1. Simultaneously, the “empty” signal will become false to indicate that there is
valid data on “rDataX.” Further transitions from 0 to 1 on “WR” captures more data into the FIFO
until such time as “full” becomes true. At this point, the FIFO is full, and no more data should be
entered into it.

After the FIFO is initialized, the output data remains invalid until the first read operation is
performed. With every rising edge of the read pulse, the FIFO generates the next word written into
it on the output data bus until all the words written into it are read out. At this point the “empty”
signal goes high. Further read operations produce no change to the data output as it remains fixed at
the last word written into the FIFO.

rAddr

rData
Tacc

wData

wAddr

WR

Tsetup_data

Tsetup_addr
198 ACTgen Cores Reference Guide

Using Multiple Memories in a Design
Figure A-8 shows an example of an Edge triggered FIFO. It has the following main timing:

• Tacc - Access from RD rising edge to output data valid

• Tacc - Access from RD rising edge to output data valid

• Tsu - Setup time from stable write-data to rising WR edge

• Thold - Hold time for write-data from rising WR edge

Figure A-8. Edge-triggered FIFO Timing Diagram

Level Sensitive FIFO
The level sensitive FIFO has the same timing as the edge-triggered FIFO. The only difference is
that the data input is latched at the falling edge of the write pulse.

Using Multiple Memories in a Design
This chapter describes how to use multiple memories in a design. If a design includes several
memories with different sizes and access modes, Actel recommends generating them all in one
session of ACTgen. The embedded memories are automatically generated and are accompanied by
placement directives.

Multiple Memory Generation and Integration
ProASIC devices contain dedicated embedded memory blocks that can be configured as RAM or
FIFO. Multiple memory blocks can be combined together to create deep and wide memories.
ACTgen does this by combining multiple memory blocks as required. The tool generates netlists for

Tacc

rData

RD

wData

WR
Tsu Thold
ACTgen Cores Reference Guide 199

these blocks. Netlist instantiates memory leaf cells. Consider the following design shown in Figure
A-9.

Figure A-9. Sample Design

In this design, there is a receive FIFO and transmit FIFO. Read and Write ports are synchronous.
Each FIFO is 32 words deep and 64 bits wide. Also, both FIFOs are identical. Only one FIFO
needs to be created with ACTgen, and it must be instantiated twice into the design.

Once the FIFO is generated with ACTgen, it must be instantiated into the design. The following is
an example of the RTL after instantiation:

module top(tran_data, rec_data, rec_data_valid,
tran_data_valid, clk, reset, rec_fifo_full,
rec_fifo_empty, tran_fifo_full, tran_fifo_empty);
// this is top level module

input rec_data_valid, clk, reset, tran_data_valid;
output[63:0] tran_data;
output rec_fifo_full, rec_fifo_empty,tran_fifo_full, tran_fifo_empty;
input[63:0] rec_data;
wire[63:0] data_int;
/* Receiver FIFO instantiation */
sync_fifo rec_FI(.data_in(rec_data),.data_out(data_int),

.wr(rec_data_valid), .rd(1'b0),

.empty(rec_fifo_empty), .full(rec_fifo_full),

.reset(reset), .clk(clk));
/* transmit FIFO instantiation */
sync_fifo tran_FI(.data_in(data_int),

.data_out (tran_fifo_full)

.wr(1'b0), .rd(tran_data_valid),

.empty(tran_fifo_empty), .full(tran_fifo_full),

.reset(reset), .clk(clk));
/* other RTL of the design and other blocks */

Receive FIFO
32x64

Transmit FIFO
32x64

Rec data
64

64

CLK

Rec data valid

Int data

64

Tran data valid

Transmit data

Tran FIFO emptyTran FIFO fullRec FIFO full Rec FIFO empty
200 ACTgen Cores Reference Guide

Using Multiple Memories in a Design
endmodule

module sync_fifo (data_in, data_out, wr, rd, empty, full, reset, clk);
input[63:0] data_in;
output[63:0] data_out;
input wr, rd,clk, reset;
output empty, full;
/* Instantiation of FIFO generated from ACTgen */fifo32x64
F1(.DO(data_out), .RCLOCK(clk), .WCLOCK(clk),

.DI(data_in), .WRB(wr), .RDB(rd), .RESET(reset),

.FULL(full), .EMPTY(empty), .EQTH(), .GEQTH());

endmodule

Simulate and Synthesize

Now the design can be simulated and synthesized. The following is an example of a Verilog-XL
simulation command:

verilog test_sim.v top.v fifo32x64.v –v
$AMHOME/etc/deskits/verilog/lib/A500K.v

The following is a typical Design Compiler script for synthesis of a design including memory blocks:

read –format verilog fifo32x64
set_dont_touch find(design, “fifo32x64”) /* memories must be dont_touch
during synthesis */
read –format verilog top.v
create_clock –period 20 clk /* add timing constraints */set_wire_load
A500K
set_operating_conditions WORST
compile
set_port_is_pad “*” /* use set_pad_type to to use a particular type of pad
*/
insert_pads
write –format verilog –hierarchy –output top_str.v /* write out netlist
with hierarchy */
quit

Memory Placement

The netlist “top_str.v”contains both FIFO instantiations and can be used for post synthesis gate level
simulation. After synthesis, you can place and route the design. In this example, each FIFO uses 8
memory blocks. Designer automatically attempts to place each FIFO in a line. The resulting
placement on an A500K130 device, which has 20 memory slots, is shown in Figure A-10 on page
ACTgen Cores Reference Guide 201

202. For information about the ChipEdit tool, refer to the ChipEdit User’s Guide or the ChipEdit
online help.

Figure A-10. Sample Memory Placement (Screen May Vary Slightly)

During placement Designer attempts to keep one memory entity in one group. In the example
shown in Figure A-10, it placed the “Rec_FI/F1/M0” in the first memory slot on the left side of the
lower row, and “rec_FI/F1/M1” in next slot and so on. Only ten slots were available in one row and
therefore, the placement of “tran_FI” started from the upper row. If each memory block had used
four blocks, both memory blocks would be placed one after another in the lower row.

Manual Placement of Multiple Memories
A memory placement file must be created to manually place memories. For example, to place the
“rec_FI” from the previous example on the left side using both rows and the “tran_FI” on right side
in both rows, the following placement file would be used:

set_location (1,81) rec_FI/F1/M0;
set_location (1,89) rec_FI/F1/M1;
set_location (17,89) rec_FI/F1/M2;
set_location (17,81) rec_FI/F1/M3;
set_location (33,81) rec_FI/F1/M4;
set_location (33,89) rec_FI/F1/M5;
set_location (49,89) rec_FI/F1/M6;

M7
M4M6M7 M2

M5
M3

M3M1 M4M2M0
M1 M0M5

M6

8 blocks of
tran_FI

8 blocks of
Rec_FI
202 ACTgen Cores Reference Guide

Using Multiple Memories in a Design
set_location (49,81) rec_FI/F1/M7;

set_location (145,81) tran_FI/F1/M0;
set_location (145,89) tran_FI/F1/M1;
set_location (129,89) tran_FI/F1/M2;
set_location (129,81) tran_FI/F1/M3;
set_location (113,81) tran_FI/F1/M4;
set_location (113,89) tran_FI/F1/M5;
set_location (97,89) tran_FI/F1/M6;
set_location (97,81) tran_FI/F1/M7;

This constraints file should be read into Designer and would result in the placement shown in Figure
A-11 on an A500K130 device.

Figure A-11. Sample FIFO Placement

Designer determines the placement for each memory and keeps each memory entity together. To
change default placement, you can create constraints manually for memory placement as described
in Chapter 1.

Glue Logic for Wider or Deeper Memories

If very deep or very wide memories are created, ACTgen combines together multiple basic blocks
and uses embedded logic. Two lists quantifying glue logic are shown in Table A-5 and Table A-6 on
page 204 .

These tables cover extreme cases of depth or width for RAMs and FIFOs for the A500K130 device,
which offers 20 memory blocks and 12800 logic tiles.

Table A-5. RAM

RAM Parity
Memory

Blocks Used
Logic Tile

Used
Comment

Depth 5120
Width 8

Check Even 20 259
All 20 blocks used in
depth

M1 M6M5M2 M1M2M5M6

M0 M7M4M3 M0M3M4M7

Tran FIFORec FIFO
ACTgen Cores Reference Guide 203

For FIFOs, ACTgen creates placement directives for glue logic. If placement information from
ACTgen is used, glue logic placement is more efficient.

Programmable Flags in FIFOs
ProASIC devices provide programmable flags for FIFOs. The threshold for these flags can be set in
ACTgen in the main menu. It is on the bottom right corner in the FIFO Trigger Level box. You can
specify whether the flag is static or dynamic. If dynamic is selected, ACTgen will create a FIFO with
a LEVEL input bus on the memory interface. You can apply values in the range of 0 to 255 to this
bus to change its threshold dynamically.

The overall trigger level is a multiple “d,” which is the number of used basic memory blocks in depth
(each 256 words). The increment between each overall trigger level is equal to “d.” For example, a
memory that is 512 words deep is built up of two basic memory block in depth (512/256). The
highest almost full trigger level should be assigned, which is 510 (512-d = 512-2) The corresponding
dynamic trigger LEVEL is 255 (510/n = 510/2).

If the threshold is not changing, you can select the static option and specify the threshold value. In
this case, ACTgen will hardwire threshold to the specified value. A detailed timing of these flags can
be found in the ProASIC 500k Family Datasheet.

Depth 256
Width 160

Check Even 20 22
All 20 blocks used in
width

Table A-6. FIFO

FIFO Parity
Memory Blocks

Used
Logic Tile

Used
Comment

Depth 5120
Width 8

Check Even 20 592
All 20 blocks used in
depth

Depth 256
Width 160

Check Even 20 62
All 20 blocks used in
width

Table A-5. RAM

RAM Parity
Memory

Blocks Used
Logic Tile

Used
Comment
204 ACTgen Cores Reference Guide

Using Multiple Memories in a Design
Trigger level is also called threshold. Consequently, equal threshold (EQTH) and greater equal
threshold (GEQTH) are the names of the trigger flags.
ACTgen Cores Reference Guide 205

206 ACTgen Cores Reference Guide

B
Product Support

Actel backs its products with various support services including Customer Service, a Customer
Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This
appendix contains information about contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product
upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650. 318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help
answer your hardware, software, and design questions. The Customer Technical Support Center
spends a great deal of time creating application notes and answers to FAQs. So, before you contact
us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actelcom/.custsup/search.html) for more
information and support. Many answers available on the searchable web resource include diagrams,
illustrations, and links to other resources on the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at
www.actel.com.
ACTgen Cores Reference Guide 207

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific
Time, Monday through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by
email, fax, or phone. Also, if you have design problems, you can email your design files to receive
assistance. We constantly monitor the email account throughout the day. When sending your
request to us, please be sure to include your full name, company name, and your contact information
for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your
name, company name, phone number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available application engineer receives the
data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via
email (tech@actel.com) or contact a local sales office. Sales office listings can be found at
www.actel.com/contact/offices/index.html.
208 ACTgen Cores Reference Guide

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

	Introduction
	Document Conventions
	Symbols
	Your Comments
	Online Help

	Arithmetic Cores
	Adder
	Array Adder
	Subtractor
	Adder/Subtractor
	Accumulator
	Incrementer
	Decrementer
	Incrementer/Decrementer
	Constant Multiplier
	Multiplier
	Advanced Options

	Comparators
	Magnitude/Equality Comparator
	Constant Decoder

	Converters
	Gray Counter
	Binary to Gray / Gray to Binary

	Counters
	Binary Counter

	Decoder
	Decoder

	I/Os
	Input Buffers
	Output Buffers
	Bi-Directional Buffers
	Tri-State Buffers
	Global Buffers
	PECL Global Buffers
	Dual Data Rate Register

	Logic
	Logic (AND)
	Logic (OR)
	Logic (XOR)

	Multiplexer
	Multiplexer

	Minicores
	FIR Filter
	CRC Minicore

	PLLs
	PLL for ProASICPLUS
	Axcelerator PLL
	Clock Conditioning / PLL cores for ProASIC3/E
	Functionality
	Configure Clock Conditioning / PLL cores

	Register (Storage Elements)
	Storage Register
	Shift Register
	Barrel Shifter
	Storage Latch

	Memory Cores for Non-Axcelerator Families
	Synchronous/Asynchronous Dual Port RAM
	Register File
	Synchronous Dual Port FIFO without Flags
	Synchronous Dual Port FIFO with Flags
	FIFO Flag Controller (No RAM)

	Memory Cores for Axcelerator
	Axcelerator RAM
	Axcelerator EDAC RAM
	Axcelerator FIFO

	Memory Cores for ProASIC, ProASICPLUS, and ProASIC3/E Devices
	Synchronous/Asynchronous Dual Port RAM for ProASIC and ProASICPLUS
	Register File for ProASIC and ProASICPLUS Devices
	Synchronous/Asynchronous Dual Port FIFO for ProASIC and ProASICPLUS Devices
	FIFO Using Distributed Memory for ProASIC and ProASICPLUS
	RAM for ProASIC3/E
	Creating a FIFO for ProASIC3/E
	Embedded Memory
	Distributed Memory
	Timing for Distrubuted Memories
	Using Multiple Memories in a Design
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center

